ebook img

Physical properties of the WASP-44 planetary system from simultaneous multi-colour photometry PDF

0.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physical properties of the WASP-44 planetary system from simultaneous multi-colour photometry

Mon.Not.R.Astron.Soc.000,1–13(2012) Printed15January2013 (MNLATEXstylefilev2.2) Physical properties of the WASP-44 planetary system from simultaneous multi-colour photometry 3 L. Mancini,1⋆ N. Nikolov,1 J. Southworth,2 G. Chen,1,3 J. J. Fortney,4 1 0 J. Tregloan-Reed,2 S. Ciceri,1 R. van Boekel,1 and Th. Henning1 2 1Max Planck Institute for Astronomy, K¨onigstuhl 17, 69117 – Heidelberg, Germany n 2Astrophysics Group, Keele University,Newcastle-under-Lyme, ST5 5BG, UK a 3Purple Mountain Observatory & Key Laboratory for Radio Astronomy, 2 West Beijing Road, Nanjing 210008, China J 4Department of Astronomy & Astrophysics, Universityof California, Santa Cruz, CA 95064, USA 4 1 Accepted. Received. ] P E ABSTRACT . h We present ground-based broad-band photometry of two transits in the WASP-44 p planetary system obtained simultaneously through four optical (Sloan g′, r′, i′, z′) - andthree near-infrared(NIR; J, H, K)filters.We achievedlowscatters of1–2mmag o per observationinthe optical bands with a cadence of ≈48s,but the NIR-band light r t curves present much greater scatter. We also observed another transit of WASP-44 s b by using a Gunn-r filter and telescope defocussing, with a scatter of 0.37 mmag a [ per point and an observing cadence around 135s. We used these data to improve measurementsofthe time ofmid-transitandthe physicalpropertiesof the system.In 1 particular,weimprovedtheradiusmeasurementsofthestarandplanetbyfactorsof3 v and4,respectively.WefindthattheradiusofWASP-44bis1.002±0.033±0.018R 5 Jup (statistical and systematic errors, respectively), which is slightly smaller than previ- 0 ously thought and differs from that expected for a core-free planet. In addition, with 0 3 the helpofa syntheticspectrum, weinvestigatedthe theoretically-predictedvariation . of the planetary radius as a function of wavelength, covering the range 370–2440nm. 1 We can rule out extreme variations at optical wavelengths, but unfortunately our 0 dataarenotpreciseenough(especiallyinthe NIRbands)todifferentiatebetweenthe 3 theoretical spectrum and a radius which does not change with wavelength. 1 : v Key words: stars: planetary systems – stars: fundamental parameters – stars: indi- i vidual: WASP-44 X r a 1 INTRODUCTION 2012; Bakos et al. 2012; Hartman et al. 2012; Penev et al. 2013; Bryan et al. 2012; Beatty et al. 2012; Siverd et al. The transit method is not only an excellent technique to 2012) are close-in hot Jupiters, because thedetection prob- detectextrasolar planets, butalso provideunrivalledaccess ability for such planets is much greater than for those to their physical parameters. The geometry of a transiting which are smaller or on wider orbits. Hot Jupiters are also extrasolar planet (TEP) system permits measurement of relatively straightforward to detect via the radial velocity the mass, radius and density of a planet. These quantities method, as they induce comparatively large velocity vari- requiresomeinputfromstellarevolutionarytheory,butthe ations in their host stars. The existence of hot Jupiters planetary surface gravity can be measured directly. A TEP was unexpected (Mayor and Queloz 1995), and led to the system is therefore a potential horn of plenty of physical birth of new formation and migration theories (see the re- information on planetary systems (Seager & Sasselov 2000; views of D’Angelo et al. 2010 and Lubow and Ida 2010). Sudarskyet al. 2000; Brown et al. 2001; Hubbardet al. Thebias of theground-based surveysin favour of thisclass 2001; Seager & Mall´en-Ornelas 2003; Sudarsky et al. of planets is clear, whereas the Kepler satellite has already 2003; Charbonneau et al. 2005; Holman & Murray 2005; found hundreds of smaller and longer-period planet candi- Winn et al. 2005; Southworth et al. 2007). dates from only 16 months of data (Borucki et al. 2011a,b; Currently, most of the TEPs discovered by ground- Batalha et al. 2012). basedtransitsurveys(e.g.Hellier et al.2012;Smalley et al. AnotherfascinatingopportunityofferedbyTEPsisthe possibility to probe their atmospheres. Due to atomic and ⋆ [email protected] molecular absorption, the analysis of the spectrum of the 2 L. Mancini et al. parent stars during transit (primary eclipse) is an excellent wavelength shift in absorption lines from carbon monoxide way to probe their atmospheric composition. The existence in the planet’s atmosphere (Snellen et al. 2010). oftwodifferentclassesofhotJupiters(pMandpL)hasbeen High-resolutionNIRspectroscopicmeasurementsatthe suggestedaccordingtotheincidentstellarfluxreceivedfrom Keck telescopes over the wavelength range 2100–2400nm, the parent star and to the expected amount of absorbing revealedanupperlimitforCOabsorptionintheatmosphere substances,suchasgaseoustitaniumoxide(TiO)andvana- of HD209458b (Deming et al. 2005), and that the super- diumoxide(VO),intheiratmospheres(Fortneyet al.2008). Earth GJ1214b is a H-dominated planet (Crossfield et al. Accordingtotheoreticalmodels,thesetwooxidizedelements 2011).GJ1214bwasalsostudiedthroughmulti-objectspec- should be extremely strong absorbers for the pM class be- troscopy from 0.61 to 0.85 µm, and in the J, H, and tween450nmand700nm,causingsuchplanetstohaveahot K atmospheric windows by using VLT/FORS and Magel- (∼2000 K) stratosphere. An observable variation of radius lan/MMIRS, the data being consistent with a featureless with