Physicalconditionfortheslowingdownofcosmicacceleration Ming-Jian Zhangb and Jun-Qing Xiaa∗ aDepartment of Astronomy, Beijing Normal University, Beijing 100875, China and bKey Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P. O. Box 918-3, Beijing 100049, China The possible slowing down of cosmic acceleration was widely studied. However, the imposition of dark energy parametrization brought some tensions. In our recent paper, we test this possibility using a model- independentmethod,Gaussianprocesses. However,thereasonofgeneratingthesetensionsisstillclosed. In thepresentpaper,weanalysethederivativeofdecelerationparametertosolvetheproblems.Thereconstruction ofthederivativeagainsuggeststhatnoslowingdownofaccelerationispresentedwithin95%C.L.fromcurrent observationaldata. Wethendeduceitsconstraintondarkenergy. Thecorrespondingconstraintclearlyreveals 7 thereasonoftensionbetweendifferentmodelsinpreviouswork. Wealsostudytheessentialreasonofwhy 1 currentdatacannotconvincinglymeasuretheslowingdownofacceleration. Theconstraintsindicatethatmost 0 ofcurrentdataarenotintheallowedregion. 2 n I. INTRODUCTION constraint, this approach does not rely on any artificial dark a energy template. It is thus able to faithfully model the cos- J mology. Using the public code GaPP (Gaussian Processes 8 Multipleexperimentshaveconsistentlyconfirmedthecos- in Python) invented by Seikel et al. [16], we studied the de- 1 mic late-time accelerating expansion. Contributions to this celerationparameterwithabundantdataincludingluminosity pioneering discovery contain the type Ia supernova (SNIa) ] distancefromUnion2,Union2.1compilationandgamma-ray O [1, 2], large scale structure [3], cosmic microwave back- burst, and Hubble parameter from cosmic chronometer and ground (CMB) anisotropies [4], and baryon acoustic oscil- C baryon acoustic oscillation peaks. The GP reconstructions lation (BAO) peaks [5]. One theoretical paradigm to de- . suggest that no SA is detected within 95% C.L. from current h scribetheaccelerationistheexoticdarkenergywithrepulsive observationaldata. p gravity. In the dark energy doctrine, a large number of phe- - However,abovetensionsstillpuzzleus. Thereasonofwhy o nomenologicalmodelswereinventedintermsofequationof some models can lead to the SA , while some ones cannot, r state(EoS)w(z). Inparticular,theChevallier-Polarski-Linder t is still not available. To solve this problem, we deduce the s (CPL)[6,7]modelhasattractedgreatattention.Aswellasthe derivative of deceleration parameter which can draw a pic- a dynamicaltheory,kinematicsisanotherwaytounderstandthe [ ture on it. Our goal in the present paper, on the one hand, is cosmic acceleration. The deceleration parameter q(z) < 0 is toreconstructthederivativeofdecelerationparameterbyGP 1 justadirectexpressionofthephasetransitionofaccelerating methodtofurthertesttheSA.Ontheotherhand,wetrytopro- v expansion. Instead, q(z) > 0 is a symbol of the decelerating videaphysicalconditionorconstraintonthedarkenergyand 3 expansion. 7 observationaldata,toanswerwhycurrentdatacannotpresent 9 Recently, a model of slowing down of acceleration (here- theSA. 