Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 1 of 143 AF3 Advanced Forest Fire Fighting D71.1 Physics and chemistry of cooling, retarding and fire fighting agents – analysis report PREPARED BY FHG-ICT POLITO PYRO D. Böhm Vittorio Verda Joaquín Catalá V. Gettwert S. Knapp S. Sims S. Stegmüller M. Weinert DISSEMINATION LEVEL PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 2 of 143 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 3 of 143 REVISIONS LOG CHANGE REV CHANGE REFERENCE DATE PREPARED DESCRIPTION 0.1 First Draft 18.05.2014 Merging all contributions Michael 0.2 First Draft to cecilia 26.05.2015 Corrections from Volker Michael and pyro 0.3 Sent for Ethical Approval 15.06.2015 Suggested changes from Dana, Richard EFPC and Caterina. 0.4 Sent for publishing 16.06.2015 Suggested changes Michael accepted and Addition of standard deviations in tables 16 and 17 as suggested from PYRO AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 4 of 143 TABLE OF CONTENTS TABLE OF FIGURES .......................................................................................................... 6 1. TABLE OF TABLES ........................................................................................... 9 2. SCOPE ............................................................................................................. 10 3. TECHNICAL PROGRESS SUMMARY ............................................................ 11 3.1 LITERATURE SURVEY ................................................................................... 11 3.1.1 Commercial extinguishing agents ................................................................. 11 3.1.2 Published works ............................................................................................. 12 3.1.3 Patents ............................................................................................................. 16 3.1.4 Types of applications ..................................................................................... 19 3.2 MODE OF ACTION OF FIRE FIGHTING AGENTS ......................................... 25 3.2.1 Cooling............................................................................................................. 25 3.2.2 Intumescent coating ....................................................................................... 26 3.2.3 Other protective layers ................................................................................... 27 3.2.4 Inert gas producers ........................................................................................ 27 3.3 ANALYSIS OF FOREST PLANTS ................................................................... 28 3.3.1 Pretreatment of forest plants ......................................................................... 30 3.3.2 Pyrolysis GC-MS ............................................................................................. 31 3.3.3 Thermogravimetric analysis .......................................................................... 55 3.3.4 Elemental analysis .......................................................................................... 57 3.3.5 Heat of combustion ........................................................................................ 59 3.4 CHARACTERISATION OF PELLETS .............................................................. 64 3.5 CHARACTERIZATION OF EXTINGUISHING EFFICIENCY ............................ 68 3.5.1 Test of extinguishing agents for pellets ....................................................... 68 3.5.1.1 Experimental setup of the fire test station .................................................... 68 3.5.1.2 Used fire suppressants .................................................................................. 70 3.5.1.3 Flow chart of the fire test station ................................................................... 71 3.5.1.4 Modifications of the fire test station ............................................................. 72 3.5.1.5 Results ............................................................................................................. 74 3.5.1.6 Summary.......................................................................................................... 78 3.5.1.7 References ....................................................................................................... 78 3.5.2 Test of extinguishing agents for capsules at FHG-ICT ................................ 80 3.5.2.1 Test stand for crown fire ................................................................................ 80 3.5.2.1.1 Experimental setup ........................................................................................... 80 3.5.2.1.2 Results .............................................................................................................. 81 3.5.2.2 Test stand for ground fire .............................................................................. 89 3.5.2.2.1 Experimental setup ........................................................................................... 89 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 5 of 143 3.5.2.2.2 Results .............................................................................................................. 90 3.5.2.2.3 Results of the experiments with the radiant heater: ........................................ 109 3.5.2.2.4 Results of the experiments with the burner: .................................................... 109 3.5.2.3 Thermogravimetric analysis of fire fighting chemicals ............................. 