ebook img

Phylogenetic relationships of extant pelobatoid frogs (Anura:Pelobatoidea) : evidence from adult morphology PDF

19 Pages·1998·8.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phylogenetic relationships of extant pelobatoid frogs (Anura:Pelobatoidea) : evidence from adult morphology

QL 668 .E262 M33 1998 Papers Scientific Museum Natural History The Kansas University of 30 October 1998 Number 10:1-19 of Extant Pelobatoid Phylogenetic Relationships Frogs (Anura: Pelobatoidea): Evidence from Adult Morphology By Anne M. Maglia ^ Division ofHerpetology, NaturalHistoryMuseum and BiodiversityResearch Center, ^ and DepartmentofEcologijand Evolutionary Biology, o The UniversityofKansas, Lawrence, Kansas 66045-2454, USA CONTENTS >' ^' a ^';^ ABSTRACT 1 ^ RESUMEN 2 1 ^ -J INTRODUCTION 2 V HistoricalTaxonomyofthe Pelobatoids 3 T Acknowledgments 5 O t MATERIALSAND METHODS 5 - CladisticMethodology 5 m Specimens Examined 6 S DESCRIPTION OFCHARACTERS 6 I RESULTS 12 DISCUSSION 13 Relationships withOtherAnurans 13 Supportfor Pelobatoidea 13 Interfamilial Relationships 13 RelationshipsWithin thePelobatidae 13 Conclusions 17 LITERATURE CITED 17 APPENDIX 19 ABSTRACT The phylogenetic relationships of the Pelobatoidea, the most specious clade of basal anurans,arepoorlyunderstood. 1conducteda phylogeneticanalysisof14extantpelobatoidtaxa (rep- resenting all recognized extant species of the family Pelobatidae and representative taxa of Megophryidae and Pelodytidae) and six outgroup taxa by examining alcohol-preserved specimens, dried skeletons, and cleared and double-stained skeletal preparations. Analysis of73 characters from primarily adult morphology resulted in the discovery of six most parsimonious trees, each with 251 ©NaturalHistoryMuseum,TheUniversityofKansas ISSNNo. 1094-0782 ^ SciENTinc Papers, Natural History Museum, The University of Kansas '^LiJ. 3 -3 steps. The analysis supports Pelobatoidea and Pipoidea as sister taxa. Within the Pelobatoidea, I CjOjO^ Pelodytidae is thesistergroup to Pelobatidae, and Megophryidae is thesister taxon to [Pelobatidae + Pelodytidae]. Within the Pelobatidae, the monophyly of Pelobates, Scaphiopus, and Spea is supported. Thispapersummarizesandredefinesmorphologicalcharactersthathistoricallyhavebeenused in the studyofextantpelobatoidsystematicsandaddsnew,informativemorphologicalcharacters.Thisshould createa framework upon which furtherphylogeneticanalysesofthis group canbeconducted. Key Words: Anura, Pelobatoidea, Pelobatidae, systematics, phylogenetic relationships, Pelobates, Scaphiopus, Spea. RESUMEN Las relaciones de parentesco de los Pelobatoidea, el grupo the anuros basales con mas especies, son pobrementeentendidas. Pormediodelestudio deespecimenespreservados, esqueletos secosyesqueletostransparentadosydoblementetefiidos,condujeunanalisisfilogeneticode14taxones vivientes de pelobatoideos (representando todas las especies vivientes conocidas de la familia PelobatidaeytaxonesrepresentativesdeMegophryidaeyPelodytidae)yseisgruposextemos.Elanahsis de 73 caracteres tomados fundamentalmente de la morfologia adulta resulto en el descubrimiento de seis arboles mas parsimonicos de 251 pasos cada uno. El analisis respalda a Pelobatoidea y Pipoidea como grupos hermanos. Dentro de Pelobatoidea, Pelodytidae es el grupo hermano de Pelobatidae mientrasqueMegophryidaeeselgrupohermanode[Pelobatidae+Pelodytidae].DentrodePelobatidae, la monofilia de Pelobates, Scaphiopus y Spea esta bien sustentada. Este trabajo resume y redefine los caracteres morfologicos que historicamente han sido usados en el estudio de la sistematica de pelobatoideosactuales,yagrega nuevoscaracteresmorfologicos. Estodeberia crearunmarcosobreel cvial otros analisis filogeneticos de este grupo puedan ser realizados. Palabras claves: Anura, Pelobatoidea, Pelobatidae, sistematica, relaciones filogeneticas, Pelobates, Scaphiopus, Spea. INTRODUCTION The Pelobatoidea, comprising about 95 extant species lution to the phylogenetic placement of the pelobatoids (Frost,1985)inthreefamiUes(Pelobatidae,Megophryidae, among other anurans; however, many of his characters and Pelodytidae), is the largest and arguably, the most were not informative