4 after SA ) has caused wide public concern [8]. In the prior In Section II, we first introduce the methodology includ- 0 of CPL parametrization, the authors found that the cosmic ing some theoretical basics on the SA , the GP approach and 1. acceleration may have already peaked and we are currently relevantdata. Wethenpresentthereconstructionresultfrom 0 witnessing its slowing down at z (cid:46) 0.3. In other words, de- currentdatainSectionIII.Thepossiblephysicalconditionis 7 celeration parameter q(z) may be changing from negative to analyzedinSectionIVbeforewediscussconclusionsinSec- 1 positive,orhasbeenachievedapositivevalue. Followingthis tionV. : research, more observational data and dark energy parame- v i terizedmodelswereinvestedinthesubsequentinvestigations X [9–12]. Including the two comprehensive studies [13, 14], II. METHODOLOGY r theygenerallybelievedthatthespeculationof SAwaspendu- a lous. Wefoundthattheunconvincingresultsmainlylieinthe twofactsthatthereexistsatensionbetweendifferentmodels In this section, we briefly deduce the theoretical formulas andatensionbetweendifferentdata. Consequently,amodel- for the SA , and then describe the reconstruction method and observationaldatausedinthepresentwork. independent test is really necessary to better understand the cosmicevolution. Inourrecentwork[15],wepresentedamodel-independent A. Theoreticalbasics analysisonthisinterestingsubject,usingthepowerfulGaus- sian processes (GP) technique. Unlike the parametrization IntheFRWframework,thedistancemodulusofSNIacan beestimatedas ∗Correspondingauthor:[email protected] µ(z)=5log10dL(z)+25, (1) 2 whereluminositydistancefunctiond (z)inthespatialflatness ���� L assumptionis (cid:90) z dz(cid:48) ���� d (z)=(1+z) . (2) L H(z(cid:48)) 0 ���� For convenience, we define the dimensionless comoving lu- q(z) minositydistance ���� D(z)≡ H (1+z)−1d (z), (3) 0 L ���� ΛCDM andthedimensionlessHubbleparameter CPL ���� H(z) h(z)≡ . (4) H ��� 0 Therefore,substitutingEq. (3)intoEq. (1),thedistanceD(z) ��� from the observational distance modulus is derived. In the sameway,wecanobtainthedimensionlessHubbleparameter q(z)0��� via (4). Certainly, Eqs. (3) and (2) also contain a potential ��� relation 1 ��� ΛCDM h(z)= D(cid:48), (5) CPL ��� 0.0 0.5 1.0 1.5 2.0 wheretheprimedenotesderivativewithrespecttoredshiftz. z Nowthedecelerationparametercanbeeasilyexpressedas h(cid:48) q(z)= (1+z)−1, (6) Figure1: Illustrationfortheslowingdownofcosmicaccelerationin h theΛCDMmodelwithΩ =0.3andCPLmodelwithw =−0.705 m 0 and andw =−2.286[14]. a −D(cid:48)(cid:48) q(z)= (1+z)−1. (7) D(cid:48) B. Gaussianprocesses Incommonpicture,cosmicevolutioncanbeexpressedbythe decelerationparameterq(z). Comprehensivework[14]shows Intheparametrizationconstraint,apriorontheconstrained thatcurrentdecelerationparameterwithin95%C.L.isq >0 0 underthepopularCPLparametrizationw= w +w z/(1+z) function f(z)isimposed,suchastheCPLmodelwithtwoar- 0 a with w = −0.705+0.207 and w = −2.286+1.675. However, tificialparametersw0 andwa. However, intheGPapproach, 0 −0.212 a −1.469 any parametrization assumption about it is redundant. The in our recent work [15] we found that q > 0 cannot be fa- 0 keyingredientinthisconceptisthecovariancefunctionk(z,z˜) voredbytheGPmethodwithin95%C.L.Therefore,tofurther which connects the function f(z) at