111 3.5.3 Test of extinguishing agents for capsules (PYRO) .................................... 112 3.5.3.1 Preliminary sedimentation / crystallization tests ....................................... 112 3.5.3.2 Methodology for Vegetation Interception Characterization ...................... 113 3.5.3.3 Capsules Activation Temperature ............................................................... 117 3.5.3.4 Set up of Methodology to compare with real fire the effect of different retardant agents ............................................................................................ 117 3.5.3.4.1 Fuel characteristics ......................................................................................... 119 3.5.3.4.2 Metheorological variables ............................................................................... 120 3.5.3.4.3 Test plots ........................................................................................................ 120 3.5.3.4.4 Application of retardant products .................................................................... 121 3.5.3.4.5 Fire behaviour variables measurement ........................................................... 122 3.5.3.5 References ..................................................................................................... 124 3.6 BIODEGRADABLE MATERIALS .................................................................. 127 3.6.1 Polylactic acid ............................................................................................... 127 3.6.2 Thermoplastic starch .................................................................................... 128 3.6.3 Cellulose ........................................................................................................ 129 3.6.4 Bio-Co- and Terpolyester ............................................................................. 130 3.6.5 Polyhydroxyalkanoate .................................................................................. 130 3.6.6 Polyvinyl alcohol ........................................................................................... 131 3.6.7 Summary........................................................................................................ 132 3.6.8 References ..................................................................................................... 133 4. FAST MODEL OF FIRE PROPAGATION FOR RISK ANALYSIS ................. 135 4.1 WILDFIRE PREDICTION MODELS ............................................................... 135 4.1.1 Physical-based models ................................................................................ 135 4.1.2 Empirical and semi-empirical models ......................................................... 135 4.1.3 Mathematical and simulation models ......................................................... 137 4.1.4 Most Common Software ............................................................................... 137 4.2 DISCUSSION ON MODEL SELECTION/REDUCTION .................................. 139 4.3 MODEL CREATION, REDUCTION AND COMPARISON WITH EXPERIMENTAL DATA ................................................................................. 139 4.3.1 Model description ......................................................................................... 139 4.3.2 POD reduction techniques ........................................................................... 140 4.3.3 Model validation ............................................................................................ 141 4.4 REFERENCES ............................................................................................... 142 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 6 of 143 TABLE OF FIGURES Figure 1: Chemical firebreaks. On the left, a firefighter creating a chemical firebreak through ground means (fire engine vehicle). On the right a chemical firebreak created by an airtanker ........................................................................................................................ 20 Figure 2: Effect of long term fire retardant agent sprayed over vegetation ........................ 22 Figure 3: Droplet ................................................................................................................ 23 Figure 4: Overview classes and subclasses of fire extinguishing agents ........................... 25 Figure 5: Climate Regions in Spain and vegetation sampling locations (red dots) ............ 28 Figure 6: Vegetation and fire retardant agent samples collected by Pyro .......................... 30 Figure 7: Mass loss of different vegetation samples after drying for 24 h at 80 °C. ........... 31 Figure 8: Emission products of Arbutus unedo L. at 250°C. .............................................. 33 Figure 9: Decomposition products of Arbutus unedo L. at 500°C. ..................................... 34 Figure 10: Emission products of Cistus albidus L. at 250°C. ............................................. 35 Figure 11: Decomposition products of Cistus albidus L. at 500°C. .................................... 35 Figure 12: Emission products of Cupressus sempervirens L. at 250°C. ............................ 36 Figure 13: Decomposition products of Cupressus sempervirens L. at 500°C. ................... 37 Figure 14: Emission products of Eucalyptus globulus in the temperatur range of 50-250°C. ........................................................................................................................................... 