in resolving relationships within poorly studied group of basal anurans. These frogs are Pelobatoidea. Thosecharacterspertinenttopelobatoidre- distributed throughout the Holarctic Region and extend lationships provided little resolution beyond the family into the Old World tropics (Duellman and Trueb, 1986). level, and when the results of his analysis were reported The pelobatoids also are represented by an extensive fos- later(FordandCannatella, 1993),therelationshipsamong sil record ranging from Late Jurassic of North America thepelobatoid famiUeswereunresolved. Lathrop's (1997) (Evans and Milner, 1993) to the Pleistocene of North subsequent reanalysis of a portion of Cannatella's (1985) America; the fossils include fEopelohates, iMacropelobates, data provided suggestions as to the among-genera rela- fMiopelodytes, and iTephrodytes. tionships, but it did not address the placement of the Although there are numerous suggestions as to the pelobatoids among other anurans, and it was not able to phylogenetic placement of the pelobatoids among other elucidate some of the relationships within the family anurans(e.g.,Brattstrom,1957;Griffiths, 1963;Lynch, 1973; Pelobatidae. Therefore, there is a pressing need to under- Cannatella, 1985),fewstudieshavefocusedspecificallyon stand the phylogenetic relationships of the extant pelobatoidsystematics.Henrici(1994)conductedthemost pelobatoids,includingtheirrelationshipswithotherfrogs inclusivephylogenetic analysis ofthe pelobatoids to date and their inter- and intrafamilial relationships, by examining both fossil and Recent forms. Her analysis Currently, a separate study in progress (Amy Lathrop, resolvedrelationshipsamonggenera,butdid notaddress pers. comm.) is designed to address the generic relation- theplacementofthepelobatoidsrelative tootheranurans ships within the pelobatoid family Megophryidae. To re- or the relationships within genera. Cannatella (1985) in- duce overlap in efforts, the focus of the present paper is eluded the extant pelobatoids in his analysis of threefold—(1) to understand the relationships of the archaeobatrachianfrogs.Usingadultanatomyandtadpole Pelobatoidea with other anurans; (2) to determine the fa- life-history characters, he was able to provide some reso- milial-level relationships within the group; and (3) to hy- Phylogenetic Relationships of Pelobatoid Frogs pothesize relationships of taxa within the family do not form a monophyletic group. He argued that Pelobatidae. Herein,Iusemorphologicalcharacterstocon- Pelobatidae (including whatisnow Megophryidae, sensu duct a phylogenetic analysis of extant pelobatoids. A de- Cannatella, 1985) is the sister group to Neobatrachia, and tailed description and comparison of the adult pelobatid Pelodytidae is the sister to this combined group (Fig. 1). skeletonhavebeenpresentedelsewhere(Maglia,inpress) He also suggested that Pipidae is the sister group to the and should serve as a companion to this analysis. Within clade [(Neobatrachia + Pelobatidae) -i- Pelodytidae]. the pelobatoids, I included two representative taxa ofthe Duellman (1975, 1988) and Duellman and Trueb (1986) family Megophryidae, one representative taxon of asserted, based on the incomplete nature of the cricoid Pelodytidae,andrepresentativesofallcurrentlyrecognized cartilage,that Pelobatidae (includingMegophryidae) and extanttaxaofPelobatidae.Becausethephylogeneticplace- Pelodytidae are sister groups (Fig. 1). They also showed mentofpelobatoidsisproblematic,Iincludedseveraltaxa that, together, these taxa form the sister group of representing the Pipoidea, Discoglossidae, Bombin- Neobatrachia,basedonthefollowingsynapomorphies: (1) atoridae, and Neobatrachia {sensu Ford and Cannatella, absence of ribs (also absent in Rhinophrynidae); (2) non- 1993) that serve as outgroups. overlap of the scapula by the clavicle; and (3) absence of HistoricalTaxonomyofthe Pelobatoids the neopalatine bone. Using molecular evidence. Hay et al. (1995) hypothesized that Pelobatidae (including SinceNoble(1931)placedthepelobatoidsintothesub- Megophryinae) and Pelodytidae are sister-taxa and that orderAnomocoela (whichheconsideredtobeaninterme- together they form the sister