different points. More- investigate whether the cosmic acceleration has reached its peak, we need the derivative of deceleration parameter q(cid:48)(z). over,thecovariancefunctionk(z,z˜)onlydependsontwohy- perparameters(cid:96) andσ whicharecompletelydeterminedby Thisisduetothefactthatpeakintheq(z)correspondstoan f extremum point in its derivative q(cid:48)(z), as shown in Figure 1. theobservationaldata. Therefore,ithasmotivatedawideap- plication in the reconstruction of dark energy EoS [16–18], Using the best-fit values of above CPL model, we calculate that the peak happens at z = 0.25. Taking derivative on Eq. andintestoftheconcordancemodel[19,20]. For the covariance function k(z,z˜), many templates are (6)and(7),wecanobtain available.Theusualchoiceisthesquaredexponentialk(z,z˜)= q(cid:48)(z)= h(cid:48) +(1+z)(h(cid:48)(cid:48) − h(cid:48)2), (8) σ2f exp[−|z−z˜|2/(2(cid:96)2)]. AnalysisinRef. [21]showsthatthe h h h2 Mate´rn (ν = 9/2) mode is a better choice to present suitable and and stable result. It thus has been widely used in previous work[20,22]. Itisreadas D(cid:48)(cid:48) D(cid:48)(cid:48)2 D(cid:48)(cid:48)(cid:48) q(cid:48)(z)=− +(1+z)( − ). (9) D(cid:48) D(cid:48)2 D(cid:48) (cid:16) 3|z−z˜|(cid:17) k(z,z˜) = σ2exp − FromtheillustrationinFigure1,wededucethattheSAwould f (cid:96) proposeaphysicalcondition (cid:104) 3|z−z˜| 27(z−z˜)2 × 1+ + q(cid:48)(z)≤0 (10) (cid:96) 7(cid:96)2 18|z−z˜|3 27(z−z˜)4(cid:105) at recent epoch, where the equal sign q(cid:48)(z) = 0 corresponds + + . (11) 7(cid:96)3 35(cid:96)4 to its peak. In the following, we will use this condition to analyze why some dark energy models and the current data With the chosen Mate´rn (ν = 9/2) covariance function, we cannotpresenttheSA. canreconstructthederivativeq(cid:48)(z)usingthepubliclyavailable 3 ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� D��� D0��� D00 D000��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� z z z z Figure2: ThereconstructionofdistanceDanditsderivativesusingtheUnion2.1supernovadata. packageGaPP[16]. Italsohasbeenfrequentlyusedinabove � referencedwork. � � C. Observationaldata q(z)0 � The dataset we use here are the supernova data from � Union2.1 compilations and the observational H(z) data (OHD).FortheUnion2.1data,theywerereleasedbytheHub- ���� ��� ��� ��� ��� ��� ble Space Telescope Supernova Cosmology Project, which z contains 580 samples on the distance modulus with errors Figure3: Thereconstructionofq(cid:48)(z)usingtheUnion2.1supernova [23]. In this family, it can span the redshift region up to data. z < 1.414, but most of them are in the low redshift region, whichishelpfultopresentaclearunderstandingontheSAat recent epoch. Following previous work [16, 20, 22], we can fix H = 70kms−1Mpc−1 andincludethecovariancematrix III. RESULT 0 withsystematicerrors. ToobtainthedistanceD(z),weshould convertthedistancemodulusintoitviaEq.(3).Moreover,the A. ReconstructionfromtheUnion2.1data theoreticalinitialconditionsD(z = 0) = 0and D(cid:48)(z = 0) = 1 shouldbetakenintoaccountinthecalculation. WenowreporttheGPreconstructionfortheUnion2.1SNIa For the OHD, two ways are available to get them. One is data,asshowninFigs. 