ebook img

PHYLOGENETIC RELATIONSHIPS WITHIN APIALES: EVIDENCE FROM WOOD ANATOMY PDF

6 Pages·2001·0.33 MB·
by  OskolskiA A
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PHYLOGENETIC RELATIONSHIPS WITHIN APIALES: EVIDENCE FROM WOOD ANATOMY

EDINB. J. BOT. 58(2):201–206(2001) 201 PHYLOGENETIC RELATIONSHIPS WITHIN APIALES: EVIDENCE FROM WOOD ANATOMY A. A. O* WoodanatomicaldataconfirmthecloserelationshipsofmostAraliaceaetoApiaceae, butdonotindicateanyintermediategroupsbetweenthetwofamilies.Heteromorpha Cham.&Schltdl.,BupleurumL.andMelanoselinumHoffm.formawell-delimited groupdistinguishedfromotherwoodyApiaceaebyhelicalthickeningsontheirvessel walls,septatefibres,andmostlyhomogeneousrays.ThewoodinessinNirarathamnos Balf.f.andMyrrhidendronJ.M.Coult.&Roseislikelytobeofsecondaryorigin. Keywords. Apiaceae,Araliaceae,systematicwoodanatomy. I Although Araliaceae and Apiaceae (Umbelliferae) are commonly accepted as two closelyrelatedtaxa,differentsuggestionsontheirphylogeneticrelationshipshavebeen proposed.Traditionally,thetwofamilieshavebeenregardedastwoseparatelineages thatarosefromacommonhypotheticalancestor.Thiswasbasedmostlyonmorpho- logical and anatomical data (e.g. Rodriguez, 1971). Alternatively, Apiaceae has been considered as an evolutionary successful group derived from within Araliaceae. This view was supported by occurrence of taxa within Apiales (e.g. Myodocarpus Brongn. & Gris., Apiopetalum Baill., Stilbocarpa (Hook.f.) Decne. & Planch., Hydrocotyle L.) thatcombinesometraitsofbothAraliaceaeandApiaceaeandarethereforeregarded asintermediatelinksbetweenthetwofamilies(e.g.Thorne,1973).Recentresultsfrom morphologicalandbiogeographicalstudies(Lowry,1986a,b),andofcladisticanalyses based on matK and rbcL sequence data (Plunkett et al., 1996a,b, 1997), suggest howeverthatthemajorityoftaxainApialesfallintooneoftwowell-delimitedgroups which correspond largely to Araliaceae or Apiaceae, whereas others belong to a number of distinct ancient, paleotropical lineages (e.g. Myodocarpus, Delarbrea Vieill.,Apiopetalum,MackinlayaHook.f).Theobjectiveofthisstudywastoexamine these hypotheses on the basis of an analysis of wood-structure diversity. W A  A PublishedreferencesandoriginaldataonthewoodstructureofAraliaceae(170species of 44 genera have been examined) have been summarized by Oskolski (1994, 1996), Oskolskietal.(1997),andOskolski&Lowry(2000).Thisfamilydisplaysaconsiderable range of wood diversity and specialization (sensu Bailey, 1951). For example, average * Botanical Museum, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str.2,197376StPetersburg,Russia.E-mail:[email protected] 202 A. A. OSKOLSKI vesselelementlength,whichisanimportantindicatorofthelevelofxylemspecialization, rangeswithinAraliaceaefrom370mminOplopanax(Torr.&A.Gray)Miq.to1370mm inScheffleraJ.R.Forst.&G.Forst.,butinmostgenerathisparametervariesbetween 600–900mm. Perforation plate type varies from exclusively scalariform (up to 56 bars in Osmoxylon Miq.) to exclusively simple (e.g. Aralia L., Tetraplasandra A. Gray). Themostimportantdiagnosticwoodcharactersforthefamilyaretheaxialparen- chymatype,theoccurrenceofseptatefibresand/orofradialcanals,andtheinterves- sel pit size. Core Araliaceae (40 genera examined) share relatively large intervessel pits,scantyparatrachealaxialparenchyma,andthepresenceofseptatefibres(which canbesecondarilylost)andofradialcanals(Fig.1a,b)inthemostprimitivegenera. Myodocarpus(Fig.1c,d),DelarbreaandPseudosciadiumBaill.formawell-delimited assemblage,whichissharplydistinguishedfromotherAraliaceaebyrelativelysmall intervesselpits,apotrachealdiffuse-inaggregatesaxialparenchyma,andalsobynon- septatefibres(Oskolskietal.,1997).ApiopetalumandMackinlayacompriseanother well-delimitedassemblage,characterizedbyrelativelysmallintervesselpits,presence ofbothparatrachealandapotracheal(diffuseanddiffuse-in-aggregates)axialparen- chyma, non-septate fibres, and absence of radial canals (Oskolski & Lowry, 2000). W A  A Shrubs or small trees occur in c.20 apiaceous genera (out of c.300 in this mostly herbaceous family), representing all three traditionally recognized subfamilies (HydrocotyloideaeLink,SaniculoideaeBurnettandApioideaeDrude).Woodanatom- ical study of 10 species in nine genera (Arracacia DC., Bupleurum L., Eryngium L., HeteromorphaCham.