37 Figure 15: Decomposition products of Eucalyptus globulus at 500°C; total decomposition. ........................................................................................................................................... 38 Figure 16: Emission products of Nerium oleander L. at 250°C. ......................................... 39 Figure 17: Decomposition products of Nerium oleander L. at 500°C. ................................ 40 Figure 18: Emission products of Olea europaea ssp. sylvestris at 250°C. ......................... 41 Figure 19: Decomposition products of Olea europaea ssp. sylvestris at 500°C. ................ 42 Figure 20: Emission products of Pinus pinaster ssp. atlantica at 250°C. ........................... 43 Figure 21: Emission products of Pistacia lentiscus L. at 250°C. ........................................ 44 Figure 22: Decomposition products of Pistacia lentiscus L. at 500°C. ............................... 45 Figure 23: Emission products of Pteridium aquilinum at 250°C. ........................................ 46 Figure 24: Decomposition products of Pteridium aquilinum at 500°C. ............................... 46 Figure 25: Emission products of Quercus coccifera L. at 250°C. ....................................... 47 Figure 26: Decomposition products of Quercus coccifera L. at 500°C. .............................. 47 Figure 27: Emission products of Quercus ilex ssp. rotundifolia at 250°C. .......................... 48 Figure 28: Decomposition products of Quercus ilex ssp. rotundifolia at 500°C.................. 49 Figure 29: Emission products of Rubus ulmifolius Schott at 250°C. .................................. 49 Figure 30: Emission products of Rubus ulmifolius Schott at 500°C. .................................. 50 Figure 31: Emission products of Thymus vulgaris L. in the temperatur range of 50-250°C. ........................................................................................................................................... 51 Figure 32: Chromatogram of Thymus vulgaris L. at 500°C. ............................................... 52 Figure 33: Emission products of Ulex parviflorus Pourr. at 250°C. .................................... 52 Figure 34: Decomposition products of Ulex parviflorus Pourr. at 500°C ............................ 53 Figure 35: TGA of different organic material (the numbers correspond with the samples in chapter 4.3.1. ..................................................................................................................... 55 Figure 36: Derivative of the thermogravimetric measurement of “Arbutus unedo L.” ......... 55 Figure 37: Two-step 1st order model fit to the thermogravimetric measurement and the resulted parameters. .......................................................................................................... 56 Figure 38: Overview of the heat of combustion of the different vegetation samples. ......... 62 Figure 39: Compression test of water pellets with splashguard ......................................... 66 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 7 of 143 Figure 40: compression test of water pellets in different positions ..................................... 67 Figure 41: Broken water pellet after compression test ....................................................... 67 Figure 42: Fire test station for the extinguishing efficiency test. ......................................... 69 Figure 43: Flowchart of the fire test station ........................................................................ 71 Figure 44: Burning area of the stealplate in steal frame. ................................................... 72 Figure 45: Atomizer of the comapny „Schütz“. ................................................................... 73 Figure 46: Test stand before the experiment starts ........................................................... 80 Figure 47: The framework is pushed closely to the heater during the experiment ............. 81 Figure 48: distance test for the heater (2-15 cm) ............................................................... 82 Figure 49: results of the distance test (V: frontside, H: backside) ...................................... 82 Figure 50: first recordings with the heater .......................................................................... 83 Figure 51: picture of “Eucam Nr. 58V”: macerated foam.................................................... 84 Figure 52: 10 uncoated plates were measured to find the mean curve ............................. 85 Figure 53: water, Firesorb 3%, ammonia carbonate and the uncoated plate in comparison ........................................................................................................................................... 86 Figure 54: Eucam and Hensotherm in comparison ............................................................ 87 Figure 55: FrCross134 P+T, sodium silicate and different formulations in comparison ..... 88 Figure 56: test stand for the ground fire ............................................................................. 89 Figure 57: 12 uncoated plates were measured to find the mean curve ............................. 90 Figure 58: different quantities of water in comparison ....................................................... 91 Figure 59: ply wood plate with cracks, caused by heating ................................................. 92 Figure 60: different quantities of Firesorb 3% in comparison ............................................. 92 Figure 61: plate coated with Firesorb 3%........................................................................... 93 Figure 62: different quantities of Firesorb 1,5% in comparison .......................................... 