2and3. Thedashedlinescorrespond from the differential ages of galaxies [24–26], usually called to the mean values of reconstruction. Shaded regions are re- cosmicchronometer. TheotherisfromtheBAOpeaksinthe constructionwith68%and95%C.L. galaxypowerspectrum[27,28]orfromtheBAOpeakusing ThefirstpanelofFig. 2showsthatdistanceDagreesvery the Lyα forest of QSOs [29]. In this paper, we use the most wellwiththeobservationaldata,whichindicatesthattheGP recentdatasetinTableIofourpreviouswork[15]. Thiscat- isreliable. Whileforthederivative D(cid:48) and D(cid:48)(cid:48),theformeris alog accommodates 40 data points, which includes the latest positiveanddecreasessharply;thelatterincreasesslowlywith fivemeasurementsbyMorescoetal.[30]. Aftertheprepara- theredshift. Moreover,D(cid:48)(cid:48) inmostredshiftregionisnegative tion of OHD, we should normalize the H(z) to generate the withacurrentestimationD(cid:48)(cid:48)(z =0) =−0.45±0.04. Wealso dimensionlessh(z) = H(z)/H . Theinitialconditionencoded notethaterrorsofallthereconstructionsincreasewiththered- 0 ish(z=0)=1. ConsideringtheerrorofHubbleconstant,we shift, especially for z (cid:38) 0.6. This is because GP approach is canobtaintheuncertaintyofh(z) sensitivetotheobservationalerror. Uncertaintiesathighred- shiftarebiggerthanthoseatlowredshift. Moreover,number of the high-z supernova data is smaller than that of the low- σ2 H2 σ2 = H + σ2 . (12) redshift. Therefore, improvement of measurement precision h H2 H4 H0 0 0 athighredshiftisverynecessary. InFig.3,weplottheq(cid:48)(z)reconstruction.First,meanvalue In our calculation, we utilize the prior from recent measure- showsthatq(cid:48)(z)oscillatesstablyaroundthevalueofone.Sec- mentH =73.24±1.74kms−1Mpc−1with2.4%uncertainty ond,butthemostimportantly,weobtainthatq(cid:48)(z)within95% 0 bytheHubbleSpaceTelescope[31]. C.L. at recent epoch is positive. The reconstruction presents 4 ����� ��� ��� ��� ����� ��� ��� h����� h0 h00��� ��� ��� ����� ��� ����� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� z z z Figure4: ThereconstructionofHubbleparameterhanditsderivativesusingtheOHD. ��� IV. PHYSICALCONDITIONFORTHESLOWINGDOWN OFACCELERATION ��� ��� Abovereconstructionsbothimplythatcurrentdatadisfavor ��� the cosmic acceleration has reached its peak at recent period q(z)0 ��� within 95% C.L. Many previous work found that some dark energyparametrizations,suchastheCPLmodel,ledtotheSA ��� .WhileintheΛCDM,thisstrangephenomenondisappeared. ��� Nevertheless,thereasonofthistensionwasnotavailable. In thissection,ontheonehand,wetrytofindoutthisreason.On ��� ��� ��� ��� ��� ��� ��� the other hand, we will investigate which physical condition z shouldbesatisfiedforobservationaldatatoobtaintheSA. Figure5: Thereconstructionofq(cid:48)(z)usingtheOHD. A. Requirementforthedarkenergy that current supernova data do not favor the SA at recent pe- Different from previous work, here we consider the dark riod,evenatrendofthedecreasingq(cid:48)(z). energywithoutanyparametrization (cid:34) (cid:90) z 1+w(z(cid:48)) (cid:35) h2(z)=Ω (1+z)3+(1−Ω )exp 3 dz(cid:48) . (13) m m 1+z(cid:48) 0 B. ReconstructionfromtheOHD Thisfreeformallowsustogainamoreobjectiveunderstand- ingoftheSA.Next,weinvestigatewhichphysicalcondition