wavelength, due to the opacities of these elements, is transmission spectrum for theplanet (Bean et al. 2011). consequently expected in the optical bands (Burrows et al. A radius variation with wavelength was investigated 2007). The radius of a pM planet should be 3% lower at for HD209458b by Knutsonet al. (2007a) using ten-colour 350–400nmversus500–700nm.Theradiusvariationsforthe HSTphotometry.Differentanalysesofthesedatahavegiven colderpL-classplanets(incidentflux<109ergs−1cm−2)are conflicting results (Knutsonet al. 2007a; Barman 2007; smaller, but a significant contribution to the opacity in the Singet al. 2008a; Southworth 2008). An HST transmis- optical band is expected from NaI at ∼590nm, and KI at sion spectrum of HD189733b covering 270–570nm showed ∼770nm (Fortney et al. 2008, 2010; Burrows et al. 2010). a gradual increase of radius towards shorter wavelengths Transmission spectroscopy is essential for detecting atmo- whichwasinterpretedasaresultofRayleighscatteringfrom spheric absorbers, and is complementary to observations at ahigh-altitudeatmospherichaze(Singet al.2011a).Butob- secondary eclipse which can help to determine the day-side servationscovering550–1050nmdidnotprovideanyindica- atmospheric temperature structure. tion of the expected NaI or KI features (Pont et al. 2008), Accurate measurements of planet radii provide critical andthoseintheranges1082–1168nmand1514–1693nmdid constraints for astrophysicists working on planet formation not detect any variation in planetary radius (Gibson et al. and evolution, because they provide an indication of the 2012a). planet internal heat, structure and composition, as well as UsingtheGranTelescopioCanarias (GTC),Sing et al. theheatingmechanismforthosewhichundergostrongtidal (2011b)claimedthefirstevidenceforpotassiuminanextra- effects and stellar irradiation, allowing the discrimination solar planet, from photometry of the XO-2 system in four betweencompetingtheories(Pollack et al.1996;Boss1997). narrow red-optical passbands, by detecting KI absorption In particular, the most irradiated hot Jupiters are charac- at 766.5nm. This technique was also used by Col´on et al. terised by anomalously inflated radii for which the expla- (2012)tostudyHD80606b,whofoundanunexplainedlarge nation remains unclear (Bodenheimer et al. 2003; Gu et al. (≈ 4.2%) change in the apparent planetary radius between 2004; Gaudi 2005; Fortney et al. 2007; Jackson et al. the wavelengths 769.9 and 777.4nm. The differential spec- 2008; Dobbs-Dixon & Lin 2008; Batygin et al. 2009; trophotometrytechniquewasusedtoobtaintwotransitlight Ibgui& Burrows 2009; Miller et al. 2009; Ibgui et al. curves of XO-2b with GTC by Sing et al. (2012), who de- 2010; Laughlin et al. 2011; Miller & Fortney 2011; tected significant absorption in the planetary atmosphere Demory & Seager 2011). in a 50-˚A bandpass centred on the NaI doublet. Instead, Photometric and spectroscopic analyses of planet at- the presence of an Na-rich atmosphere in WASP-29b was mospheres started with the use of optical, near-infrared recently ruled out by Gibson et al. (2012b), using Gemini- (NIR) and infrared (IR) instruments aboard the Hub- South GMOS transit spectrophotometry. ble and Spitzer space telescopes (Charbonneau et al. 2002; Southworth et al. (2012b) recently presented a study Vidal-Madjar et al. 2003, 2004; Richardson et al 2006; of possible radius variations of the hot Jupiter HAT-P-5b, Tinetti et al.2007;Knutson et al.2007a,b;Richardson et al based on photometry obtained simultaneous in the u, g, r 2007; Swain et al. 2008; Pont et al. 2008; Beaulieu et al. andI passbands.Theauthorsdetectedagradualincreaseof 2008,2010,2011;Gillon et al.2012)andledtothedetection theradiusbetween450nmand850nm,plusasubstantially ofRayleighscatteringinafewhotJupiteratmospheres,plus larger planetary radius at 350nm. The latter phenomenon absorptionlinesassociatedwithH2O,Na,CH4,TiOandVO can be explained by systematic errors in the u-band pho- (seeabovereferences butalsoBallester et al.2007;Barman tometry, but is also consistent with Rayleigh scattering as 2007; Sing et al. 2008a,b; Lecavelier des Etangs et al. 2008; in the case of HD189733b. A similar multi-band investiga- D´esert et al. 2008; Zahnleet al. 2009; Spiegel et al. 2009; tionofHAT-P-8(Mancini et al.2013)suggeststhepresence Fossati et al. 2010; Tinetti et al. 2010; D´esert et al. 2011; ofstrongopticalabsorbersneartheterminatorofthisTEP. Wood et al. 2011;Gibson et al.2011;Crossfield et al. 2012; Here we focus our attention on the planetary system Crouzet et al. 2012). WASP-44,discoveredbyAnderson et al.(2012).Thesystem After a number of pioneering experiments with null consistsofa0.89MJup planetona2.42-dayorbitaroundan results, ground-based spectroscopy also obtained some in- inactiveG8Vstar(V =12.9,[Fe/H]=+0.06).Inthiswork teresting results. Observations performed at the Hobby- wepresentthefirstphotometricfollow-upsinceitsdiscovery Eberly and Subaru telescopes, in the spectral range 500– was announced, covering seven optical/NIR passbands. We 900nm, detected Na absorption in the transmission spec- refine the physical properties of the system and attempt to trumofHD189733b(Redfieldet al.2008)andHD209458b probefor radius variations in these passbands. (Snellen et al. 2008). NIR spectroscopy of HD209458b at Our paper is structured as follows. In § 2 we describe the VLT in the range 2291–2349nm reported a significant the instruments used for the observations and give some Physical properties of WASP-44b 3 details concerning the data reduction. In § 3 we illustrate Table 2. Excerpts of the