group to a clade comprising diatebetweenpipidsandbufonids), thesystematicplace- all other archaeobatrachians. m(1e9n5t7)ofatlhseopaellloobcaattoeiddsthheaspbeleoebnactoonitdesnttiooutsh.eBrsautbtosrtdreorm SokBoals(e1d97o7n) tphreopsotasteedofa tchlaesstirfiigceamtiinonalthaantddifavciidaelsnAenrvuersa, ccaAfpavhoonraatuotirhrmilaelaocsabtciglseoezeruseeibdflziooenastrdsopdi(blreFbiyiredgmas.pitdrt—ae1io.)rvAcAieorHbgveaceedllshidooeasasudcberssoygogaovublnfeeoarudsttss(srkeiiptebaodhilrnscapea.tihteodai,ftRlsahea)teim;hcgoeporen(iAlpd1nohim9tbt5opea8irlht)ovooinegeirchrdytoeesecebahtarlnyearadd-le iftct(anahohltmeneloisyopliteitadhelcweseotorrbuLeaaefsdtlriuolotobiygopodsmbre)se.dl.aemHpyHraresteib,imesdsiuDatuagiieggshvgaceeieosngs(gtdhetle.legoDdy.dsi,tssdOthcoehraoirattgditolevanoietl,sdhts,(e1hiiy9oidn5unace3dgel;vih)uorSdlteapiacvinnrtepdrgdoebtRiortfadna,rnsln1ooycw9imh7edt3raeh)oenie,f d(ilsecioogpleolssmiadtsi,dsa)n;d rhinophrynids); and Neo(bpaetlroabcahtioaid(sal,l i"neotpeirpmoeiddisa.t"eLagurroeunptw(1i9t7h9),aipniapnoiadt-tleimkpetttoadrpeocloeg,niczaelltehde baosaartpalehpseaebirrdonafnttroeeuonsrgs.sm,t)eh.HddeGieerapcithrfaeaeflrsisbatsoechosttrsew(urm1egs9aeg6none3fds)ipttsrbehuiudegmlgietaetphesiiavtctmeeoudrtsaahctncehldoaeiptsdea,tldhhovaeobanrpandnetsclos,eoiqbddsausttfaeorramionnodgad-ssl NdtwseieiursotbitbhoniargnttdchrtteeahircevcheleMinaxeaseiss,ssiosttfbirionaicfgteadtrtniahtooeocnmhcepoionefamclDlobtubaioaetntuleiorlnitecmdhlaesoufnfdwAie(inr1tdcP9hih7ion5apug)eostoibboddyfaertSaaersortake(iccopcthliaiipl(nail1gdy9ast7an7hld+)e- rsehnitneodpharnyneiadrlsyasriedeclborsaenlychreolfattehde alinnde,otfoagrectihfeerr,alrefprroegs- rhinophrynids) and Pelobatoidea. that diverged from the pipids. Rocek(1980)comparedthedevelopmentofthecraruum Oneoftheearliestphylogeneticanalysesofanuranre- of Pelobatesfiiscus to several other species of pelobatoids. l(a19t6i7o)n,shwiphsosuesinmgorppahrosliomgoincyalwaansalpyesrifsoirnmdeidcabtyedIntgheart Tpaatktienrgnionftothaecctoeucnttuamssiynngloeticchuarma,ctheer,etrheectdeedvealcolpasmseinfitcaal- tionofanuranscomposed ofArchaeosalientia (containing Pelobatoidea is the sistergroup toneobatrachians, except Microhylidae, which is the sister group to the clade fEopelobatesandPelobates)andNeosalientia (containingall [Neobatrachia + Pelobatoidea] (Fig. 1). Inhisanalysis, the otherfrogs). However, thishypothesishasbeencriticized rhinophrynids are the sister group to the clade (e.g., Cannatella, 1985) because it takes a less than parsi- [neobatrachians + pelobatoids + microhylids], and the monious view ofanuran evolution. pipids are the sister group to this combined clade. Kluge Themostthorough analysisofarchaeobatrachianrela- and Farris (1969) (Fig. 1) also used parsimony analysis to tionships is that of Cannatella (1985) (Fig. 1). His results suggest that the pelobatoids are the sister group to all suggested thatPelobatoidea is monophyleticand that the neobatrachians (including microhylids). Their analysis pelobatoids and pipoids are sister groups, and he sug- suggested that [pipids -i- rhinophrynids] are the sister gested that Mesobatrachia (Laurent, 1979; = Pipoidei of group to the clade [neobatrachians + pelobatoids]. Dubois, 1983) is monophyletic. Five synapomorphies (all Lynch (1973) hypothesized that the pelobatoids are a with some level of homoplasy) unite members of transitionalgroupbetweenarchaicandadvancedfrogsand Mesobatrachia;theseareasfollows: (1)hyaleintwoparts; ScffiNTiFic Papers, Natural History Museum, The University of Kansas a> CO •g !c: Q. COO Phylogenetic Relationships of Pelobatoid Frogs (2) cutaneous origin ofthegracilis minor muscle; (3) hyo- clade. It also suggests that within Pelobatidae, Spea and glossalsinuspartiallyboundbylaminaeofhyalae;(4)pres- Scaphioptis are sister taxa, and Pelobates is the sister to ence of an accessory head of the gracilis minor muscle; [Scaphiopiis+ Spea].Theseresultsareconsistentwiththose and (5) concealment of the frontoparietal fontanelle. of Henrici's (1994) phylogenetic analysis of Recent and Cannatella's(1985)analysisdidnotprovideresolutionfor fossil pelobatoids. She proposed that Pelodytidae and familial-level