Fig.4plotsthereconstructionofhanditsderivatives.First, maybeimposedbytheSAondarkenergy. wenotethatdistributionofOHDisquitedifferentfromthesu- SubstitutingEq. (13)into(8),wecanobtainthederivative pernovadata.FortheUnion2.1data,theydistributeuniformly atlowredshift.Moreover,theirerrorsatlowredshiftarecom- q(cid:48)(z)= 1 (cid:104)h2(cid:48)h2+(1+z)h2(cid:48)(cid:48)h2−(1+z)(h2(cid:48))2(cid:105). (14) paratively small. But for the OHD at low redshift, their dis- 2h4 tribution is not only dispersive, but also possess big errors. Accordingtothephysicalcondition(10),weeventuallyobtain Thisprofilewouldinfluencethereconstructioninevitably, as shown in other two panels. Second, we find that values of 3Ω (1+z)2 h(cid:48) and h(cid:48)(cid:48) both are positive at low redshift within 95% C.L. w(cid:48)(z)≤− m w2. (15) Specifically,itgivesh(cid:48)(z=0)=0.2±0.1. h2(z) Fromtheq(cid:48)(z)reconstructioninFig. 5, wefindthatatre- Obviously, right of the Eq. (15) is negative. That is, the SA centperiodq(cid:48) >0within95%C.L.Thatis,noevidencehints at least requires w(cid:48) < 0. Therefore, it is not difficult to un- that the cosmic acceleration has reached its peak. Interest- derstand why dark energy model with constant EoS, such as ingly,comparisonbetweenFig. 3and5showsthatthesetwo ΛCDM model and wCDM, cannot produce the SA , no mat- differentdatasetproduceasimilarestimationq(cid:48)(z=0)=0.9. ter what kind of observational data were used. In the same But different from the supernova data, q(cid:48) for the OHD at re- way,darkenergymodelwithapositivew(cid:48) alsocannotgener- cent epoch is decreasing. Moreover, this trend indicates that ate this strange and interesting phenomenon. Therefore, our q(cid:48)inthefuturemaybeacrossthezero,leadingtotheSA. aboveanalysisrevealsthereasonoftensioninpreviouswork. 5 ��� ��� of h(z)��������� xxxxd0000a t====a -0000....2250 of D(z)��� xxxxd0000a t====a -0000....2250 dary ��� dary ��� n n u u bo��� bo ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� z z Figure 6: Comparison between the boundary of h and OHD. The Figure 7: Comparison between the boundary of D and Union2.1 boundary of h is plotted based on the physical conditions (18) for data. TheboundaryofDisplottedbasedonthephysicalcondition differentinitialvaluex . (20)fordifferentinitialvaluex . 0 0 B. Requirementfortheobservationaldata Now using the relation (5) between h and D, the formula (18)eventuallyreducesto InvestigationsoftheSAinpreviousworkhavenotgivena D(cid:48) ≥(1+z)−x0 (19) clearandconsistentestimation. Alargepartofreasonlieson its dependence of dark energy model. Putting aside the dark forx, x >0orx, x <0.Finally,aconstraintofthedistance 0 0 energy,whatkindsofdataarerequiredbytheSA? Disgivenas Letusdefineanewvariablex≡ h(cid:48),withaninitialcondition h x0 =h(cid:48)(z=0). Theoretically,itisdifficultforustodetermine D≥ 1 (cid:2)(1+z)1−x0 −1(cid:3). (20) it without any model assumption. The GP reconstruction in 1−x 0 Figure4showsthatcurrentobservationaldatagiveapositive value h(cid:48)(z = 0) = 0.2±0.1. However, in order to present a We should note that x0 here is the initial value of h(cid:48), not the reasonableanalysis,wetemporarilysettheinitialconditionto initialvalueofD(cid:48)(cid:48). InFig. 