light curves of WASP-44. The full the analysis of the data which led to the refinement of the datasetwillbemadeavailableattheCDS. orbital period and the physical properties of the WASP-44 system. Then, we examine the variation of the planetary Telescope Filter BJD(TDB) Diff.mag. Error radius with wavelength. Finally, in § 4 we summarise our INT Gunnr 2455807.576418 0.00036 0.00041 results. INT Gunnr 2455807.579370 0.00009 0.00042 ESO2.2m Sloang′ 2455836.647443 0.00126 0.00100 ESO2.2m Sloang′ 2455836.649992 0.00210 0.00123 2 OBSERVATIONS AND DATA REDUCTION ESO2.2m Sloanr′ 2455836.647443 -0.00097 0.00088 ESO2.2m Sloanr′ 2455836.649992 0.00079 0.00109 Two transits of WASP-44b were recorded on 2011 October ESO2.2m Sloani′ 2455836.647443 0.00096 0.00109 2 and 6, using the Gamma Ray Burst Optical and Near- ESO2.2m Sloani′ 2455836.649992 0.00138 0.00134 Infrared Detector (GROND) instrument mounted on the MPG1/ESO2.2mtelescopeatESOLaSilla,Chile.GROND ESO2.2m Sloanz′ 2455836.647443 -0.00143 0.00142 ESO2.2m Sloanz′ 2455836.649992 0.00100 0.00179 is an imaging system capable of simultaneous photometric observations in four optical (identical to Sloan g′, r′, i′, z′) and three NIR (J, H,K) passbands (Greiner et al. 2008). flats,andusedthemtocorrectthescienceimages.Aperture Each of the four optical channels is equipped with a back- photometry was performed using the idl2/astrolib3 im- illuminated 2048 × 2048 E2V CCD, with a field of view plementation of daophot (Stetson 1987; Southworth et al. (FOV) of 5.4′ ×5.4′ at a scale of 0.158′′/pixel. The three 2009). The apertures were placed manually and shifted to NIR channels use 1024×1024 Rockwell HAWAII-1 arrays account for pointing variations, which were measured by with a FOV of 10′×10′ at 0.6′′/pixel. cross-correlating each image against a reference image. We We applied a slight telescope defocus and obtained experimentedwithwiderangeofaperturesizesandretained repeated integrations during both runs. Autoguiding was those which gave photometry with the lowest scatter com- used to keep the stars on the same pixels. All images were paredtoafittedmodel. Thetimes ofobservation werecon- digitised using the fast read-out mode (∼10s) to improve verted from UTC to BJD(TDB) using the IDL procedures the time sampling. On 2011/10/02 we monitored the flux of Eastman et al. (2010). of WASP-44 in nearly photometric conditions, and saw a Differentialphotometrywasobtainedineachfilterusing monotonical seeing decline from 0.50′′ to 1.03′′ as airmass between two and four comparison stars, two of which were decreased from 1.08 to 1.05 and then rose to 1.54. Expo- enough bright to produce count rates comparable to those sures of 20s were used in the optical channels and stacks ofWASP-44.Allgoodcomparisonstarswerecombinedinto of four 4s images were obtained in the NIR channels. On one ensemble by weighted flux summation. Slow variations 2011/10/06 we experienced worse atmospheric conditions, in the apparent brightness of the reference stars, primarily andtheairmasschangedfrom2.07to1.05duringourobser- attributable to atmospheric effects, were treated by fitting vations.Imageswithexposuretimesof25swereobtainedin a polynomial to regions outside transit, whilst simultane- theopticalchannels,andstacksofsix4simagesintheNIR ouslyoptimisingtheweightsofthecomparison stars.Given channels. For theoptical frames we selected a fast read-out the limited number of comparison stars in the small field mode, which provided a 15s readout. Due to the necessary of view of GROND, and the shape of the slow brightness synchronization of the optical and NIR starting times for variations, we used a second-order polynomial versus time. eachexposure,theobservingcadenceresultedtobeof≈48 Uncertaintiesintroduced bythis procedurewere considered and ≈25s in the optical and NIRbandsrespectively. inthemodellingofthelightcurves,asdescribedinthenext Another full transit of WASP-44b was observed section. throughaGunnrfilteronthenightof2011/09/02usingthe TheNIRframeswerealsocalibratedinastandardway, WideFieldCamera(WFC)onthe2.5mIsaacNewtonTele- including dark subtraction, flat correction and sky subtrac- scope(INT)atLaPalma.WFCisanopticalmosaiccamera tion. The master sky images used in sky subtraction were consisting of four thinned EEV 2k×4k CCDs, with a plate created from two sets of 20-position dithering sky measure- scale of0.33′′pixel−1.Thetelescope washeavilydefocussed ments,onebeforethescienceobservationandoneafter.We so the point spread function (PSF) of the target and com- performed aperture photometry on the calibrated NIR im- parisonstarshadnotmorethan35000countsperpixel.We ages as well. The aperture locations were determined us- usedthefast readoutmodetoreducereadouttimedownto ingidl/find.Variouscombinationsofapertureandannulus about 15s. An exposure time of 2min per frame was used, sizes were check to find the best photometry. We also care- and the resulting observing cadence was roughly 135s. The fully made ensembles of comparison stars, and chose the night was photometric. We were not able to autoguide the groupwhichshowedtheleastdeviationfromthetarget.Af- telescope as the autoguider is incorporated into the WFC ter normalising the target light curve with the composite andsowasalsodefocussed.Asummaryoftheobservational reference light curve, we decorrelated the data with posi- data is reported in Table1. tion, seeing and airmass in order to remove the correlated Reduction of the optical frames was undertaken using standard methods. We created master bias and flat-field images by median-combining sets of bias images and sky 2 The acronym idl stands for Interactive Data Language and isa trademark of ITT Visual Information Solutions. For further detailsseehttp://www.ittvis.com/ProductServices/IDL.aspx. 1 MaxPlanckGesellschaft. 