relationships within the Pelobatoidea. Al- Pelobatidaearesistergroups,andrecognized Pelobatinae though the phylogeny resulting from his analysis depicts and Megophryinae as sister taxa within the family [(Pelobatidae + Pelodytes) + Megophryidae], he stressed Pelobatidae. thatthiswasaresultofhischoiceofequallyparsimonious Acknowledgments topologies and not thesingle most parsimonious result. IthankLinda Trueb,Jude Higgins,ChristopherShell, Reanalysis ofCannatella's data set by Hilhs (1991) in- andJennyPramukfortheircommentsonthismanuscript. dicated thatthepelobatoidsareparaphyletic, and thatthe I also thank L. Anah'a Pugener for her comments and for neobatrachiansare thesistergroup toMegophryidae. He providing the Spanish translation of the abstract. John also hypothesized that the clade [Neobatrachia + WiensandAmy Henriciprovided thoroughand thought- Megophryidae]isthesistergrouptotheclade[Pelodytidae fulcommentsthatgreatlyimprovedthispaper. 1amgrate- H- Pelobatidae],and thiscombinedcladeis thesistertaxon fultoCharlesW.MyersattheAmericanMuseumofNatvi- to the pipoids. A second reanalysis of a portion of ral History,Jose Rosado at the Harvard MuseumofCom- Cannatella's (1985) data set was conducted by Lathrop parative Zoology, and Jose E. Gonzalez from the Museo (1997).Thehypothesisresultingfromheranalysissuggests Nacional de Ciencias Naturales (Madrid) for the loan of that withinPelobatoidea, Megophryidaeand Pelobatidae specimens.ThisresearchwassupportedbyNSFGrantDEB are sister taxa, and Pelodytes is the sister to thiscombined 95-21691 to Linda Trueb. MATERIALSAND METHODS Cladistic Methodology (Fig. 2). A phylogenetic analysis was performed using Characterswerecoded for20 taxa representing 11 spe- PAUP Ver 3.1.1 (Swofford, 1993) using ACCTRAN opti- cies in the family Pelobatidae, two species in the family mizations;alltransformationserieswereweightedequally Megophryidae,onespeciesinthefamilyPelodytidae,and and were treated as unordered. An heuristic search was sixoutgrouptaxa (Pipidae: Rhinophnjmisdorsalis,Xeuopiis performed with the topological constraint presented in laevis; Neobatrachia: Leptodactyhis fiiscus, Limnodyjiastes Figure 2. The resulting tree was rooted using the fletcheri; Discoglossidae: Discoglossus snrdus; discoglossid taxon, Discoglossits sardus, and the Bombinatoridae: Bombina orientalis). I examined alcohol- bombinatorid taxon, Bombina orientalis, the most basal preserved specimens, dried skeletons, and cleared and outgroup taxa included in this analysis (according to the double-stained skeletal preparations. hypothesesofanuranrelationshipsofDuellmanandTrueb Seventy-three characters from adult and larval mor- [1986] and Ford and Cannatella [1993]). phology were defined and included in the analysis. Al- though several characters are similar to those used by O := :=: CKlaungnea,te1l9l6a6;(Z1w9e8i5f)ela,nd195o6t)h,emroasuttchhoarrsac(tee.gr.s,wHeernerirceid,ef1i9n9e4d; 6 .„ -ii i= 2 -fao 3 e -e 5 and coded directly from specimens for this analys—is. Ten 5 (D Q^ 0} O O 5 3:?:^=:;= characters were taken directly from the literature Char- o acters 64-72 (myology and soft tissue) were taken from Cannatella (1985), and Character 32 (condition of the stapes)wastaken from Lathrop (1997).Characterdescrip- tions and illustrations are presented in the next section; thedata matrix is presented inAppendix. The monophyly of Pelobatoidea was assumed based on (1) ossification ofthesternum, (2) presence ofpalatine processoftheparsfacialisofthemaxilla, and (3) presence ofadductorlongusmuscle(Cannatella, 1985). Iforced the pelobatoids to be monophyletic, as well as forcing the monophylyofthepipoidoutgroup(twotaxarepresented) and the neobatrachian outgroup (two taxa represented) Scientific Papers, Natural History Museum. The University of Kansas To determine robustness of support for each of the Speamultiplicata(KU27622,86662,86664),S.bombifrons nodes, I calculated Bremer decay indices (Bremer, 1988; (KU5405,73382),S.Jmmmondii(KU176016),S.intennoutam 1994) by rerunning the analysis several times, saving all (KU 79436, 204563), Scaphiopus coiichii (KU 20444, 73384, trees one step longer than the previous analysis, comput- 209575), S. holbrookii (KU 20439, 145413), S. hiirtMcmN(CKNU irensgultthseocfontsheenosruisg,inaanldantahleynsics.omIpaalrsoincgaltchuelarteesdulbtosotsotrtahpe 2200407421,;6M01N73C,N9002906)2,41P)e,lobP.atfeistsccuulstri(p(KesUA(M6K8NU8H1194,861192,9240M),CZP. values foreachofthe resolved clades. s3y1r9i7a0c)u,s M(eKgUop1l4m6/8s56)m,onPt.avnaaral(dtMiCZ 22635,6K29U35,79010), SpecimensExamined Leptobrachhimhaseltii(KU194712),Pelodytespimctatus(KU Institutions are as follows: American Museum of Natural 153435,129241, MCZ 1616b), Rhinoplm/nus dorsalis (KU History (AMNH), University of Kansas Natural History Mu- 69084, 168799), Xenopus kei'is (KU 195934, MCZ 26585), seum(KU), HarvardUniversity MuseumofComparativeZool- Lvmwdynastesfletcheri(KU186780),Leptodacti/lusfiiscus(KU ogy (MCZ), Museo Nacional de Ciencias Naturales, Madrid 92957, 166429, 167677, 167678), Bombina orieiitalis (KU (MNCN). United States National Museum (USNM). 38645,38649, 129703),and Discoglossussardus (KU 183734, USNM 129239, 10052). DESCRIPTION OFCHARACTERS The 73 characters used in this analysis are described 4. Frontoparietal contact with nasal.—The anterior and/ below. RefertoMaglia (inpress),Wiens (1989),andRocek oranterolateral marginofthefrontoparietalextendsto (1980) for additional descriptions and illustrations of abutoroverlap the nasal. pelobatoid osteology. 0: frontoparietal and nasal not in contact 1; frontoparietal and nasal in contact Cranialcharacters (Fig. 3) 5. Occipital foramen.—In the taxa considered, the path- Frontoparietal — way for the occipital vessels is unroofed, and thus the 1. Ornamentation. 1 considered this tobedistinctive bony or- vessels merely traverse the dorsal surfaceof the poste- namentationofthefrontoparietals,nasals,maxillae,premax- rolateral corner of the frontoparietal, or it is roofed in illae. and squamosals. bone to form a canal (= occipital foramen) through the 0: dermal ornamentation absent posterolateral cornerof the frontoparietal (Fig. 3). 1: dermal ornamentation present 0: pathway for occipitalvessels open 2. Supraorbital flange.—This small, lateral expansion 1: pathway foroccipitalvessels roofed inbone along the dorsolateral margin of the frontoparietal is a 6. Frontoparietalboss.—In a few Spea, this raised ridgeof thin sheet ofbone that forms a partial roofover the or- bone is present in the anterior interorbital region. See bitandisbestviewed inventralaspect. Wiens(1989) andZweifel(1956) formorethoroughde- 0: supraorbital flange absent scriptions ofthis morphology. 1: supraorbital flange present 0: frontoparietal boss absent 3. Medial contact of frontoparietals.—The frontoparietals 1: frontoparietalboss present areeitherseparatefromoneanother,incontactforpart 7. Lateral foramen.—In Pelobates, there is a large foramen or aU of their medial margins, or are fused. Fusion is in the dorsal third of the lamina perpendicularis, the with or without a visible median suture. In Pelobates, portion of the frontoparietal that contributes to thelat- the frontoparietals fuse with no median suture; how- eral wall of thebraincase. ever, Rocek (1980) found that, developmentally, this 0: lateral foramen absent aernitsefsrofmrotmhethsrteaeteseipnaXreantoepcuesntaenrdsoRfhoysnsoipfhinc/atniuosn).(differ- 1: lateralforamen present Nasal 0: frontoparietals notin contact 1: frontoparietals in contact posteriorly only 8. Medial contact ofnasals. 2: frontoparietalsincontactformostofmedialmargins 0: nasals not in contact 3: frontoparietals fused, suture visible 1: nasals in contact — 4: frontoparietals fused, no suture visible, two centers 9. Extent of posterior divergence of nasals. In all taxa ofossification considered, the nasals diverge laterally from one an- 5. frontoparietals fused, nosuturevisible, threecenters other posteriorly. This divergence is minimal, involv- ofossification ing only the posteriormost margins, or extensive, in- Phylogenetic Relationships of Pelobatoid Frogs — ant proc vomer premaxilla maxilla — mm 5 ' pterygoid angulosplenial dentary Fig.3. CraniumofSpeamultiplicata(KU86662)indorsal(topleft),ventral(topright)andlateral(center)views.Mandibleisshowninlingual(bottomleft) andlabial(bottomright)views.Graydenotescartilage,blackdenotesforamina.Abbreviations: antproc=anteriorprocessofnasal;c=cartilage;parsfac=pars facialisofmaxilla;f=foramen;frontopar=frontoparietal;spheneth=sphenethmoid.AdaptedfromMaglia(inpress). volvingat least halfofthe length ofthe nasal bones. cess, thatextendsventrallytoward theparsfacialisof 0: posterolateral divergence of nasals minimal (less the maxilla. than one third the length ofnasals) 0: maxillaryprocess ofthenasal absent 1: posterolateral divergence of nasals extensive (at 1: maxillary process ofthe nasal present least halfthe length ofthe nasals) Preniaxilla — — 10.Shapeofanteriorprocess. Theanteriormarginofthe 12. Width of alary process. In anterior view, the alary nasal forms a thin, blunt, rounded process that over- process of the premaxilla is either thin (less than a lies the septum nasi, except in Spea, in which it forms fourth the width ofthe premaxilla) orwide (at leasta a sharp point (e.g.. Fig. 3). third the width of the premaxUla). 0: anterior process ofnasalblunt 0: alaryprocessonefourthorlesswidthofpremaxilla 1: anterior process ofnasal—pointed 1: alaryprocessonethirdorgreatervW—dthofpremaxilla 11. Maxillary process of nasal. In some taxa, the nasal 13. Premaxillaarticulationwith maxilla. Inventralview, possesses a lateral sheet of bone, the maxillary pro- thepremaxillaeitherabutsthemaxillaorformsasmall SciENTinc Papers, Natural History Museum, The University of Kansas posterior projection, the lingual process (Mendelson, 0: 23 maxillary teeth et al., in press), that lies medial to the lingual margin 1: 25 maxillary teeth ofthe maxilla. 2: 26 maxillary teeth 0: premaxillaabutsmaxilla,nolingualprocesspresent 3: 33 maxillary teeth 1: premaxilla medially overlaps maxilla, lingual pro- 4: 35 maxillary teeth cess present 5: 40 maxillary teeth — 14. Shape ofpars palatina. The pars palatina ofthe pre- 6: 42 maxillary teeth emnaxsilla iseitherofuniformdepth (Fig. 3),oritbroad- 87:: 5408 mmaaxxiillllaarryy tteeeetthh laterally. 9: 85 maxillaryteeth 0: pars palatina ofpremaxilla nearlyuniform depth — 15.N1u:mpbaersrpoaflparteimnaaxoifllparreymatxeeitlhl.a—bIrnotahdeetnasxalactoenraslildyered, 20. Ptoesntdosrbdiotraslaplrloycefsrso.m tThheismaixsilalsamjaulslt pprooscteersisorthtaot tehxe- orbit. theaveragenumberofpremaxillaryteethrangesfrom nine to 20. 0: postorbital process ofthe maxilla absent 0; 9 premaxillary teeth 1: postorbital pro—cess ofthe maxilla present 1: 11 premaxillary teeth 21.Preorbitalprocess. Thisisasmallprocessthatextends 2: 12 premaxillary teeth dorsally from the maxilla justanterior to the orbit. 3: 13 premaxillary teeth 0: preorbital process ofthe maxilla absent 4: 15 premaxillary teeth 1: preorbital—process ofthe maxilla present 5: 16 premaxillary teeth 22. Pars facialis. This is a sheet of bone in the anterior 6: 18 premaxillary teeth portion of the maxilla that extends dorsally to invest 7: 19 premaxillary teeth the lateral margin of the planum antorbitale (Fig. 3). 8: 20 premaxillary teeth— 0: parsfacialisofthemaxillaabsent(orpoorlydeveloped) 16. Height of alary process. In anterior view, the alary 1: pars facialis of the maxilla present — processofthepremaxillaextendsdorsallytothelevel 23. Maxillary foramen. This small foramen pierces the of the anterodorsal margin of the maxilla or beyond pars facialis ofthemaxilla (ortheunderlyingconnec- themarginofthe maxilla. tive tissue ifthepars facialis is absent). 0: alary process extends dorsally to the level of the 0: absent maxilla 1: present 1: alary process extends dorsallybeyond the level of — maxilla 24. Pterygoidprocess. Inventralview,thissmallprocess — 17. Condition of septum nasi. The septum nasi is either extendsposteromedially from theparspalatina ofthe maxilla to articulate with the anterior ramus of the cartilaginous or ossified for at least half of its length; insome taxa, theanterior margin forms a small plate pterygoid. that extends dorsoventrally between the alary 0: absent cartilages ofthe nasal capsule. 1: present — 0: septum nasi cartilaginous 25. Palatine process. This isa smallprocessthatextends 1: septum nasi ossified forat least halfits length medially from the pars facialis of the maxilla to ven- 2: septum nasi ossified, forming plate anteriorly trallyinvesttheplanumantorbitale.Althoughthishas Maxilla been considered to be the neopalatine {- palatine) 18. Posteriorextentofmaxilla.—Inventralview, themax- fused to the maxilla by some authors (e.g., Zweifel, illa extends posteriorly to a level equal to about half 1956; Rocek, 1980), Wiens (1989:49) described the on- the length of the orbit (Fig. 3) or extends posteriorly togeny of this element and showed that it is part of formorethanthreefourths the length ofthe orbit. the maxilla. 0: maxilla not extending posteriorly beyond half the not distinct from vomer length ofthe orbit distinct from vomer 1: maxillaextendingposteriorlyformostofthelength absent oftheorbit Parasphenoid — — 19. Number of maxillary teeth. The average number of 26. Ridge on body. When present, this is a raised, V- maxillary teeth ranges from 23 to 85. shaped ridge on the posteromedial parasphenoid. Phylogenetic Relationships of Pelobatoid Frogs — 0: parasphenoid ridgeabsent 32. Condition of stapes. This character was taken from 1: parasphenoid ridge—present Lathrop's(1997)reanalysisofCannatella's(1985)data. 27. Posteromedial process. This small process extends 0: stapes absent posteriorlyfromthebodyoftheparasphenoid;insome 1: stapespresent,extendingentirelengthofearcavity taxa, it overlaps theventromedial margin ofthe fora- 2: stapesgreatlyelongate(muchlongerthanearcavity) men magnum. 3: stapesreduced (notextendinglengthofearcavity) 0: posteromedial process ofparasphenoid absent Pterygoid — 1; posteromedial process ofparasphenoid present 33. Ventral flangeofanteriorramus. In some taxa, there Vomer — is a thin, sheetlike process that extends ventrally for 28. Postchoanal process. This process extends laterally muchoftheposteriorhalfoftheanteriorramusofthe from the body of the vomer to invest ventrally the pterygoid. planumantorbitale.Whenelongate,itcomesintocon- 0: ventral flange ofpterygoid absent tactwiththepalatineprocessoftheparsfacialisofthe 1: ventral flange ofpte—rygoid present maxilla in some taxa. 34.Auxiliarydorsalprocess. Thepterygoidarticulateswith postchoanal process ofvomerabsent themaxilla bysimplyabutting itvia thelateralmargin postchoanalprocess ofvomer short oftheanteriorramus, orithasa secondaryarticulation postchoanal process ofvom—erelongate via a small auxiliary dorsal process that extends from 29. Dentigerous process ofvomer. Among the taxa con- the dorsolateral margin of the anterior ramus. See sidered,therelativepositionofthetooth-bearingpor- Mendelson et al. (in press:fig. A2) for illustration and tion ofthe vomervaries. furtherdiscussionofthischaracterinothertaxa. 0: dentigerousprocessofvomeranterior toposterior 0: absent margin ofplanum antorbitale 1: present 1: dentigerous process ofvomerat thelevelofposte- Squamosal — rior margin ofplanum an—torbitale 35.Conditionofzygomaticramus. Thezygomaticramus 30 Number of vomerine teeth. The average number of of the squamosal, when present, extends anteroven- vonierine teethvaries from zero to 15. trallyfromtheregionofthecristaparotica.Theramus no zomerine teeth isshortorlong;whenlong,itarticulateswiththemax- 3 vomerine teeth illa (in most taxa). 4 vomerine teeth 0: zygomatic ramus of the squamosal absent 5 vomerine teeth 1: zygomaticramus ofthe squamosal short 6 vomerine teeth 2: zygomatic ramus of the squamosal long (half or 7vomerine teeth moredistance to dentigerous process ofmaxi—lla) 8 vomerine teeth 36. Condition of the otic ramus of the squamosal. The 9 vomerine teeth oticramusofthesquamosalbarelyoverlapsthecrista 14 vomerine teeth parotica orformsanoticplatethatinvestsmostofthe 15 vomerine teeth lateral halfofthe crista parotica. Prootic/exoccipital — 0: otic ramus barely overlapping lateral margin of 31. Anterior margin ofprootic foramen. In the taxa con- crista parotica sidered, the posterior margin of the prootic foramen 1: otic ramus formingoticplate — isalways formed bybone. However, theanteriorhalf 37.Squamosalcontactwithfrontoparietal. Insometaxa, may be formed completely by cartilage, formed by the frontoparietal and squamosal each possess plate- bone except for the most anterior portion, or formed likepostorbitalprocessesthatmayarticulatedorsalto completelybybone. theoticcapsule. 