7,weplottheboundaryofDwith be a free parameter. Now, using the new variable x, Eq. (8) differentinitialvalue x0 andcomparethemwiththeobserva- consequentlycanbereducedtoaneasyform tionaldata. Regionabovethelinesareallowedregionbythe SA.Comparisonshowsthatmostofthedataarenotintheal- q(cid:48)(z)= x+(1+z)x(cid:48). (16) lowedregion,especiallyforthehighredshift. Thus,itisalso notstrangethatcurrentsupernovadatadonotfavortheSA. Throughthephysicalcondition(10),weobtain x x(cid:48) ≤− . (17) V. CONCLUSIONANDDISCUSSION 1+z Accordingtothesignofvariables xand x ,wecansolvethis Possibleslowingdownofcosmicaccelerationhasattracted 0 formulainfourscenarios. Accordingtotheintegralcompar- great attention. However, most investigations were model- ison theorem, the formula (17) changes into an inequality of dependent. In our recent work [15], we made a model- theintegral. Afteraseriesofcalculation,itleadsto independenttest. However,thereasonofwhysomedarken- ergymodelsandcurrentdatacannotpresenttheSAisstillnot h≤(1+z)x0, (18) available. Ourstudyofthederivativeofdecelerationparame- terq(cid:48)(z)inthepresentpapercanprovideanessentialanalysis with x, x > 0or x, x < 0. Forothercases,norealsolution andsolutiontotheproblems. Weactualizethisplanviaplay- 0 0 canbeobtained,becauseoftheexistenceofsingularityatx= ingaconstraintonthedarkenergyandobservationaldata. 0.Sofar,wehavededucedthatanupperboundary(18)should Onedifferenceofourpresentworkfrompreviousinvestiga- besatisfiedbytheOHDtoobtaintheSA. tionswasourdevelopmentoftheparameterspace.Previously, InFig. 6,weperformacomparisonbetweentheOHDand studiesontheSAwereinthedecelerationparameterspace. In theboundaryofh. Thelinesaretheboundaryofhatdifferent thepresentpaper, we caughtthefeatureof evolutionofq(z), initial value x . The points with errorbars are observational andprovidedasystematicanalysiscoveringageneralsurvey 0 data.AccordingtotheconstraintinEq.(18),regionbelowthe ofthederivativeq(cid:48)(z). Usingthestudyofq(cid:48)(z),itisnotonly linesisallowedregion. Wefindthatonlyfewdataareinthe able to promote the test of SA in more detail, but solve the allowedregion. Mostofthemareactiveintheillegalregion. abovetensions. Therefore, it is not difficult for us to understand whycurrent Although many parameterizations were considered in pre- OHDcannotproducetheSA.Ifwewanttoobservethisphe- vious work, they are model-dependent. As a result, ten- nomenon,moredatabelowtheconstraintlineareneeded. sionsfromdifferentmodels[9,10]ordifferentobservational 6 datasets [13, 14] made this study into a more difficult mode. model-independent, but reveals the essential reason of why Incontrast,thenovelGPcanbreakthislimitationandproduce theSAcannotbeobservedconvincinglybycurrentdata.Com- moreaccurateandobjectiveestimation. Inourpreviouswork parisonsbetweentheboundariesandobservationaldataindi- [15],weeventookintoaccounttheinfluenceofspatialcurva- catesthatthedataarenotintheallowedregion, whichfacil- tureandHubbleconstant. Theyalldemonstratedthestability itates our understanding of SA . Moreover, it also provides a ofGPmethod. Inpreviouswork[16–20],theyalsosupported reliablescientificreferenceforfutureobservation. thesuperiorityofGPtechnique. Since the first study of the SA in Ref. [8], so many work were launched. However, tension between different models hasbeenpuzzlingus. ItwasfoundrepeatedlythattheΛCDM Acknowledgments modelandwCDMcannotreducetotheSA.Instead,thepop- ularCPLinmostcasescanleadtotheSA.Nevertheless,the J.-Q. Xia is supported by the National Youth Thousand reasonofgeneratingthistensionwasstillclosed.Ouranalysis Talents Program and the National Science Foundation of in Section IVA provide a clear explanation on this problem. China under grant No. 11422323. M.-J. Zhang is funded WefoundthatonlythedarkenergywithEoSinEq. (15)can by China Postdoctoral Science Foundation under grant No. tempttheSA.Nomatterwhichobservationaldatawereused. 2015M581173. TheresearchisalsosupportedbytheStrate- AnotherimportantcontributiontotheSAstudyisourcon- gicPriorityResearchProgramTheEmergenceofCosmologi- straint on observational data. Our presentation of the con- calStructuresoftheChineseAcademyofSciences,grantNo. straint on distance D and Hubble parameter h is not only XDB09000000. [1] A.Riessetal.,Astron.J116,1009(1998). [18] T. Holsclaw, U. Alam, B. Sanso´, H. Lee, K. Heitmann, [2] S.Perlmutter,G.Aldering,G.Goldhaber,etal.,Astrophys.J. S.Habib,andD.Higdon,Phys.Rev.Lett.105,241302(2010). 517,565(1999). [19] M.Seikel,S.Yahya,R.Maartens,andC.Clarkson,Phys.Rev. [3] M.Tegmark, M.Strauss, M.Blanton, etal., Phys.Rev.D69, D86,083001(2012). 103501(2004). [20] S.Yahya,M.Seikel,C.Clarkson,R.Maartens,andM.Smith, [4] D.Spergeletal.,Astrophys.J.Suppl148,170(2003). Phys.Rev.D89,023503(2014). [5] D. J. Eisenstein, I. Zehavi, D. W. Hogg, et al., Astrophys. J. [21] M.SeikelandC.Clarkson,arXiv:1311.6678(2013). 633,560(2005). [22] T.Yang, Z.-K.Guo, andR.-G.Cai, Phys.Rev.D91, 123533 [6] M.ChevallierandD.Polarski,InternationalJournalofModern (2015). PhysicsD10,213(2001). [23] N.Suzuki, D.Rubin, C.Lidman, etal., Astrophys.J.746, 85 [7] E.V.Linder,Phys.Rev.Lett.90,091301(2003). (2012). [8] A.Shafieloo,V.Sahni,andA.A.Starobinsky,Phys.Rev.D80, [24] R.JimenezandA.Loeb,Astrophys.J.573,37(2008). 101301(2009). [25] J.Simon,L.Verde,andR.Jimenez,Phys.Rev.D71,123001 [9] Z.Li,P.Wu,andH.Yu,J.Cosmol.Astropart.Phys.2010,031 (2005). (2010). [26] D.Stern, R.Jimenez, L.Verde, M.Kamionkowski, andS.A. [10] Z.Li,P.Wu,andH.Yu,Phys.Lett.B695,1(2011). Stanford,J.Cosmol.Astropart.Phys.2010,008(2010). [11] V.H.Ca´rdenasandM.Rivera,Phys.Lett.B710,251(2012). [27] E.Gaztanaga,A.Cabre,andL.Hui,Mon.Not.R.Astron.Soc. [12] J.Lin,P.Wu,andH.Yu,Phys.Rev.D87,043502(2013). 399,1663(2009). [13] J.Magan˜a,V.H.Ca´rdenas,andV.Motta,J.Cosmol.Astropart. [28] M.Moresco,A.Cimatti,R.Jimenez,L.Pozzetti,etal.,J.Cos- Phys.2014,017(2014). mol.Astropart.Phys.08,006(2012). [14] S.Wang,Y.Hu,M.Li,andN.Li,Astrophys.J.821,60(2016), [29] T.Delubac,J.Rich,S.Bailey,etal.,Astronomy&Astrophysics 1509.03461. 552,A96(2013). [15] M.-J.ZhangandJ.-Q.Xia,JournalofCosmologyandAstropar- [30] M.Moresco,L.Pozzetti,A.Cimatti,R.Jimenez,etal.,J.Cos- ticlePhysics12,005(2016). mol.Astropart.Phys.05,014(2016). [16] M. Seikel, C. Clarkson, and M. Smith, J. Cosmol. Astropart. [31] A.G.Riess,L.M.Macri,S.L.Hoffmann,etal.,Astrophys.J. Phys.2012,036(2012). 826,56(2016). [17] T. Holsclaw, U. Alam, B. Sanso´, H. Lee, K. Heitmann, S.Habib,andD.Higdon,Phys.Rev.D82,103502(2010).