3 http://idlastro.gsfc.nasa.gov/ 4 L. Mancini et al. Table1.Logoftheobservationspresentedinthiswork.Nobsisthenumberofobservationsand“Moonillum.”isthefractionalillumination oftheMoonatthemidpointofthetransit.Theaperturesizesaretheradiiofthesoftwareaperturesforthestar,innerskyandoutersky, respectively. β is the factor used to inflate the errorbars (see § 3). Transit #1 was observed using the 2.5 m INT in La Palma, whereas transits#2and#3usingtheMPG/ESO2.2mtelescopeinLaSilla. Transit Date Start/endTime Nobs Exposure Filter Airmass Moon Aperture Scatter β (UT) time(s) illum. sizes(px) (mmag) 1 20110903 00:28-00:57 156 120 Gunnr 1.60→1.32→2.18 31% 25,35,50 0.37 1.15 2 20111002 03:21-07:35 317 20 Sloang′ 1.08→1.05→1.54 40% 16,35,55 1.23 1.07 2 20111002 03:21-07:35 317 20 Sloanr′ 1.08→1.05→1.54 40% 17,40,60 1.08 1.00 2 20111002 03:21-07:35 317 20 Sloani′ 1.08→1.05→1.54 40% 20,30,45 1.34 1.00 2 20111002 03:21-07:35 317 20 Sloanz′ 1.08→1.05→1.54 40% 12,25,40 1.79 1.10 2 20111002 03:21-07:35 631 3 J 1.08→1.05→1.54 40% 6.0,15.0,23.0 7.66 1.09 2 20111002 03:21-07:35 631 3 H 1.08→1.05→1.54 40% 2.5,11.5,21.0 8.11 1.08 2 20111002 03:21-07:35 631 3 K 1.08→1.05→1.54 40% 3.0,11.0,21.0 5.98 1.15 3 20111006 03:21-07:35 317 25 Sloang′ 2.07→1.05 80% 19,30,50 1.89 1.06 3 20111006 03:21-07:35 313 25 Sloanr′ 2.07→1.05 80% 22,40,60 1.70 1.32 3 20111006 03:21-07:35 313 25 Sloani′ 2.07→1.05 80% 20,40,60 1.79 1.35 3 20111006 03:21-07:35 313 25 Sloanz′ 2.07→1.05 80% 16,40,60 2.52 1.26 3 20111006 03:21-07:35 623 3 J 2.07→1.05 80% 9.0,17.0,25.0 5.23 1.38 3 20111006 03:21-07:35 623 3 H 2.07→1.05 80% 6.5,13.5,22.0 6.96 1.34 3 20111006 03:21-07:35 623 3 K 2.07→1.05 80% 3.5,4.5,18.0 7.65 1.04 rednoise.WeextractedtheoptimalNIRlightcurvesforthe weights by a factor β >1. The β approach (e.g. Pont et al. two nights according to the rms of O–C residuals and con- 2006; Winn et al. 2007) is a widely used way to assess sistencyofthetransitdepthbetweentwonights.Detailsare red noise (e.g. Gillon et al. 2006; Winn et al. 2008, 2009; given in Appendix A. The resulting photometry is given in Gibson et al. 2008; Nikolov et al. 2012; Southworth et al. Table2. 2012a,b). The factor β is a measurement of how close the Although we have performed all the possible calibra- data noise is to the Poisson approximation, and is found tions and corrections, the scatter of the NIR data is much by binning the data and evaluating the ratio between the largerthanthatoftheopticaldata,andtheNIRlightcurves size of the residuals versus what would be expected if the areheavilydominatedbyrednoise. Thisproblemisrelated data followed Poisson statistics. We evaluated values of the to the adopted observing strategy that unfortunately did β factorforeachindividualtransitandforgroupsof10dat- not allow a good SNRto beobtained4. apoints;theyarereportedinTable1.Foramoreexhaustive Our analysis also included the dataset presented by discussion about rescaling errorbars, see Andrae(2010). Anderson et al.(2012),whichwasobtainedthroughaGunn r filter and using EulerCam mounted on the 1.2m Euler- Swiss telescope at ESO La Silla. 3.1 Period determination As a first step, we fitted each light curve individually us- ing the jktebop code (see §3.2) in order to find the tran- 3 ANALYSIS sit times. Their uncertainties were estimated from Monte Carlo simulations. To these we added two timings obtained We have measured the physical properties of the WASP-44 byAnderson et al.(2012)andfourobtainedbyamateuras- planetarysystemfollowingthemethodologyoftheHomoge- neous Studies project (Southworth 2008, 2009, 2010, 2011, tronomers, which are available on the TRESCA5 website (see Table3). Weexcluded from this analysis ourNIR data 2012).Werefer the readerto those works for a detailed de- sincetheyaremuchnoisierthantheopticalones.Alltimings scription of theapproach. wereplacedonBJD(TDB)timesystem.Theresultingmea- Since the absolute values of the observational errors surements of transit midpoints were fitted with a straight from our pipeline (which come ultimately from the aper line to obtain a neworbital ephemeris: subroutine)werefoundtobeunderestimated,weadopt the satarendduacreddpχra2cotficχe2νof=re1s.cTalhineng,tihnemordfoerrteoacahccdoautnatseftortotigmivee- T0 =BJD(TDB)2455434.37642(37)+2.4238133(23)×(E1) correlatederrors(i.e.rednoise,whichcansignificantlyaffect where E is the number of orbital cycles after the refer- ground-based data) and derive more realistic uncertainties, ence epoch (the midpoint of the first transit observed by we inflated the errorbars further by multiplying the data Anderson et al. 2012)and quantitiesinbracketsdenotethe uncertainty in the final digit of the preceding number. The 4 Afterthesefirstobservations, wechanged ourobservingstrat- fit has χ2ν = 2.42, so the uncertainties were increased to egy adopting the defocussing technique for GROND. Thanks to account for this. Despite this large χ2ν, we do not note any this approach, we can now obtain scatter smaller than 2mmag per observation in the NIR bands and smaller than 1mmag in theopticalones,withoutcompromisingthesampling(Nikolovet 5 TheTRansitingExoplanetSandCAndidates(TRESCA)web- al.,inprep.). sitecanbefoundathttp://var2.astro.cz/EN /tresca/index.php Physical properties of WASP-44b 5 Table 3. Central transit times of WASP-44 and their residuals INT versustheephemerisderivedinthiswork.TRESCAreferstothe 1.00 æææ æææææ ææ ææææææææææ ææ “TRansitingExoplanetSandCAndidates”website. ææ æ æ æ æ æ Centraltransittime Cycle Residual Reference æ æ 0.99 æ BJD(TDB)–2400000 no. (JD) ææ ææ 555555555555448888350122437499......376944764156663641337585794591±±±±±±000000......000000000000000121441546023053 11115566473308 ---000000......000000000000000313050141547045 AATELLoovhnnmmaiddsneeooswrrzzssPoooFFr.nnk..(ee((T(TTttIRNRRaaEllTEE..SSS((Cr22CC)00AAA11)22)))) sedFlux 00..9978 Eulerææææææææææææææææææææææææææææææææææææææææææ æææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ 55555555888833336666....77772222999907025908±±±±0000....00000000000023210005 111166666666 ---0000....00000000000033418635 TTTThhhhiiiisssswwwwoooorrrrkkkk((((GGGGRRRROOOONNNNDDDDgriz′′′′)))) Nrmali 0.96 ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ 55841.57719±0.00035 168 0.00014 Thiswork(GRONDg′) 55841.57757±0.00046 168 0.00052 Thiswork(GRONDr′) INT 55841.57684±0.00028 168 -0.00021 Thiswork(GRONDi′) 0.95 æææ ææææææææææææææææææææææææææææææææææææææææææææææææææææ ææææææææææ ææ 55841.57769±0.00031 168 0.00064 Thiswork(GRONDz′) s5y61st2e7m.5a86ti2c4d±ev0i.a0t0i0o4n8from28t6he-0p.r0e0d0i7c8tedSaturaernsTit.(tTimReEsS.CAAp)lot 0.94 Eulerææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ -0.04 -0.02 0.00 0.02 0.04 of the residuals around the fit is shown in Fig.1. Since the OrbitalPhase numberofknownobservedtransitsofthisplanetisstillvery low,noconclusionscanbedrawnregardingtheexistenceof Figure 4. As for Fig.2 but for the r−filter INT and Euler any third body in thesystem. (Andersonetal.2012)lightcurvesofWASP-44. 3.2 Light curve modelling bestfitsareshowninFig.2and3fortheGRONDdataand in Fig.4 for the INT and Euler data. The final photomet- The light curves were modelled using the jktebop6 code. ricparametersaretheweighted meanofthevaluesforeach Theprimaryfittedparameterswerethesumandratioofthe dataset.Theagreementbetweenlightcurvesisexcellent:the farnadcttihoneaolrbraitdailiionfctlhineasttiaorna,ni.dTphleanfreatc,triAon+arlbraadnidiokf=threbc/ormA-, χ2ν valueoftheagreementoftheindividualparameterswith respect to the weighted mean is smaller than 0.75 for all ipsotnheentosrbaritealdesfiemneidmaasjorrAax=isR, aAn/da RanAdarnbd=RRbba/rae,twhheetrreuae hexacveepftoukn,dwhtheirseswiteuafotiuonndtoabmeocdoemstmlyolnardguerrinχg2νooufr1w.6o4r.kWone radiiofthetwoobjects.Additionalparametersofthefitin- theHomogeneous Studiespapers.Table4alsoshowsacom- cludedthelightleveloutsidetransitandthemidpointofthe parison with theresults from Anderson et al. (2012),which transit.Limbdarkening(LD)wasimposedusingaquadratic are in good agreement with ours but have much larger er- law and the corresponding coefficients fixed at values theo- rorbars. retically predicted using model atmospheres (Claret 2004). Southworth (2008) performed three different treatments of the LD coefficients: (i) both coefficients fixed to theoreti- 3.3 Physical properties of the WASP-44 system cal values; (ii) both coefficients fitted; (iii) the linear LD FollowingtheapproachdescribedinSouthworth(2009),the coefficient fitted and the nonlinear one fixed to its theoret- estimation of the physical properties of the WASP-44 sys- ically predicted value. While the second treatment is possi- tem was performed making use of standard formula (e.g. ble only when the data are of high quality, the use of the Hilditch 2001). We used the photometric parameters mea- thirdalternativehasanegligibleimpactonthefinalresults. sured in §3.2, and thevelocity amplitude,effective temper- Uncertainties were calculated using both Monte Carlo sim- ulationsand aresidual-permutation algorithm (Southworth ature,andmetallicity ofthestar(KA =138.8±9.0kms−1, T = 5410 ± 150K, [Fe/H]= +0.06 ± 10) measured by 2008),andthelargerofthetwovalueswasretainedforeach eff Anderson et al. (2012). We interpolated within tabulations output quantity. The orbital eccentricity was fixed to zero fromtheoreticalstellarmodelstofindthebestagreementbe- (Anderson et al.2012).Allthedatasetsweresolvedindivid- tween the observed and model-predicted T , and the mea- ually. As in the previous section, due to their large scatter eff (see Table1), we did not use the NIR data for estimating suredrA andcalculated RA/a.This yieldedthebest-fitting mass, radius, surface gravity and mean density of the star thephysical properties of theplanetary system. Representative photometric parameters were obtained (MA, RA, loggA and ρA) and of the planet (Mb, Rb, gb andρ ).Wealsocalculated theorbitalsemi-majoraxis(a), foreachdatasetandaregiveninTable4.Thecorresponding b planetary equilibrium temperature (Teq), Safranov number (Θ),and the evolutionary age of the star. 6 jktebop is written in FORTRAN77 and the source code is The uncertainties in the input parameters were prop- availableathttp://www.astro.keele.ac.uk/˜ jkt/ agated into the output physical properties using a pertur- 6 L. Mancini et al. 0.006 Ls 0.004 y ç da 0.002 ç Hals 0.000 æ ææææææææ ç u -0.002 d si -0.004 ç e R -0.006 0 50 100 150 200 250 Cyclenumber Figure 1.O-Cdiagramofthemid-transittimesofWASP-44bversusalinearephemeris.Thetimingsinblackarefromthiswork,and ingreyarefromAndersonetal.