International Journal of Environmental Research and Public Health Article Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs JocelynLeonieJardine1,AkebeLutherKingAbia2 ID,VuyoMavumengwana1and EuniceUbomba-Jaswa1,3,* ID 1 DepartmentofBiotechnology,UniversityofJohannesburg,Doornfontein,2094Johannesburg,SouthAfrica; [email protected](J.L.J.);[email protected](V.M.) 2 AMBIOEnvironmentalManagement,DepartmentofBiotechnology,VaalUniversityofTechnology, AndriesPotgieterBlvd,PrivateBagX021,Vanderbijlpark1911,SouthAfrica;[email protected] 3 WaterResearchCommission,PrivateBagX03Gezina,Pretoria0031,SouthAfrica * Correspondence:[email protected];Tel.:+27-012-761-9300 Received:30June2017;Accepted:7September2017;Published:15September2017 Abstract:Hotspringwatermayharbouremergingwaterborneopportunisticpathogensthatcancause infectionsinhumans. Wehaveinvestigatedthediversityandantimicrobialresistanceofculturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo,SouthAfrica.Aerobicbacteriawereculturedandidentifiedusing16SribosomalDNA(rDNA) genesequencing.ThepresenceofLegionellaspp.wasinvestigatedusingreal-timepolymerasechain reaction. Isolatesweretestedforresistancetotenantibioticsrepresentingsixdifferentclasses:β-lactam (carbenicillin),aminoglycosides(gentamycin,kanamycin,streptomycin),tetracycline,amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteriawereresistanttotwoantibioticsindifferentcombinationsofcarbenicillin, ceftriaxone,nalidixicacidandchloramphenicol. Cronobactersp. wassensitivetoalltenantibiotics. Thisstudysuggeststhathotspringsarepotentialreservoirsforemergingopportunisticpathogens, includingmultipleantibioticresistantstrains,andhighlightsthepresenceofunknownpopulations ofemergingandpotentialwaterborneopportunisticpathogensintheenvironment. Keywords: emerging opportunistic pathogens; hot springs; antibiotic resistance; phylogenetic analysis;Actinobacteria;Proteobacteria 1. Introduction Precious water resources are threatened by pathogen pollution due to human activities, and waterborne diseases are well described and investigated globally, including in South Africa [1–3]. Well-known waterborne bacterial pathogens include Escherichia coli, Campylobacter, Vibrio cholera, Helicobacter, Shigella, Pseudomonas, non-tuberculosis mycobacteria and Legionella, while protozoa infections also include Acanthamoeba and Naegleria fowleri [2]. Most waterborne diseases result in diarrhoea, and globally more than 2.2 million children die each year as a result. In South Africa, diarrhoeaistheleadingcauseofmortalityinchildrenunderfiveyearsold[4]. Int.J.Environ.Res.PublicHealth2017,14,1070;doi:10.3390/ijerph14091070 www.mdpi.com/journal/ijerph Int.J.Environ.Res.PublicHealth2017,14,1070 2of18 Although hot springs are generally associated with healing practices like balneotherapy or hydrotherapy[5,6],theyalsocarryapotentialforinfectionbymicroorganisms,asindicatedbythe isolationoftheabovementionedpathogensfromswimmingpools[7],andthermalbathsassociated withhotsprings[8,9]. Thepotentialofinfectionappearstobelinkedtothelevelofhumanactivity andcontact,andtheseorganismsarenotthedominantdisease-causingmicroorganismsinthewaters ofpristinehotsprings, i.e., waterthathashadnopreviouscontactwithhumanoranimalactivity. Infections from hot springs are rare and sporadic and mostly associated with Legionella [10] and free-livingamoeba(AcanthamoebaandNaegleriafowleri)[11].Otherprotozoa,suchasVittaforma[12]and fungiOchroconisgallopava[13],havealsobeenreportedtocauseinfectionsassociatedwithhotsprings. Theterms“emergingandopportunistic”pathogensrequirecurrentdefinitionandreviewsince theyaredescribedrelativetotimeandtheassociatedvulnerablepopulations. Anemerginghuman pathogenisdefinedastheetiologicalagentofaninfectiousdiseasewhoseincidencehasincreasedinthe past20yearsandwillprobablydosointhefuture. Inseveralearlierreviewsonemergingwaterborne pathogens,LegionellaandEnterobactersakazakii[1]werementioned.Thelatter,laterrenamedCronobacter sakazakii,wasisolatedinbabyformulaandisanemergingpathogenofinfantsandneonates[14–16]. Ontheotherhand,opportunisticpathogensaredescribedaspathogenscausinginfectionsthatexploit opportunities not normally available, such as a host with a weakened immune system, an altered microbiota (such as a disrupted gut flora), or breached integumentary barriers [17]. Pathogens thatarebothopportunisticandemerging,includingPseudomonasandRalstonia[16]Kocuria[18,19], Sphingomonas[20]andCupriavidus[21],havebeendescribedinmorerecentpublications. Opportunisticpathogens,bytheirnature,arenotclear-cutharmfulorharmless,andinfections are rather a reflection of the host’s state of health and immunity. Commonly, these bacteria are ubiquitousintheenvironmentandareclassifiedasthelowestlevelofbiohazard,i.e.,Level1[22]. They can, and do cause infections in debilitated or immunocompromised individuals (including neonates, infants, the elderly, those infected with the human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and cystic fibrosis patients) and include 27 genera as listed by Berg et al. [23]. They also commonly cause nosocomial infections [24,25]. Eight percent ofacutegastrointestinalinfectionsintheUSAarefromunknowncauses[26],andDewaaletal.[4] alsodescribedthecausativeagentsofasubstantialproportionofglobaldiarrhealoutbreaks,which remainunspecified. Theseopportunisticandemergingpathogenicbacteriamaybethemissinglinkin waterbornediseasesofunknownaetiology. Casestudiesandoutbreaksduetotheseopportunistic pathogensarelistedinTableS1(SupplementaryMaterials),showingthediversityofpossibleinfections, globallocationofinfectionsandriskfactorsassociatedwiththehost’scondition. Itiswellknownthat thesebacteria,includingC.sakazakii[13],Hafnia[27],Sphingomonas[27,28]andLegionella[29],canbe isolatedfromenvironmentalsamplessuchassoilandwater. Cupriavidussp. hasbeenisolatedfrom drinkingwater[30],andGulbenkianiasp. fromwastewater[31]. Notonlydotheyexistubiquitously intheenvironment,butinterestinglytheyarealsofoundintherhizospheremicrobiome,andonor withinplants,andplayaroleintheproductionofplantgrowthfactors[16,23]. A variety of bacterial species has been isolated from hot springs. Most cultured bacteria reportedfromhotspringsinotherstudies[32–34]havebeendescribedasbelongingtothephylum Firmicutes, genus Bacillus, due to their endospore-forming ability, thermotolerance and relatively simplenutritionalrequirements[35]. However,inmetagenomicstudies,theGram-negativephylum ProteobacteriaisequallypredominantinthemicrobiomeasthephylumFirmicutes[36].Inperiodically publishedreportsonbacteriaisolatedfromhotsprings,threeclassesoftheProteobacteria,namely Alphaproteobacteria,BetaproteobacteriaandGammaproteobacteria,havebeendescribed,including Hafnia,Ralstonia,Tepidimonas,SphingomonasandSilanimonas(FigureS1andTableS1;Supplementary Materials). It appears that these non-spore-forming bacteria are also able to withstand harsh environmentalconditionssuchasextremetemperature,pH,salinityandradioactivity. Ithasbeen reportedthatthefollowingbacteriathriveunderextremeconditions: Ralstonia[37],Legionella[38], Int.J.Environ.Res.PublicHealth2017,14,1070 3of18 Kocuria[39,40],Tepidimonas[41]andCronobacter[42]. ExceptforLegionellaandPseudomonas,therehave