0: anterior margin of prootic foramen completely 0: frontoparietal and squamosal not in contact formed by cartilage 1: frontoparietal and squamosal in contact 1: anteriormarginofprooticforamenpartiallyformed Quadratojugal — by bone 38. Quadratojugal. In some taxa, the quadratojugal is 2: anterior margin of prootic foramen completely absent from the maxillaryarcade. formed bybone 0: absent Plectra! apparatus 1: present 10 SciENTinc Papers, Natural History Museum, The University of Kansas — 44. "Webbing" ofsacrum/urostyle. Thesearesmallbony platesthatextendbetweentheposteromedialmargins of the sacral diapophyses and the urostyle (Wiens, 1989; Fig. 4). Although these havebeenconsidered to be postsacral transverse processes by some authors (e.g.,DuellmanandTrueb, 1986),Wiens(1989:48)sug- gested that they were homologous with the posterior webbing found on the presacral vertebrae. 0: "webbing" ofsacrum/urostyle absent 1: "webbing" ofsacrum/urostylepresent — 45. Fusionofribstotransverseprocesses. In the taxa ex- amined,distinguishableribsarepresentinlarvaeand adultsofDiscoglossussarcitisandBojnbmaorientalis.Ribs aredistinguishablein the larvaeofXenopms laevis,but areindistinguishablyfusedtothetransverseprocesses ofadults. Ribsarenotdistinguishableinallothertaxa examined (including Rhinophnjnus dorsalis). 0: ribs distinguishable in larvae and adults styleFiigl.lu4s.tratDionrgsCahlavraicetwerof4t4h:e"powsetbebriionrg"preosfacsraaclruvneir/tuerborsatey,les.ac(rAu)m,Staatned0u.r—o- 1: ribs distinguishable in larvae only Discoglossussardus(KV129239);(B)Statel.—Speamultiplicata(KU86664). 2: ribs not distinguishable—inlarvae oradults "Webbing"isdenotedbyarrow. 46.Relativelengthofurostyle. Todeterminetherelation- POSTCRANIALCHARACTERS ship of urostyle to presacral vertebrae lengths, these Axial skeleton elementsweremeasuredonseveralindividualsofeach species and compared as an average ratio of snout- 39. Posterior exterit ofspinalprocesses. ventlength.Inalltaxaconsidered,thecombinedlength 0: spinal processes reach the level of of the presacral vertebrae is about 35% SVL, and the postzygapophyses urostyle length is as long as (= 35% SVL) or much 1: spinalprocessesextendposteriorlybeyondmargin shorter than (s 23% SVL) the combined length of the ofpostzygapophyses — presacrals. 40.Comparativelengthoftransverseprocesses. Inmany 0: urostyleaslongorlongerthancombined lengthof taxa, thetransverseprocessesofVertebraII arelonger vertebrae presacral than those ofthe other presacral vertebrae. 1: urostyleshorterthancombinedlengthofpresacral 0: transverse process ofVertebra 11 longest vertebrae 1: transverse process ofVertebra 11 not longest Anteriorappendicularskeleton — 41. UncinateprocessesontransverseprocessofVertebra111. 47. Relativelengthofscapula. Todeterminetherelation- 0: uncinate process of transverse process of Vertebra ship of scapula to coracoid lengths, these elements III absent weremeasured onseveralindividualsofeachspecies 1: uncinate process of transverse process ofVertebra andcomparedasanaverageratioofsnout-ventlength. III present The relative length of the coracoid is similar among 42. Lateralextentoftransverse processes. taxa (approximately 13% SVL). The relative length of 0: transverseprocessesofVertebraeV-VIIInotextend- the scapula is about the same in every taxon (= 16% ing beyond lateral margin ofpostzygapophyses SVL); however, in Discoglossus sardus, Pelodytes 1: btreaynosnvderlsaeteprraolcmesasregsionfoVferptoesbtrzayegVa-pVoIpIhlyesxetsending psuhnocrttaetrus(,= 7an%dSXVeLn).opus laevis, the scapula is relatively 43. Condition ofsacral diapophyses. 0: scapula shorterthan coracoid 0: length of sacral diapophyses less than or equal to 1: scapula slig—htlylonger than coracoid width 48. Bony sternum. In the taxa considered, the sternum 1: lengthofsacraldiapophyseslongerthanwidth,an- consistsofacartilaginousplatewithorwithoutabony teriorand posterior ends rounded stylus (Fig. 5A, B). 2:lengthofsacraldiapophyseslongerthanwidth,an- 0: bony stylus absent teriorand posterior ends pointed 1: bony stylus present

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.