(2012).Thetimingsobtainedbyamateurastronomersareplottedusingopencircles.Theuncertainties ofourpointshavebeenrescaled(seetext). g¢ 0.47Μm g¢ 0.47Μm 1.00 1.00 r¢ 0.62Μm r¢ 0.62Μm i¢ 0.77Μm i¢ 0.77Μm 0.95 0.95 z¢ 0.93Μm z¢ 0.93Μm ã NormalisedFlux 000...889050 HKJ é¨é¨é¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéããé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãããé¨ãé¨é¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨éã¨ãéã¨éã¨éã¨é¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éã¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éã騨éé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé㨨éãéã¨é¨ãé㨨ãã¨éãéã¨é¨é¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãã¨éãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéãé¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéãé¨ãéã¨é¨é㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨éãéã¨é¨ãé¨é¨ãé㨨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ã㨨ãã¨é¨ãéã¨éãéãé¨ãéã¨é¨ã¨ã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨ã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨ã¨ããã112...262460ΜΜΜmmm 000...889050 HKJ é¨é¨é¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéããé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãããé¨ãé¨é¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨éã¨éã¨ãéã¨éã¨éã¨é¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éã騨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éã¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éã騨éé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé¨ã¨éãé㨨éãéã¨é¨ãé㨨ãã¨éãéã¨é¨é¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãã¨éãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéãé¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéãé¨ãéã¨é¨é㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨éãéã¨é¨ãé¨é¨ãé㨨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ã㨨ãã¨é¨ãéã¨éãéãé¨ãéã¨é¨ã¨ã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨ã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨éã¨ã¨ããã112...262460ΜΜΜmmm -0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04 OrbitalPhase OrbitalPhase Figure 2.Firstset(2011/10/02) ofGROND lightcurves of WASP-44comparedto thebest jktebopfits usingthe quadraticLD law. Theresidualsofthefitsareplottedatthebaseofthefigure,offsetfromzero. bation analysis (Southworth et al. 2005). Systematic errors agreement with our own. In particular, we improved the were assessed by comparing results from five different sets measurement precisions of the radii of both the planet and of theoretical models (see Southworth 2010). The sets of theparentstar,byfactorsof4and3respectively.Theradius physical properties found using each set of stellar models ofWASP-44bthatwefound(1.002±0.033±0.018RJup)is is shown in Table5 and the final physical properties of the smallerthanthatmeasuredinthediscoverypaperanddoes WASP-44system aregiven inTable6.Theresultsobtained not match the predicted radii of coreless hot-Jupiter plan- by Anderson et al. (2012) are less precise but are in good etsasestimatedbyFortney et al.(2007).Accordingtotheir Physical properties of WASP-44b 7 g¢ 0.47Μm g¢ 0.47Μm 1.00 1.00 r¢ 0.62Μm r¢ 0.62Μm i¢ 0.77Μm i¢ 0.77Μm 0.95 0.95 z¢ z¢ 0.93Μm 0.93Μm ã NormalisedFlux 000...889050 HKJ ¨¨¨éé¨é¨é¨ãé¨é¨éã¨é¨ãéãéãé¨é¨ãéãéãéãéé¨ãé¨ãé¨ãé¨ãé¨ãé¨é¨é¨ãé¨ãé¨ãé¨ãé¨ãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨é¨ãé¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨ãé¨ãéãé¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãéãéãéãéãéã¨éã¨éã¨éã¨éã¨éã¨é¨é¨é¨é¨é¨é¨ã㨨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨éãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãéãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨é¨é¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨éãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ã㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãéãéãéãéãéãããããã112...262460ΜΜΜmmm 000...889050 HKJ ¨¨¨éé¨é¨é¨ãé¨é¨éã¨é¨ãéãéãé¨é¨ãéãéãéãéé¨ãé¨ãé¨ãé¨ãé¨ãé¨é¨é¨ãé¨ãé¨ãé¨ãé¨ãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨é¨ãé¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨ãé¨ãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãéãéãéãéãéã¨éã¨éã¨éã¨éã¨éã¨é¨é¨é¨é¨é¨é¨ã¨ã¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãé¨ãé¨ãé¨ãé¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨éãéã¨é¨ãé¨é¨ãé¨ãé¨ãéã¨é¨ãéã¨é¨ãéãéãéãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨ãé¨é¨é¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨éãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãé¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨éã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ã㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãé㨨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéã¨é¨ãéãéãéãéãéãéãããããã112...262460ΜΜΜmmm -0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04 OrbitalPhase OrbitalPhase Figure3.Secondset(2011/10/06)ofGRONDlightcurvesofWASP-44comparedtothebestjktebopfitsusingthequadraticLDlaw. Theresidualsofthefitsareplottedatthebaseofthefigure,offsetfromzero. Table 4. Parameters of the fits to the ten light curves of WASP-44. The final parameters are the weighted mean of the result for the GROND,INTandEulerlightcurves. Source rA+rb k i◦ rA rb GRONDg′−band#1 0.1368±0.0056 0.1228±0.0023 86.2±0.5 0.1218±0.0020 0.01496±0.00086 GRONDg′−band#2 0.139±0.010 0.1188±0.0028 86.2±1.0 0.1240±0.0090 0.0147±0.0014 GRONDr′−band#1 0.1268±0.0045 0.1175±0.0014 87.3±0.6 0.1135±0.0039 0.01333±0.00060 GRONDr′−band#2 0.1284±0.0080 0.1190±0.0029 86.9±0.8 0.1147±0.0068 0.0136±0.0011 GRONDi′−band#1 0.1363±0.0051 0.1205±0.0016 86.3±0.5 0.1216±0.0044 0.0147±0.00068 GRONDi′−band#2 0.1303±0.0087 0.1204±0.0029 86.7±0.9 0.1163±0.0076 0.0140±0.0011 GRONDz′−band#1 0.1306±0.0075 0.1153±0.0023 86.8±0.8 0.1171±0.0065 0.01349±0.00095 GRONDz′−band#2 0.123±0.010 0.1134±0.0034 87.4±1.5 0.1102±0.0089 0.0125±0.0013 INTr−band 0.1285±0.0029 0.1196±0.0013 86.6±0.3 0.1148±0.0026 0.01373±0.00042 Eulerr−band 0.141±0.011 0.1197±0.0039 85.9±1.0 0.1261±0.0100 0.0151±0.0016 Finalresults 86.59±0.18 0.1168±0.0016 0.0139±0.0002 Andersonetal.(2012) 0.1398 0.1260±0.0030 86.02+−10..1816 0.1242±0.0102 0.0157 8 L. Mancini et al. Table 5.Derived physical properties of WASP-44 fromusingeach offive different theoretical stellarmodels. In each case gb =21.5± 1.6ms−2,ρA=1.414±0.058ρ⊙ andTeq=1304±37K. Thiswork Thiswork Thiswork Thiswork Thiswork (Claretmodels) (Y2 models) (Teramomodels) (VRSSmodels) (DSEPmodels) Kb (kms−1) 156.1±4.1 151.7±1.0 152.6±4.2 152.7±4.1 153.7±3.2 MA (M⊙) 0.968±0.077 0.888±0.018 0.904±0.074 0.907±0.073 0.924±0.058 RA (R⊙) 0.881±0.025 0.856±0.016 0.862±0.024 0.862±0.024 0.865±0.020 loggA (cgs) 4.534±0.018 4.521±0.010 4.524±0.018 4.524±0.018 4.530±0.016 Mb (Mjup) 0.901±0.075 0.851±0.056 0.861±0.073 0.863±0.073 0.874±0.067 Rb (Rjup) 1.020±0.033 0.992±0.019 0.997±0.033 0.998±0.032 0.994±0.027 ρb (ρjup) 0.793±0.070 0.816±0.069 0.812±0.072 0.811±0.072 0.831±0.071 Θ 0.0640±0.0046 0.0658±0.0045 0.0654±0.0048 0.0654±0.0047 0.0656±0.0046 a(AU) 0.03508±0.00093 0.03409±0.00023 0.03429±0.00093 0.03432±0.00092 0.03454±0.00072 Table 6.FinalphysicalpropertiesoftheWASP-44system.The nm).Forthesereasons, theresults ofthissection shouldbe first errorbar for each parameter is the statistical error, which used with care. stemsfromthemeasuredspectroscopicandphotometricparame- The GROND instrument was conceived only for the ters.Theseconderrorbaristhesystematicerrorarisingfromthe follow-up of gamma-ray bursts,and was not designed toal- use of theoretical stellar models, and is given only for those pa- low filter changes for individual observing sequences. We rameters whichhave adependence onstellartheory. Theresults were therefore unable to use filters with narrow pass- fromAndersonetal.(2012)areincludedforcomparison. bands covering specific wavelength ranges. We note that the four optical bands of GROND were already used by Thiswork(final) Andersonetal.(2012) deMooij et al. (2012) to investigate the atmosphere of MA (M⊙) 0.917±0.077±0.051 0.951±0.034 GJ1214b, a 6.55M⊕ transiting planet. Here we try for the RA (R⊙) 0.865±0.025±0.016 0.927+−00..006784 first time to use all the seven bands, exploiting the full po- loggA (cgs) 4.526±0.018±0.008 4.481+−00..006587 tential of GROND. ρA (ρ⊙) 1.414±0.058 1.19+−00..3222 Following the same strategy used by Southworth et al. Mb (Mjup) 0.869±0.075±0.032 0.889±0.062 (2012b)andMancini et al.(2013),weproceeded asfollows. Rb (Rjup) 1.002±0.033±0.018 1.14±0.11 ThetwoGRONDdatasetswerecombinedbyphaseandac- gb (ms−2) 21.5±1.6 15.7+−33..40 cording to passband, and then fitted with all parameters ρb (ρjup) 0.808±0.072±0.015 0.61+−00..2135 fixedtothefinalvaluesgiveninTable4,withtheexception Teq (K) 1304±37 1343±64 of k. The LD coefficients were fixed to theoretical values. Θ 0.0652±0.0048±0.0012 − The errors were estimated by a residual-permutation algo- a(AU) 0.03445±0.00093±0.00063 0.03473±0.00041 Age(Gyr) 4.1−+56..90+−42..14 − ruinthcemrt(aSinotuythcwomormthon20t0o8a)l.lTdhatisasaeptps,roaallcohwirnegmuovsetsosmouarxcimesisoef the accuracy of estimations of the fractional planetary ra- tables7, a 0.875MJ planet with 50MEarth core at 0.045 AU diusrb=Rb/aasafunctionofwavelengthandwithrelative errorbarsonly.TheresultsaredisplayedinFig.5,wherethe fromtheSun(age3.16Gyr),is0.991RJup.Onthecontrary, points show the data, the vertical bars represent the rela- the expected radius for a core-free planet with the same tive errors in the measurements and the horizontal bars in- properties is 1.119RJup. dicate the full widths at half maximum transmission of the passbands used. The trasmission curves are also reported 3.4 Variation of planetary radius with wavelength forcompleteness. Asexpected,theuncertaintiesintheNIR bands are larger, due to the larger scatter and systematic Asan additionalpossibility fortheGRONDdata,wemade features in thelight curves. anattempttoinvestigatethepossiblevariationoftheradius Inspection of Fig.5 shows that our measurements are ofWASP-44bwithwavelength.Thisisquiteadifficulttask unfortunatelynotsufficientlyaccuratetoclaim aclearvari- because the relative faintness of the host star (V ∼ 12.9) ation of r along the seven passbands. Using the plane- b makes this system less than ideal for optical photometric tarysystem valuesreported inTable6,wecomputedaone- studies, especially from the ground. Moreover, as already dimensional model atmosphere of WASP-44b, using the mentioned, our in-focus observing strategy has proved to atmosphere code described in Fortney et al. (2005, 2008). beill-suited toobtaininghigh-precision photometry,partic- The fully non-gray model uses the chemical equilibrium ularlyintheNIRbands.Finally,byusingbroad-bandfilters abundances of Lodders & Fegley (2002) and the opacity weareforcedtoaverageourmeasurementsoftheplanetra- database described in Freedman et al. (2008). The atmo- diusineachbandoveraquitelargerrangeofthewavelength spheric pressure-temperature profile simulates planet-wide (the best case in the i′ filter where its width is “only” 100 averageconditions.Wefurthermorecomputedthetransmis- sion spectrum of the model using the methods described in 7 The tables, interpolated from the giant planet thermal evolu- Fortney et al. (2010). tion models described in Fortneyetal. (2007), are available at Atopticalwavelengths,rb appearstobeslightly larger http://www.ucolick.org/˜jfortney/models.htm in r′ and i′ than g′ and z′. This is as expected for a planet Physical properties of WASP-44b 9 0.015 0.014 b r á á á á á á á 0.013 0.012 g¢ r i z J H K 500 1000 1500 2000 wavelength HnmL Figure5.Variationofthefractionalplanetaryradiusrb=Rb/awithwavelength.ThepointsshownintheplotarefromtheMPG/ESO 