ebook img

Physical Models of Cell Motility PDF

208 Pages·2016·6.826 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physical Models of Cell Motility

Biological and Medical Physics, Biomedical Engineering Igor S. Aranson Editor Physical Models of Cell Motility Physical Models of Cell Motility BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. Theylie atthe crossroadsof frontierresearchinphysics, biology, chemistry, andmedicine. The BiologicalandMedicalPhysics,BiomedicalEngineeringSeriesisintendedtobecomprehensive,coveringa broadrangeoftopicsimportanttothestudyofthephysical,chemicalandbiologicalsciences.Itsgoalisto providescientistsandengineerswithtextbooks,monographs,andreferenceworkstoaddressthegrowingneed forinformation. Booksintheseriesemphasizeestablishedandemergentareasofscienceincludingmolecular,membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physicalprinciplesof genetics;sensorycommunications; automata networks, neuralnetworks, andcellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedicalengineeringsuchasmolecularelectroniccomponentsanddevices,biosensors,medicine,imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering. Editor-in-Chief: EliasGreenbaum,OakRidgeNationalLaboratory,OakRidge,Tennessee,USA EditorialBoard: MasuoAizawa,DepartmentofBioengineering, MarkS.Humayun,DohenyEyeInstitute, TokyoInstituteofTechnology,Yokohama,Japan LosAngeles,California,USA OlafS.Andersen,DepartmentofPhysiology, PierreJoliot,InstitutedeBiologie Biophysics&MolecularMedicine, Physico-Chimique,FondationEdmond CornellUniversity,NewYork,USA deRothschild,Paris,France RobertH.Austin,DepartmentofPhysics, LajosKeszthelyi,InstituteofBiophysics,Hungarian PrincetonUniversity,Princeton,NewJersey,USA AcademyofSciences,Szeged,Hungary JamesBarber,DepartmentofBiochemistry, RobertS.Knox,DepartmentofPhysics ImperialCollegeofScience,Technology andAstronomy,UniversityofRochester,Rochester, andMedicine,London,England NewYork,USA HowardC.Berg,DepartmentofMolecular AaronLewis,DepartmentofAppliedPhysics, andCellularBiology,HarvardUniversity, HebrewUniversity,Jerusalem,Israel Cambridge,Massachusetts,USA StuartM.Lindsay,DepartmentofPhysics VictorBloomfield,DepartmentofBiochemistry, andAstronomy,ArizonaStateUniversity, UniversityofMinnesota,St.Paul,Minnesota,USA Tempe,Arizona,USA RobertCallender,DepartmentofBiochemistry, DavidMauzerall,RockefellerUniversity, AlbertEinsteinCollegeofMedicine, NewYork,NewYork,USA Bronx,NewYork,USA EugenieV.Mielczarek,DepartmentofPhysics StevenChu,LawrenceBerkeleyNational andAstronomy,GeorgeMasonUniversity,Fairfax, Laboratory,Berkeley,California,USA Virginia,USA LouisJ.DeFelice,DepartmentofPharmacology, MarkolfNiemz,MedicalFacultyMannheim, VanderbiltUniversity,Nashville,Tennessee,USA UniversityofHeidelberg,Mannheim,Germany JohannDeisenhofer,HowardHughesMedical V.AdrianParsegian,PhysicalScienceLaboratory, Institute,TheUniversityofTexas,Dallas, NationalInstitutesofHealth,Bethesda, Texas,USA Maryland,USA GeorgeFeher,DepartmentofPhysics, UniversityofCalifornia,SanDiego,LaJolla, LindaS.Powers,UniversityofArizona, California,USA Tucson,Arizona,USA HansFrauenfelder, EarlW.Prohofsky,DepartmentofPhysics, LosAlamosNationalLaboratory, PurdueUniversity,WestLafayette,Indiana,USA LosAlamos,NewMexico,USA AndrewRubin,DepartmentofBiophysics,Moscow IvarGiaever,RensselaerPolytechnicInstitute, StateUniversity,Moscow,Russia Troy,NewYork,USA MichaelSeibert,NationalRenewableEnergy SolM.Gruner,CornellUniversity, Laboratory,Golden,Colorado,USA Ithaca,NewYork,USA DavidThomas,DepartmentofBiochemistry, JudithHerzfeld,DepartmentofChemistry, UniversityofMinnesotaMedicalSchool, BrandeisUniversity,Waltham,Massachusetts,USA Minneapolis,Minnesota,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/3740 Igor S. Aranson Editor Physical Models of Cell Motility 123 Editor IgorS.Aranson ArgonneNationalLaboratory Argonne,IL,USA ISSN1618-7210 ISSN2197-5647 (electronic) BiologicalandMedicalPhysics,BiomedicalEngineering ISBN978-3-319-24446-4 ISBN978-3-319-24448-8 (eBook) DOI10.1007/978-3-319-24448-8 LibraryofCongressControlNumber:2015956180 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) Preface Multicellular organisms are composed of individual cells that form the tissues, organs,andnervoussystem.Intheseorganisms,thecellsarereplacedroughlyevery 100 days via controlled division and cell death. However, both during organism developmentandeveninthedevelopedorganism,therearespecializedcells,such as keratocytes, fibroblasts, neutrophils, and others, that show a high propensity to move. The motility of these cells is associated with their specific function withintheorganism.Motileeukaryoticcellsrespondingtochemicalormechanical stimuli play a fundamental role in tissue growth, wound healing, and immune response. In addition, cell migration is essential for understanding several life- threateningpathologiessuchascancer.Beyondtheobviousbiologicalandmedical relevance, cell motility is also a fascinating example of a self-organizedand self- propelledsystemwithintherealmofphysics.Themaindifficultyinformulatinga comprehensivepredictivemodelof cell motility lies in the extremecomplexityof theunderlyingbiologicalprocessesassociatedwith thedynamicsofmovingcells. Correspondingly, a number of conceptually different theoretical approaches were formulatedtotacklethisformidableproblem.Thisbookattemptstogiveasnapshot of the most recent theoretical and experimental studies in this rapidly developing field.Thedistinctivefeatureofthisbookisthatthemodelingapproachesarebased onconceptsinspiredbycontemporarysoftmatterphysics,suchasorderparameters, phasetransitions,reaction-diffusionsystems,conservationlaws,andforcebalance conditions. The structure of the book is as follows. It contains four chapters focused on various approaches to cell movement. Chapter 1 presents a study of cell motility basedonthephasefieldmethod.Thismethodisespeciallywellsuitedtotreatthe movingand deformableboundariesinvolvedin bothindividualandcollective cell motility.Itstartswithadidacticintroductiontoasimplemodelforthemovementof an individual cell. Then, it describes how complexity can be added step by step, such as deformability and adhesiveness of substrate, as well as modulations of the substrate properties. Finally, it discusses how the modelcan be generalizedto describetheinteractionsandthecollectivemovementofmany,self-organizedcells. Chapter2focusesoncrawlingcellmotility drivenbyspontaneouspolymerization v vi Preface waves.Itpresentstheoreticaldescriptionsofactindynamicsanddiscussesindetail possiblemechanismsforwavegeneration.Then,thecouplingoftheactinnetwork tothecellmembraneisadded.Theanalysisshowsthatspontaneouspolymerization wavesofferaunifyingframeworkforexplainingdirectionalanderraticcellmotion such as amoeboid motility. Chapter 3 features a modular view of the signaling systemregulatingchemotaxis.Themodeldescribesanexcitablenetworkforsignal transductionthatintegratesinformationfromvariousinternalandexternalcuesand signalsto the actin cytoskeleton.Simulationsusingthe levelset methodallow the testingofthismodelbyrecreatingchangesinmorphologyinducedbythesignaling network.Finally,Chap.4isfocusedonone-dimensionalmodelsofmovingcellsthat are amenableto theoreticaltreatment.Despite the unavoidableoversimplifications associated with such a representation, the one-dimensional models happen to be usefulforunderstandingtheintricateinterplaybetweencontractionandprotrusion. This book is written primarily for biophysicists, mathematical biologists, and biomedicalengineersenteringthefieldofcellmotilityandbiomechanics.We also hope that experimentalists and theorists already working in the field will find it usefulforitscomprehensivereviewof experimentalstudiesof cellmovementand survey of the most recent physics-based modeling approaches. It can also serve as supplementary reading material for advanced graduate courses on biological physics and mathematical biology. This book is accompanied by a collection of computationalonlinevideosillustratingvariousaspectsofcellmotility. Argonne,IL,USA IgorS.Aranson June2015 Contents 1 MacroscopicModelofSubstrate-BasedCellMotility ................... 1 FalkoZiebert,JakobLöber,andIgorS.Aranson 1.1 Introduction ............................................................. 1 1.1.1 Basic MechanismsInvolvedinthe Motility ofEukaryoticCells............................................ 2 1.1.2 SurveyofExperimentalFactsforCellsCrawling onTwo-DimensionalSubstrates.............................. 4 1.1.3 MainModelingApproaches.................................. 8 1.2 PhaseFieldModelforaSingleCell ................................... 11 1.2.1 PhaseFieldDescriptionoftheInterface ..................... 13 1.2.2 ActinDynamics ............................................... 16 1.2.3 OnForceBalanceVersusExplicitFlow...................... 19 1.2.4 AdhesionandCouplingtoSubstrateDeformation .......... 20 1.3 DynamicsofanIndividualCell ........................................ 22 1.3.1 SteadyMovingCell........................................... 23 1.3.2 SubcriticalOnsetofMotion .................................. 25 1.3.2.1 AnalyticalStudyofCellMovementin CircularApproximation ............................ 26 1.3.2.2 VelocityBranchesinCircularApproximation..... 27 1.3.3 SteadyMotionvs.Stick-Slip ................................. 28 1.3.3.1 ReducedDescriptionoftheStick-SlipCycle...... 31 1.3.4 MoreComplexMotilityModes............................... 33 1.3.5 MovementonInhomogeneousSubstrates.................... 34 1.3.5.1 ModulationofSubstrateAdhesiveness ............ 36 1.3.5.2 ModulationofSubstrateStiffnessandDurotaxis . 38 1.4 CollectiveMigration.................................................... 39 1.4.1 MultiplePhaseFields ......................................... 40 1.4.1.1 StericInteraction.................................... 40 1.4.1.2 Cell–CellAdhesion................................. 41 1.4.1.3 GeneralizationofActin,Adhesion,and SubstrateDynamics................................. 42 vii viii Contents 1.4.2 BinaryInteractionsofCells................................... 43 1.4.3 ManyCells:CollectiveMigration............................ 45 1.4.3.1 TransitionsBetweenSpreadingand CollectiveMotion................................... 45 1.4.3.2 CollectiveMigrationatModerateDensities....... 46 1.4.3.3 Collective Migration for Strong Cell–CellAdhesionand/orHighDensity.......... 49 1.5 Conclusions ............................................................. 50 Appendix ...................................................................... 52 References..................................................................... 60 2 CellCrawlingDrivenbySpontaneousActinPolymerizationWaves... 69 KarstenKruse 2.1 Introduction ............................................................. 69 2.2 SpontaneousActinWaves .............................................. 70 2.3 TheoreticalDescriptionsofCellularActinDynamics ................ 73 2.3.1 ActinPolymerization.......................................... 73 2.3.2 MechanismsforGeneratingSpontaneousActinWaves..... 75 2.3.2.1 PolymerizationWavesintheAbsence ofMotors............................................ 75 2.3.2.2 CytoskeletalWavesinPresenceofMotors ........ 79 2.3.3 CouplingActinDynamicstotheMembrane................. 81 2.3.3.1 SharpBoundaryMethods........................... 82 2.3.3.2 Phase-FieldMethods................................ 83 2.4 Wave-DrivenMigration................................................. 84 2.4.1 PhaseDiagram................................................. 85 2.4.2 PersistentMigrationPatterns ................................. 86 2.4.3 ErraticMigrationPatterns..................................... 88 2.5 Conclusions ............................................................. 89 2.6 SupplementaryMovies ................................................. 90 References..................................................................... 90 3 AModularViewoftheSignalingSystemRegulatingChemotaxis..... 95 PabloA.Iglesias 3.1 Introduction ............................................................. 95 3.2 Motility.................................................................. 97 3.2.1 RandomMotility .............................................. 97 3.2.2 ExcitableBehavior............................................ 98 3.2.3 ModelsofExcitableBehavior................................ 99 3.2.4 CouplingENActivitytoCellularDeformations............. 101 3.2.5 ViscoelasticCellMechanicalModel ......................... 102 3.2.6 SimulationsofRandomMotility ............................. 104 3.3 DirectionalSensingandAdaptation.................................... 104 3.3.1 LocalExcitation,GlobalInhibition........................... 105 3.3.2 ExperimentalSupportfortheLEGIMechanism ............ 106 Contents ix 3.4 CouplingDirectionalSensingtoMotility.............................. 108 3.4.1 ResponseofLEGI-BENtoSpatiallyUniformStimulation. 109 3.4.2 ResponseofLEGI-BENtoSpatiallyGradedStimulation... 111 3.4.3 MorphologicalChangesInducedbyLEGI-BEN............ 112 3.5 PolarizationandDirectionalPersistence............................... 113 3.5.1 SimulationsofLEGI-BEN-POL.............................. 115 3.5.2 ModelingInSilicoMutants................................... 116 3.6 TheCytoskeletalOscillatoryNetwork................................. 119 3.6.1 MathematicalDescriptionofSTEN-CON ................... 120 3.6.2 STEN-CONCoupling......................................... 121 3.6.3 SimulationsofCoupledSTEN-CONSystems............... 122 3.7 DiscussionandConclusions............................................ 124 Appendix ...................................................................... 126 References..................................................................... 128 4 CellLocomotioninOneDimension........................................ 135 PierreRechoandLevTruskinovsky 4.1 Introduction ............................................................. 135 4.2 Contraction.............................................................. 139 4.2.1 AToyModel................................................... 140 4.2.2 ContinuumThermodynamics................................. 145 4.2.3 SpecializationoftheModel................................... 150 4.2.4 Non-LocalReformulation..................................... 152 4.2.5 StaticSolutions................................................ 154 4.2.6 LinearStability................................................ 156 4.2.7 MotileSolutions............................................... 158 4.2.8 PassiveActinTreadmilling ................................... 162 4.2.9 NonlinearActiveStress....................................... 165 4.2.10 Discussion ..................................................... 167 4.3 Protrusion................................................................ 167 4.3.1 TheModel..................................................... 168 4.3.2 ForceVelocityRelation....................................... 171 4.3.3 ElasticRegularization......................................... 173 4.3.4 AlternativeDrivingModes.................................... 176 4.3.5 Discussion ..................................................... 178 4.4 Adhesion................................................................. 179 4.4.1 TheModel..................................................... 180 4.4.2 ContractionDrivenMotility .................................. 182 4.4.3 TheGeneralCase.............................................. 185 4.4.4 Discussion ..................................................... 188 4.5 Conclusions ............................................................. 189 References..................................................................... 190 Index............................................................................... 199

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.