93 Figure 63: Firesorb 1,5% and 3% compared to each other................................................ 94 Figure 64: a saturated urea solution compared to water .................................................... 95 Figure 65: ammonia carbonate and ammonia carbamate compared to water ................... 96 Figure 66: different dilutions of Eucam in comparison ....................................................... 97 Figure 67: macerated pure Eucam foam after heating ....................................................... 98 Figure 68: different quantities of Eucam and a dilution of it in comparison ........................ 98 Figure 69: magnifications of macerated pure Eucam foam ................................................ 99 Figure 70: different quantities of Hensotherm in comparison with water ............................ 99 Figure 71: burned Hensotherm plates STBR 113 +116 after the experiments ................ 100 Figure 72: pure macerated Hensotherm foam ................................................................. 100 Figure 73: Comparison of different dilutions of sodium silicate (500 g/m2). ..................... 101 Figure 74: sodium silicate macerates during flaming with the burner .............................. 102 Figure 75: sodium silicate crust after flaming ................................................................... 102 Figure 76: different quantities and dilutions of FrCross134P in comparison .................... 103 Figure 77: different quantities of FrCross134P in comparison ......................................... 104 Figure 78: plate coated with FrCross134P before (left) and after flaming (right) .............. 104 Figure 79: different quantities of FrCross134T in comparison ......................................... 105 Figure 80: plate coated with 250 g/m² of FrCross134T .................................................... 105 Figure 81: different new formulations compared to pure substances ............................... 106 Figure 82: the formulation 50% Eucam / FrCross134T (ratio 1:1) compared with its components ..................................................................................................................... 107 Figure 83: formulation of 50% Eucam / FrCross134T (ratio 1:1) ...................................... 108 Figure 84: formulation of 50% Eucam / FrCross134T (ratio 1:1) after flaming ................. 108 Figure 85: Samples of fire retardant after thermal cycling................................................ 112 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 8 of 143 Figure 86: No public Nitrogen based product chrystallization .......................................... 113 Figure 87: Nub-e SAT dispersion system design variables (see details in AF3 D7.4.1) .. 114 Figure 88: Experimental variables for vegetation bearing tests ....................................... 115 Figure 89: Portal interception (bush specimen) test bench construction .......................... 115 Figure 90: Vegetation Intercetpion callibration process ................................................... 116 Figure 91: Water distribution test [mm/h] acording to the distance and position to the water difussor. Pressure 4 bar ................................................................................................... 116 Figure 92: Geographical location of prescribed burns ..................................................... 118 Figure 93: Basic test design (8 m2 square test plot)......................................................... 119 Figure 94: Plot where vegetation samples is taken .......................................................... 120 Figure 95: Example of round test plot with a radius of 1.5 meters ................................... 121 Figure 96: Application of retardant product over test plots ............................................... 122 Figure 97: Preliminary trial for measurement of flame lenght ........................................... 123 Figure 98: Example of trated plot after being affected by fire ........................................... 124 Figure 99: Manufacturing of PVAc. .................................................................................. 131 Figure 100: Comparison of wind and moisture dependence in empirical models. ........... 136 Figure 101: Vector approach (ellipse method) on the left and raster-based approach on the right. ................................................................................................................................. 137 Figure 102: Experimental test field. ................................................................................. 141 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 9 of 143 1. TABLE OF TABLES Table 1: Keyword combinations for literature survey. ........................................................ 11 Table 2: Fire retardant agents sent to FHG-ICT for analysis. ............................................ 12 Table 3: Overview of published fire fighting agents (“SPA” indicates that the publication is available in Spanish) .......................................................................................................... 13 Table 4: Overview of published fire fighting agents (ICT) .................................................. 14 Table 5: Overview of published patents of fire fighting agents. .......................................... 16 Table 6: Chemical firebreak sizing (dose and width), according to several authors. .......... 