2.2mtelescope.Theverticalbarsrepresenttheerrorsinthemeasurementsandthehorizontalbarsshowthefullwidthsathalfmaximum transmissionofthepassbandsused.Thesolid,bluecontinuous lineisthecalculatedsyntheticspectrumbasedonatheoreticalmodelof theatmosphereofWASP-44b.Redboxesindicatethepredictedvaluesforthismodelintegratedoverthepassbandsoftheobservations. TransmissioncurvesoftheGRONDfiltersareshownatthebottom ofthefigure. with an equilibrium temperature Teq ≈ 1300K, due to the 4 SUMMARY AND DISCUSSION largerpredictedradiusaroundtheNaandKlines.Although asimilar effectis seen inthemodel(Figure6),ourdataare Inthisworkwehavepresentedthefirstphotometricfollow- not sufficiently precise to reject the default hypothesis that up of the transiting extrasolar planetary system WASP-44. r is constant with wavelength. The radius of WASP-44b One transit was observed using WFC on the INT, and two b is in agreement with the theoretical model in the J band, transits were observed in seven passbands simultaneously but is larger in the H and K bands. We found that the r using GROND on the MPG/ESO 2.2m telescope. Using b in r′ is 9.5% and 4.7% smaller than that for the H and K these new datasets plus another one taken from the liter- band respectively,which correspond toa differencein units ature (Anderson et al. 2012), we have obtained improved of atmospheric pressure scale height (H) of roughly 23H measurementsoftheorbitalephemeridesandphysicalprop- and10H,respectively.Thefirstdifferenceisverylarge,and ertiesofthesystem.Inparticular, wefoundthattheradius would involvean extremeopacity in H. ofWASP-44bissmallerthanpreviouslyfound,andisdiffer- ent(at2σconfidencelevel)fromthattheoreticallyexpected for a free-core planet (Fortney et al. 2007). This suggests that WASP-44b is a “heavy element rich” planet, with the heavyelements beinginadistinct coreormixed within the H/Heenvelope. Sucharesult is important in order todraw anaccurate mass–radius plot forTEPs, which provideskey A more plausible alternative is that the NIR photome- diagnostic for theoretical works that look to infer the bulk tryisaffectedbysystematicsorcorrelated noise,whichwas composition of the giant planets and distinguish them (in notpossibletoeliminate.Thisisalsosuggestedbythepoor some cases) from brown dwarfs. SNR observed in the data, which is reflected in the higher scatterofthepointsintheJ,H,K lightcurvesandthedif- AlthoughGRONDwasnotdesignedforfollow-upstud- ferent shapes of the fit in the same band between the first iesofplanetarytransits,itisoneoftheveryfewimagingsys- andthesecondobservedtransits(Figs.2and3).Wededuce tems worldwide able to perform simultaneous photometric thatsystematicerrorsintheNIRdominatetheerrorbudget multi-band observations. The later fact makes GROND an at these wavelengths. efficientandveryusefulinstrumenttodetecttransitanoma- 10 L. Mancini et al. 0.0138 Na 0.0136 K 0.0134 á á á á b r 0.0132 0.0130 0.0128 400 500 600 700 800 900 wavelength HnmL Figure 6. As in Fig.5 but zoomed in on the optical wavelengths. In this range, the synthetic transmissionspectrum is dominated by gaseous NaandK. lies or to probe the atmosphere of TEPs. Indeed, atomic ACKNOWLEDGMENTS and molecular absorption as well as scattering processes Based on observations collected at the MPG/ESO 2.2m may result in detectable radius variations as a function Telescope located at ESO La Silla, Chile. Operations of of wavelength (Fortney et al. 2007; Batygin et al. 2009). this telescope are jointly performed by the Max Planck deMooij et al. (2012) already used GROND in the case of Gesellschaft and the European Southern Observatory. GJ1214b,buttheyrestrictedtheiranalysisonlytotheopti- GROND has been built by the high-energy group of MPE calbands.Here,forthefirsttime,weusedallthesevenband incollaboration withtheLSWTautenburgandESO,andis ofthispowerfulinstrument,tosearchforvariationsofthera- operating as a PI-instrument at the MPG/ESO 2.2m tele- diusofWASP-44bwithwavelength.Wemeasuredtheplan- scope. We thank David Anderson for supplying photomet- etary radius in the seven GROND passbands, correspond- ric data, and Timo Anguita and R´egis Lachaume for their ingtoawavelengthcoverageof370–2440nm,andcompared technical assistance during the observations. We thank the themtoasyntheticspectrumbasedonanisothermalmodel anonymousrefereefortheirusefulcriticismsandsuggestions atmosphere in chemical equilibrium. The model reproduces that helped us to improve the quality of the present paper. theradiusvaluesintheoptical,inagreementwiththeequi- Thereducedlightcurvespresentedinthisworkwillbemade librium temperature of WASP-44b but, our data lack the available at the CDS (http://cdsweb.u-strasbg.fr/). JS ac- precision to rule out the possibility that the planetary ra- knowledges financial support from STFC in the form of an diusdoes not vary with wavelength. It does not predict the AdvancedFellowship. radius values found in the H and K bands, which differ by roughly 23 and 10 atmospheric pressure scale heights to those in the other bands. This phenomenon is most likely due to the comparatively low quality of the NIR data. We REFERENCES haveworkedtoreducethesourcesofnoiseinthesubsequent uses of theGRONDinstrument.More enticing results were Anderson, D. R., Collier Cameron, A., Gillon, M., et al. obtained for other TEPs and will be shown in forthcoming 2012, MNRAS,422, 1988 papers. Andrae, R.2010, arXiv:1009.2755 Ballester, G. E., Sing, D. K., & Herbert, F. 2007, Nature, 445, 511 Bakos, G. A´., Hartman, J. D., Torres, G., et al. 2012, AJ, 144, 19

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.