&Schltdl.,MelanoselinumHoffm.,MyrrhidendronJ.M.Coult. &Rose,NirarathamnosBalf.f.,PlatysaceBungeandSteganotaeniaHoscht.)hasadded to data published by Metcalfe & Chalk (1950) and Schweingruber (1990), but Rodriguez(1957)remainsthemostimportantandextensivedatasourceonthefamily. WoodyApiaceae(exceptsomehydrocotyloidswithanomalousstemstructure,e.g. Azorella Lam.) resemble core Araliaceae in their wood structure, but differ by their distinctlyshortervesselelements(averagelengthfrom240mminEryngiumto500mm inHeteromorpha,butRodriguez,1957,notedthatinthehydrocotyloidsAsteriscium Cham. & Schltdl., Gymnophyton Clos and Trachymene Rudge, this parameter varies from 170–240mm), and also by exclusively simple perforation plates. Wood FIG. 1. Wood structure in some Araliaceae. Scale bar=100mm. a, b, Aralia soratensis Marchal(=PentapanaxangelicifoliusGriseb.):Argentina,Kw10714.Anexampleofthetypi- cal wood structure for the core Araliaceae; a, trans-section – thin-walled libriform fibres, scantyparatrachealaxialparenchyma;b,tangentialsection–septatelibriformfibres,hetero- geneous rays of Kribs’ IIB type, radial canal. c, d, Myodocarpus fraxinifolius Dubard & R. Vig.;NewCaledonia,Lowry3679;c,trans-section–thick-walledlibriformfibres,apotracheal (diffuse-in-aggregates) axial parenchyma; d, tangential section – non-septate libriform fibres, homogeneousrays,radialcanal. WOOD ANATOMY AND PHYLOGENY WITHIN APIALES 203 a b c d 204 A. A. OSKOLSKI anatomical data confirm the close relationships of core Araliaceae to Apiaceae, but do not support ideas of linear phylogenetic sequence of the two families because no intermediate groups have been identified. Myodocarpus, Delarbrea and Pseudosciadium,aswellasApiopetalumandMackinlaya,oftenregardedas‘bridging taxa’ between the families, differ distinctly from both core Araliaceae and Apiaceae. Instead, wood anatomical data support the view (Lowry, 1986a,b; Plunkett et al., 1996a,b, 1997) that these assemblages are separate, isolated lineages. WithinApiaceae,Apioideaearecharacterizedbylessadvanced(sensuBailey,1951) wood structurethan Hydrocotyloideaeand Saniculoideae,as indicatedby thelonger lengthoftheirvesselelements.However,relationshipswithinthesethreesubfamilies remainobscureforwoodanatomists.Awoodyhabitappearstohavearisensecond- arilyfromherbaceousancestorsinseveralApiaceaegenerasuchasthehydrocotyloids Asteriscium, Azorella and Mulinum Pers. (Rodriguez, 1957), and the apioids NirarathamnosandprobablyMyrrhidendron(Downieetal.,1998).Secondarywoodi- ness in these taxa can be recognized by an anomalous stem structure, as in Azorella (Rodriguez, 1957) or by such paedomorphic wood features (sensu Carlquist, 1962) as the combination of simple perforation plates, scalariform intervessel pitting, and apredominanceofuprightandsquarecellsinraycomposition,andalsothetendency to raylessness in Myrrhidendron (Fig.2c,d). Three apioid genera, Heteromorpha, Bupleurum and Melanoselinum, form a well- delimitedgroupdistinguishedfromotherwoodyApiaceaebyhavinghelicalthicken- ings on their vessel walls, septate fibres, and mostly homogeneous rays (Fig.2a,b). The presence of septate fibres links these genera to Araliaceae, where this character is very common; no Araliaceae can, however, be regarded as their close relatives. Available data therefore confirm Drude’s (1898) idea of close relationships among thesethreegenera,aswellastheview(Plunkettetal.,1996a,b;Downieetal.,1998) on their basal position in the Apioideae clade. A This research was supported by a stipend from the German Academic Exchange Service(DAAD);fieldworkinNewCaledoniaandAustraliawassupportedbyNGS grant 5793-96. I sincerely thank P. P. Lowry II and G. M. Plunkett for helpful collaboration, and P. Baas, M. Gregory, P. Gasson, B. J. H. ter Welle for their FIG. 2. WoodstructureinsomewoodyApiaceae(subfam.Apioideae).Scalebar=100mm. a, b, Heteromorpha arborescens Cham. & Schltdl., Tanzania, Kw 10606; a, trans-section – thin-walled libriform fibres, scanty paratracheal axial parenchyma; b, tangential section – alternate intervessel pitting, helical thickenings on the vessel walls (arrow), septate libriform fibres, uni- and 2-seriate homogeneous rays. c, d, Myrrhidendron pennellii J. M. Coult. & Rose:Columbia,Uw20765;c,trans-section–thin-walledlibriformfibres,scantyparatracheal axial parenchyma, rays poorly distinguished; d, tangential section – scalariform intervessel pitting,non-septatelibriformfibres,rayscomposedofuprightcells(tendencytoraylessness). WOOD ANATOMY AND PHYLOGENY WITHIN APIALES 205 a b c d help in obtaining wood samples. I am also very grateful to E. S. Chavchavadze, H. G. Richter, E. John, J. West, B. Hyland, B. Gray, R. Jensen. Assistance was provided by the Botanical Museum, the V. L. Komarov Botanical Institute, 206 A. A. OSKOLSKI St Petersburg; the Ordinariat fu¨r Holzbiologie, Universita¨t Hamburg; Bundesforschungsanstalt fu¨r Holz- und Forstwirtschaft, Hamburg. R B, I. W. (1951).Theuseandabuseofanatomicaldatainthestudyofphylogeny andclassification.Phytomorphology1:67–69. C, S. (1962).Atheoryofpaedomorphosisindicotyledonouswoods. Phytomorphology12:30–45. D, S. R., R, S., K-D, D. S. & L, E. (1998). MolecularsystematicsofApiaceaesubfamilyApioideae:phylogeneticanalysisofnuclear ribosomalDNAinternaltranscribedspacerandplastidrpoC1intronsequences.Amer. J.Bot.85:563–591. D, C. G. O. (1898).Umbelliferae.In:E, A. & P, K. (eds)Die Natu¨rlichenPflanzenfamilien,Vol.3(8),pp.63–250.Leipzig:W.Engelmann. L II, P. P. (1986a).AsystematicstudyofthreegeneraofAraliaceaeendemictoor centeredonNewCaledonia:Delarbrea,Myodocarpus,andPseudosciadium.PhD dissertation,WashingtonUniversity,StLouis. L II, P. P. (1986b).AsystematicstudyofDelarbreaVieill.(Araliaceae).Allertonia 4:169–201. M, C. R. & C, L. (1950).AnatomyoftheDicotyledons,Vol.2.Oxford: ClarendonPress. O, A. A. (1994).WoodanatomyofAraliaceae.StPetersburg:Komarov BotanicalInstitute(inRussian). O, A. A. (1996).AsurveyofthewoodanatomyoftheAraliaceae.In: D, L. A., S, A. P., B, B. G. & W, L. J. (eds)RecentAdvancesinWoodAnatomy,pp.99–119.Rotorua:NewZealandForest ResearchInstitute. O, A. A. & L II, P. P. (2000).SystematicwoodanatomyofMackinlaya andApiopetalum(Araliaceae).Ann.MissouriBot.Gard.87:171–182. O, A. A., L II, P. P. & R, H. G. (1997).Systematicwood anatomyofMyodocarpus,Delarbrea,andPseudosciadium(Araliaceae).Adansonia,Se´r.3. 19:61–75. P, G. M., S, D. E. & S, P. S. (1996a).Higherlevelrelationships ofApiales(ApiaceaeandAraliaceae)basedonphylogeneticanalysisofrbcLsequences. Amer.J.Bot.83:499–515. P, G. M., S, D. E. & S, P. S. (1996b).Evolutionarypatternsin Apiaceae:inferencesbasedonmatKsequencedata.Syst.Bot.21:477–495. P, G. M., S, D. E. & S, P. S. (1997).Clarificationofthefamily- pairrelationshipbetweenApiaceaeandAraliaceaebasedonmatKandrbcLsequence data.Amer.J.Bot.84:565–580. R, R. L. (1957).SystematicanatomicalstudiesonMyrrhidendronandother woodyUmbellales.Univ.Calif.Publ.Bot.29:145–318. R, R. L. (1971).TherelationshipsoftheUmbellales.In:H, V. H. (ed.)TheBiologyandChemistryoftheUmbelliferae,pp.63–91.London:AcademicPress. S, F. H. (1990).AnatomieEuropa¨ischerHo¨lzer(AnatomyofEuropean Woods).Bern:Haupt. T, R. F. (1973).InclusionoftheApiaceae(Umbelliferae)intheAraliaceae.Notes Roy.Bot.Gard.Edinb.32:161–165. Received20January2000;acceptedwithrevision1June2000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.