21 Table 7: Types of application ............................................................................................. 23 Table 8: List of collected samples ...................................................................................... 29 Table 9: Working parameters of Py-GC-MS ...................................................................... 32 Table 10: Heat of combustion H of vegetation samples measured with the IKA C2000 Basic system. ..................................................................................................................... 60 Table 11: Geometric characterization of water pellets ....................................................... 64 Table 12: Compression test of water pellets ...................................................................... 66 Table 13: Devices and materials of the fire test station. .................................................... 69 Table 14: Used fire suppressants. ..................................................................................... 70 Table 15: Operating parameter of the burning tests .......................................................... 74 Table 16: Used fire suppressant amount by the spruce forest ground fire. ........................ 75 Table 17: Used fire suppressant amount by the pine forest ground fire. ............................ 76 Table 18: time until ignition of the frontside ........................................................................ 83 Table 19: composition of different new formulations ........................................................ 106 Table 20: effectiveness of the retardants for the radiant heater ....................................... 109 Table 21: effectiveness of the retardants for the burner................................................... 110 Table 22: residual masses of flame retardants after heating from 10-1000°C ................. 111 Table 23: Concentration essayed of different additives ................................................... 121 Table 24: Properties of different PHAs............................................................................. 131 Table 25: Relevant properties of mentioned biopolymers. ............................................... 132 Table 26: Manufacturer and applications of selected biopolymers [9]. ............................ 133 Table 27: Manufacturing processing of commercial biodegradable polymers [13-15]. .... 133 Table 28: Comparison of the obtained results (ROS). ..................................................... 142 AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276 Del. D71.1 Rev. 0-3 Date 15/06/2015 Page 10 of 143 2. SCOPE In recent years, the frequency of large-scale forest fires has increased significantly owing to a number of factors including the effects of climate change, urbanization, poor landscape management and malevolent acts. These so-called “Mega-fires” are particularly destructive and difficult to control with the technologies and systems currently available to fire fighters and emergency agencies. AF3 project is a collaborative program of the 7th Framework Programme oriented to the AAFF system development (ELBIT). In addition to Elbits pellet system there is also planned to investigate defensive lines made of capsules that will deliver fire fighting agents once the temperature exceeds a certain threshold value (PYRO). The AF3 project intends to provide an extraordinary improvement to the efficiency of current firefighting operations and to the protection of human lives, the environment and property by developing innovative technologies and means to ensure a high level of integration between existing and new systems. The objective of the implementation of the novel AAFF (Advanced Aerial Fire Fighting) system is to accurately and safely disperse extinguishing materials from high altitude by aircrafts and helicopters in any condition: day and night, regardless of weather, smoke and configuration of terrain. It will enable a quick 24H response, minimizing fire duration and damages. The AAFF system can be adapted to a wide variety of aircrafts or helicopters. The results of AF3 will be validated by intermediate tests during the project and by a final demonstration with flight tests and drilling exercises carried out in Spain, Greece and Israel. This document is divided in seven parts: 1. The first part is the documentation of a comprehensive literature survey comprising fire fighting agents and their application. 2. Hereinafter theoretical fundamentals of fire fighting agents including their mode of actions will be explained. 3. The following chapter will show the results of investigations on typical mediterranean plants. Here the focus was to examine their reaction on thermal treatment. 4. The fourth part characterises the pellets provided by ELBIT 5. In this chapter, first results of tests concerning the extinguishing efficiency of different fire fighting agents will be shown. a. FHG-ICT has developed laboratory scale tests for the pellet (ELBIT) and capsule system (PYRO) b. PYRO has accomplished medium scale tests to determine the extinguishing efficiency, including tests to study the distribution of water and retardant agent over vegetation and the efficiency of different retardant agents. 6. In order to find a suitable biodegradable Polymer for PYROs capsule system, FHG- ICT gives an overview on commercial available biodegradable polymers. 7. An overview of the available fire propagation models and the goals of the fast modeling are presented by POLITO in the seventh part of this deliverable. AF3- Advanced Forest Fire Fighting Grant Agreement no: 607276
Description: