ebook img

Physical Mathematics PDF

686 Pages·2013·9.311 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physical Mathematics

more information – www.cambridge.org/9781107005211 PhysicalMathematics Unique in its clarity, examples, and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicistsneedintheircoursesandresearch.Theauthorillustratesthemathe- matics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, com- plexvariables,differentialequations,andBesselfunctions,thistextbookcovers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics,theMonteCarlomethodsofexperimentalandtheoreticalphysics,the renormalizationgroupofcondensed-matterphysics,andthefunctionalderiva- tivesandFeynmanpathintegralsofquantumfieldtheory.Solutionstoexercises areavailableforinstructorsatwww.cambridge.org/cahill KEVIN CAHILL is Professor of Physics and Astronomy at the University of New Mexico. He has done research at NIST, Saclay, Ecole Polytechnique, Orsay, Harvard, NIH, LBL, and SLAC, and has worked in quantum optics, quantumfieldtheory,latticegaugetheory,andbiophysics.PhysicalMathemat- ics is based on courses taught by the author at the University of New Mexico andatFudanUniversityinShanghai. Physical Mathematics KEVIN CAHILL UniversityofNewMexico CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107005211 (cid:2)c K.Cahill2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Cahill,Kevin,1941–,author. Physicalmathematics/KevinCahill,UniversityofNewMexico. pages cm ISBN978-1-107-00521-1(hardback) 1. Mathematicalphysics. I. Title. QC20.C24 2012 530.15–dc23 2012036027 ISBN978-1-107-00521-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ForGinette,Mike,Sean,Peter,Mia,andJames, andinhonorofMuntadharal-Zaidi. Contents Preface pagexvii 1 Linearalgebra 1 1.1 Numbers 1 1.2 Arrays 2 1.3 Matrices 4 1.4 Vectors 7 1.5 Linearoperators 9 1.6 Innerproducts 11 1.7 TheCauchy–Schwarzinequality 14 1.8 Linearindependenceandcompleteness 15 1.9 Dimensionofavectorspace 16 1.10 Orthonormalvectors 16 1.11 Outerproducts 18 1.12 Diracnotation 19 1.13 Theadjointofanoperator 22 1.14 Self-adjointorhermitianlinearoperators 23 1.15 Real,symmetriclinearoperators 23 1.16 Unitaryoperators 24 1.17 Hilbertspace 25 1.18 Antiunitary,antilinearoperators 26 1.19 Symmetryinquantummechanics 26 1.20 Determinants 27 1.21 Systemsoflinearequations 34 1.22 Linearleastsquares 34 1.23 Lagrangemultipliers 35 1.24 Eigenvectors 37 vii CONTENTS 1.25 Eigenvectorsofasquarematrix 38 1.26 Amatrixobeysitscharacteristicequation 41 1.27 Functionsofmatrices 43 1.28 Hermitianmatrices 45 1.29 Normalmatrices 50 1.30 Compatiblenormalmatrices 52 1.31 Thesingular-valuedecomposition 55 1.32 TheMoore–Penrosepseudoinverse 63 1.33 Therankofamatrix 65 1.34 Software 66 1.35 Thetensor/directproduct 66 1.36 Densityoperators 69 1.37 Correlationfunctions 69 Exercises 71 2 Fourierseries 75 2.1 ComplexFourierseries 75 2.2 Theinterval 77 2.3 Wheretoputthe2πs 77 2.4 RealFourierseriesforrealfunctions 79 2.5 Stretchedintervals 83 2.6 Fourierseriesinseveralvariables 84 2.7 HowFourierseriesconverge 84 2.8 Quantum-mechanicalexamples 89 2.9 Diracnotation 96 2.10 Dirac’sdeltafunction 97 2.11 Theharmonicoscillator 101 2.12 Nonrelativisticstrings 103 2.13 Periodicboundaryconditions 103 Exercises 105 3 FourierandLaplacetransforms 108 3.1 TheFouriertransform 108 3.2 TheFouriertransformofarealfunction 111 3.3 Dirac,Parseval,andPoisson 112 3.4 Fourierderivativesandintegrals 115 3.5 Fouriertransformsinseveraldimensions 119 3.6 Convolutions 121 3.7 TheFouriertransformofaconvolution 123 3.8 FouriertransformsandGreen’sfunctions 124 3.9 Laplacetransforms 125 3.10 DerivativesandintegralsofLaplacetransforms 127 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.