beennoreportsassociatedwithinfectionsbytheabovementionedbacteriafromhotsprings. Theimpactofemergingandopportunisticpathogensislargelydeterminedbythehealthand susceptibilityofthepopulationutilisingthewaterresourcesandindevelopingcountries,thisincludes AIDS/HIV positive individuals. Globally, in 2016 the prevalence of AIDS/HIV was 0.5% with 3.7millionpeopleinfectedoutofaworldpopulationof7.5billion[43]. ThepopulationofSouthAfrica isvulnerabletoopportunisticinfectionsforseveralreasons. In2016inSouthAfrica,theprevalence of HIV was 12.7% [44]. Of the 539,714 deaths recorded by the country, 27.9% were HIV-related. Approximately10.4%ofthepopulationis<5yearsold,whileabout8%is>60yearsold. Consequently, 18%ofthepopulationfallintotheveryyoungandelderlyfractions. Malnutritionalsoweakensthe immunesystemandisamajorconcerninthecountrywherethegrowthofoneinfivechildrenunder fiveyearsofageisreportedlystuntedduetomalnutrition[45]. Using bacterial cultivation and culture-independent techniques, the aim of this study was to isolate culturable emerging opportunistic bacteria from hot springs located in Limpopo Province and to determine the role these bacteria may play on water safety and health. Findings were discussed in the context of potential opportunistic infections in a population of individuals who maybeimmunocompromisedforseveralreasonsandwhofinditnecessarytouselocalgroundwater forvariousdomesticactivities. Furthermore, sinceitisestimatedthat<1%ofmicrobeshavebeen cultured from hot springs [46], any additional information on the diversity of culturable bacteria isolatedfromhotspringswilladdtocurrentknowledge. 2. MaterialsandMethods 2.1. SamplingSites Most of the South African hot springs are located in the Limpopo Province. Five hot springs (Tshipise,Siloam,Mphephu,LekkerrusandLibertas)wereselectedbasedontemperatureandease ofsampling. Thegeographicalandphysicochemicalcharacteristicsofthehot-waterspringshavepreviously been reported by Olivier et al. [47]. Temperature and pH were measured in situ using the YSI ProfessionalPlusElectrode(XylemWaterSystems,Inc.,RyeBrook,NY,USA).Dissolvedoxygen(DO) wastoolowtobemeasured(belowthedetectionlimitoftheinstrument). Table1providestheglobal positioningsystem(GPS)coordinatesandtheconditionsofthehot-springsamplingsitesinLimpopo Provincethatweresampled. Table1.Geographicallocationofsamplingsitesandsamplingconditions. SamplingSite GPSLocation pH Temperature(◦C) Comments Tshipise 22◦36.521(cid:48)S30◦10.345(cid:48)E 8.63 55.2 Opentoairinenclosedsection Siloam 22◦53.667(cid:48)S30◦11.7718(cid:48)E 9 69 Exitingfrompipeonprivateproperty Mphephu 22◦54.225(cid:48)S30◦10.83(cid:48)E 7.07 42.4 Opentoairinenclosedsection Lekkerrus 24◦28.04(cid:48)S28◦33.1(cid:48)E 7.46 43.5 Pipelineconveyswaterintopool; flowmanuallycontrolled Libertas 24◦27(cid:48)36”S28◦34(cid:48)11”E 7.44 52.1 Waterpumpedatsource GPS:globalpositioningsystem. ExceptforSiloam,theotherhotwaterspringshaveallbeendevelopedintoresortsforhuman recreationalpurposes. Watersamplesweretakenduringthespringseasonof2014(September2014). From all sites, water samples were collected in sterile 1 L Schott glass bottles (DWK Life Sciences, Mainz,Germany)andsedimentsamples(exceptforLekkerrus)insterileplastic50mLFalcontubes (LifeTechnologies,Johannesburg,SouthAfrica)andprocessedseparately. Sedimentsampleswere collected0.5mbelowthewaterline.Allsamplesweretakendirectlyfromthehotspringwaterwithout anyhumancontact,exceptforsamplingatLekkerruswherethewatersampleswerecollectedfrom Int.J.Environ.Res.PublicHealth2017,14,1070 4of18 apipethatrandirectlyintotheswimmingpool. Theflowwithinthepipewasmanuallycontrolled dependingondemand,thatrangedfromonceadaytoonceaweek. Samplesweretransportedtothe laboratoryinacoolerboxkeptat4◦C,andprocessedwithin72hofcollection. 2.2. IsolationofBacteria Forisolationofbacteriafromthewatersamples,a100-mLsamplealiquotwaspassedthrougha 0.22µmmembranefilter(MilliporenitrocelluloseGSWP04700,Merck,Modderfontein,SouthAfrica) and the membrane filters were then placed on the surface of five different agar media prepared aspermanufacturer’sinstructions: nutrientagar,actinomyceteisolationagar,minimalLuriaagar, cyanobacterialagarandpotatodextroseagar(HiMedia,Mumbai,India). MinimalLuriaagarwas madeupas10%oftherecommendedconcentrationnormallyusedtocreatealownutrientmedia simulatingthelownutrientsinthewatersamples. Atotaloffourplatespermediawereinoculated. Thefilterswereremovedbeforetheplateswereincubatedaerobicallyfor48hat37 ◦Cand55 ◦C. Forisolationofbacteriafromsedimentsamples,thestreakplatemethodwasused;agarplateswere streakedusinganinoculationlooptospreadoutthesamples,andsinglecolonieswerepickedforpure cultures. Allmediawereincubatedwithoutinoculationconcurrentlyasacontrolformediasterility andcontamination. Allcolonieswithdistinctanddifferentmorphologyweresub-culturedatleast threetimesuntilpurecultureswereobtainedandculturesweremaintainedonnutrientagarslants at4◦C.Sincethiswasastudyonmicrobialdiversityandnotaquantitativeinvestigation,colonies werepickedbasedondifferencesincolonymorphology. Theisolationconditionsfor16isolatesare describedinTable2. Table2.ListofActinobacteriaandProteobacteriaisolateswithisolationconditionsgiven. IsolateNo. Site IsolationTemperature(◦C) Sample IsolationMedia 57T Tshipise 37 Water Nutrientagar 58T Tshipise 37 Water Actinomyceteisolationagar 87T Tshipise 25 Water MinimalLuriaagar 61T Tshipise 25 Water Cyanobacterialagar 72T Tshipise 37 Water Nutrientagar 80Lk Lekkerrus 37 Water Nutrientagar 79M Mphephu 37 Water Nutrientagar 44M Mphephu 53 Sediment Nutrientagar 55M Mphephu 37 Water Potatodextroseagar 37Lb Libertas 53 Water Actinomyceteisolationagar 42T Tshipise 53 Sediment Nutrientagar 59Lk Lekkerrus 37 Water MinimalLuriaagar 5T Tshipise 53 Water MinimalLuriaagar 27M Mphephu 53 Water Actinomyceteisolationagar 69Lk Lekkerrus 25 Water Cyanobacterialagar 31Lk Lekkerrus 53 Water Nutrientagar 2.3. DNAExtraction,16SrDNAGeneSequencingandPhylogeny TheDNAwasextractedbyre-suspendingbacterialcoloniesinsterilephosphatebuffersaline,then boiledfor10minandcentrifugedat10,000rpmfor10mininaC2500PrismAir-cooledMicrocentrifuge (LabnetInternational,Edison,NJ,USA)[46]. Thesupernatantwasusedforpolymerasechainreaction (PCR).Universalprimers8F,27F,300Fand1472R[48]forthecomplete1400bp16SribosomalDNA (rDNA)genefragmentwereobtainedfromInqabaBiotechnology(Pretoria,SouthAfrica)andused indifferentcombinationstoobtainaPCRproductfordirectsequencing. ThePCRtubepersample contained9.5µLofwater,12.5µLofPCRMasterMix(2×)(DreamTaqGreenK1081;ThermoFisher Scientific,Johannesburg,SouthAfrica),1µLofeachprimerat10µM,and1µLofgenomicDNAat 1–10ng. A“wateronly/noDNA”controlwasincludedineachrun,asano-templatecontrol(NTC), toensurecontaminationhadnotoccurred. ThePCRassayswererunonaBio-RadMyCycler(Bio-Rad, Int.J.Environ.Res.PublicHealth2017,14,1070 5of18 Rosebank,SouthAfrica). Thethermalcycleprofilewasasfollows: initialdenaturationat94◦Cfor 5min,40cyclesof94◦Cfor30s,50◦Cfor30sand72◦Cfor60s,followedby72◦Cfor10minfor the final extension, and held at 4 ◦C until the machine was switched off. The PCR products were run on 1% tris-acetate-ethylenediaminetetraacetic acid (TAE) agarose gels at 80–100 V for 60 min togetherwithmolecularweightmarkers(SM1113middlemarkers;ThermoScientificWaltham,MA, USA),stainedwithethidiumbromideandvisualisedandphotographedwiththeBio-RadGelDocEZ Imager(Bio-Rad). ThePCRproductswerethensequencedwiththeABIBigDyeTerminatorv3.1cycle sequencingkit(AppliedBiosystems,Foster,CA,USA)accordingtothemanufacturer’sinstructions, and run on the ABI capillary sequencer at the African Centre for DNA Barcoding, University of Johannesburg. If primer 8F failed, only partial sequencing was obtained. A contiguous sequence wasconstructedwithforwardandreversesequencingdataresultinginafragmentofapproximately 1400bp,withDNABaserSequenceAssemblerv4(2013)(HeracleBioSoft,Arges,Romania). SequenceswerecomparedwiththoseintheNCBIdatabase(GenBank)usingtheBLASTSequence Analysis Tool [49], and EzTaxon-e [50]. Isolates with a >99% match to the published sequences were identified to the species level, and those with a >97% match were identified to the genus level [51]. The highest similarities (as percentage similarities) and accession numbers are given in Table S2 (Supplementary Materials). Sequences of type strains were obtained from GenBank andincludedinphylogeneticanalysistoconfirmidentification. AlignmentsweremadebyClustal Omega,amultiplesequencealignmentprogramme(EuropeanBioinformaticInstitute,Cambridge, UK). Neighbour-joining phylogenetic trees of a 947 bp fragment for Actinobacteria and a 510 bp fragmentforProteobacteriawereconstructedusingtheSeaViewsoftwareprogram[52]. Methanogenic bacteria(GenBankDQ372975.1),werefoundtobetheoutgroupintheProteobacteriatree,whilethe Actinobacteriatreewasunrootedforbetterresolution. Statisticalconfidenceinbranchingpointswas determinedbybootstrapanalysis.CompleteandpartialsequencesweresubmittedtoGenBank,andthe accessionnumbersareindicatedinTableS2(SupplementaryMaterials). GenBankaccessionnumbers ofthetypestrainsusedinthephylogenetictreesarelistedinTableS3(SupplementaryMaterials). Theconsensussequenceswerecomparedtothoselistedintwodatabases,GenBankandEzTaxon-e. The highest similarities (as percentage similarities) and accession numbers are given in Table S2 (SupplementaryMaterials). Values>95%suggestamatchingenus,whileavalueof>99%suggestsa matchinspecies.Similaritiesof86–95%canonlybeidentifiedtoafamilylevel[51].Partialsequencesof the16SrDNAsequenceswereusedforActinobacteria(947bp)andProteobacteria(510bp)phylogeny, allowing alignment to the shortest fragment of the group. Actinobacteria sequences of a 947 bp fragmentofthe16SrDNAwereanalysedasanunrootedparsimonytree(SeaView)withbootstrapping, afteralignmentusingMultipleSequenceComparisonbyLog-Expectation(MUSCLE). 2.4. AssessmentofthePresenceofLegionellaspp. UsingReal-TimePCR A300-mLsamplealiquotofhotspringwaterwaspassedthrougha0.22µmfilter,washedoffwith phosphatebufferedsaline,centrifugedat10,000rpminaC2500PrismAir-cooledMicrocentrifuge,and theDNAextractedwithZRfungal/bacterialDNAMiniPrepkit(D6005)(ZymoResearchCorp.,Irvine, CA,USA).ThepresenceofLegionellaspp. inthewatersampleswasinvestigatedusingreal-timePCR onaCorbettLifeScienceRotor-Gene6000Cycler(Qiagen,Hilden,Germany). PrimersusedinthePCR assaywereJFP(5(cid:48)-AGGGTTGATAGGTTAAGAGC-3(cid:48))andJRP(5(cid:48)-CCAACAGCTAGTTGACAT CG-3(cid:48))[53]. ThePCRassaywasruninatotalvolumeof20µLcontaining10µLof2×SensiFASTHRM mix(Bioline,Luckenwalde,Germany),0.2µLofeachprimer(eachatafinalconcentrationof0.2µM), 5.6µLofnuclease-freewaterand4µLoftemplateDNA.TemplateDNAfromL.pneumophilaATCC 211-33-2(AmericanTypeCultureCollection(ATCC),Manassas,VA,USA)wasusedaspositivecontrol. To test the detection limit of the PCR reaction, the DNA concentration of the positive control was determinedusingaNanoDropHach6200Spectrophotometer(Hach,Loveland,CO,USA),andthen seriallydilutedupto10−6. Thesamplesandthepositivecontrolwererunintriplicate. Int.J.Environ.Res.PublicHealth2017,14,1070 6of18 ReactionconditionsforthePCRwereoptimisedasfollows: initialactivationat95◦Cfor10min; denaturationat95◦Cfor5s;annealingat57◦Cfor5s;andafinalextensionat72◦Cfor5s,fora totalof40cycles. Thelastcyclewasfollowedbyasecondincubationperiodof5minat72◦C.The secondincubationwasfollowedbyameltcurvepreparedbyrampingupthemeltingtemperature from72◦Cto95◦Cataramprateof1◦Cateachstep,apre-meltholdof90sonthe1ststepfollowed bya5-sholdoneachofthenextsteps. ARotor-Gene6000Cycler(Qiagen)wasusedtorunthePCR assays. ReactionmixtureswithouttemplateDNAwereusedasNTCsineachreaction. Melting-curve analyseswereperformedusingtheRotor-GeneReal-TimeAnalysisSoftware,Version6.1(Build93) (CorbettLifeScience,Sydney,Australia). 2.5. AntibioticResistanceAssay Thefollowing10antibiotics(obtainedfromMastDiagnostics,Merseyside,UK,ifnotindicated otherwise)wereusedinthisstudy,representingsixdifferentclasses: β-lactam(carbenicillin,CAR), aminoglycosides (gentamycin, GEN; kanamycin, KAN; streptomycin, STR), tetracycline (TET), amphenicols(chloramphenicol,CHL;ceftriaxone,CEF),sulphonamides(co-trimoxazole,COT)and quinolones(nalidixicacid,NA;norfloxacin,NOR),andassayedusingtheKirby-Bauerdiskdiffusion assay [54] according to the criteria published by the Clinical Laboratory Standards Institute [55]. CommercialantibioticdiscsfromOxoid(ThermoFisherScientific)wereusedatthefollowingpotencies in µg: gentamycin 10, tetracycline 30, co-trimoxazole 25, chloramphenicol 30, ceftriaxone 30 and norfloxacin 10. Solutions of carbenicillin (100 µg), kanamycin (30 µg), streptomycin (10 µg) and nalidixic acid (125 µg) were prepared from stock solutions (Sigma-Aldrich, Johannesburg, South Africa)anddriedonsterileWhatmanNo17discs(ThermoFisherScientific)beforeplacementona lawnofbacteria. Theinoculum(100µL)waspreparedfromanovernightcultureinnutrientbroth. ThediscswereappliedtolawnsofbacteriaonMueller-Hintonagar(HiMedia,http://doua.prabi.fr/ software/seaview). Plateswerescoredafter24hat53 ◦Cor37 ◦C,dependingontheisolate. The zonesofinhibitionweremeasuredandcomparedtotheCLSIstandardvalues. Themultipleantibiotic resistance(MAR)indexwascalculatedastheratio(a:b)betweenthenumberofantibioticstowhich theisolatewasresistant(a)andthetotalnumberofantibioticstested(b)[56]. MARwasdefinedasthe resistanceofisolatestoatleastthreedifferentantibiotics. 2.6. GenBankAccessionNumbers The16SrDNAgenesequencesofhotspringisolatesfromSouthAfricawereallocatedaccession numbersanddepositedinGenbankasindicatedinTableS2(SupplementaryMaterials). Strainsof Actinobacteria, Kocuria sp. and Arthrobacter sp. have accession numbers MF120234 and MF120235, respectively. TwoalphaProteobacteriawereassignednumbersMF120236andMF120239. Accession numbers: MF120227–MF120233andMF120237weregiventobetaProteobacteriaincludingGulbenkiania mobilis,Cupriavidusgilardii,TepidimonasfonticaldiandRalstoniamannitolilytica. Fourstrainsofgamma ProteobacteriaincludingHafniaalveihaveGenbankaccessionnumbersofMF144571–MF144573and MF120238. AllreferencestrainsusedforanalysesarelistedinTableS3(SupplementaryMaterials) togetherwiththeirassociatedGenbankaccessionnumbers. 3. Results 3.1. IsolationRatesofBacteria Themajorityofbacteriawereisolatedfromwatersamples,althoughtwoisolates,namely42Tand 44M,werefromthesediment. Bacteriawerenotisolatedfromthewarmesthotspring,Siloam,at69◦C, whilethesecondwarmestsite,Tshipise,at55◦C,hadthehighestnumberofisolates(Figure1). Furthermore, the coldest water temperature at Mphephu at 42.7 ◦C did not yield the highest numberofisolates. Bycomparingthedifferentmediausedforisolation,nutrientagarperformedthe Int.J.Environ.Res.PublicHealth2017,14,1070 7of18 best,resultinginthehighestnumberofisolates,andpotatodextroseagar,whichisgenerallyusedfor theisolationoffungi,wasthepoorestperformer(Figure2). However,thisisonlyanobservationlimitedtothisspecificsamplingregimen. Otherisolation patternsonmediamightbeobservedindifferentsamplingprogrammes. Furthermore,asBacillus spp. andrelatedspecieswereisolatedfromthesameplates,isolatescouldhavecompetedforspace andnutrients.Int. J. Environ. Res. Public Health 2017, 14, 1070 7 of 18 Int. J. Environ. Res. Public Health 2017, 14, 1070 7 of 18 8 atesolates678567 umber of isolNumber of is01234501234 N Hot spring sample sites Hot spring sample sites Figure1.Distributionofthenumberofisolatesfromfivehotsprings,LimpopoProvince,SouthAfrica. Figure 1. Distribution of the number of isolates from five hot springs, Limpopo Province, South Figure 1. Distribution of the number of isolates from five hot springs, Limpopo Province, South TemperatureaAnfdricpa. HTemopfewratautree ransda pmH pofl ewsataerr seamgpivlees narei ngivpena rine pnatrhenetsheesse.s. Africa. Temperature and pH of water samples are given in parentheses. 8 8 ber of isolatesmber of isolates34567234567 mu2 uN1 N1 0 0 Media used for isolation Media used for isolation Figure2.CFiogumrep 2.a Croismopnariosofnn ouf nmumbbeerr ooff isioslaotleas toebtsaionebdt aonin deifdfereonnt mdeidfifae. rentmedia. Figure 2. Comparison of number of isolates obtained on different media. 3.2. 16S rDNA Gene Sequencing 3.2. 16S rDNA Gene Sequencing 3.2. 16SrDNAGeneSequencing As indicated in the Supplementary Materials (Tables S1–S3), isolates of Sphingomonas echinoides, As indicated in the Supplementary Materials (Tables S1–S3), isolates of Sphingomonas echinoides, Hafnia alvei, Tepidimonas fonticaldi, Gulbenkiania mobilis, Ralstonia mannitolilytica, Cupriavidus gilardii, AsindicaHKteoacfdnuiraii ana ltvuterhif,a eTneeSpnisudisipm aopnndlae s Amforntehtirncoabtladacitr, eyGr ulMulbteenoalkutieasn rwiiaa emrleso bii(dlTiesn,a tRbifailleesdtso ntoSia 1 tmh–eaS nsn3pi)teo,cliiielsyst oilcelava, etCle,u swprohiaifvleidS iuspso hlgaiitlnearsgd ooiif,m onasechinoides, Kocuria turfanensis and Arthrobacter luteolus were identified to the species level, while isolates of Hafniaalvei,TeCpriodnoimbacotenr,a Ssilfaonnimtoincaas,l dTie,piGdimuolnbaesn aknida nZioaoglmoeao bwielirse ,idReantlisfiteodn oinalym tao nthnei tgoelniulys tliecvael,. CFouupr riavidusgilardii, Cronobacter, Silanimonas, Tepidimonas and Zoogloea were identified only to the genus level. Four isolates (55M, 59Lk, 61T and 72T) were unknown as they presented poor matches to the published Kocuria turfaneisnolsaitses a(5n5Md, A59rLtkh, 6r1oTb aancdte 7r2Tl)u wteeroel uunsknwowenre as itdheeyn ptriefiseendtedt opootrh meatscphees ctoie tshe lpeuvbelislh,ewd hile isolates of sequences. Sequences were submitted to GenBank (List S1; Supplementary Materials), and their sequences. Sequences were submitted to GenBank (List S1; Supplementary Materials), and their Cronobacter,Silraenleivmanotn acacse,ssTioenp induimmboernsa asrea linstdedZ ino tohge lSouepapwlemeernetairdy eMnatteirfiiaelsd. onlytothegenuslevel. Fourisolates relevant accession numbers are listed in the Supplementary Materials. (55M,59Lk,61Tand72T)wereunknownastheypresentedpoormatchestothepublishedsequences. 3.3. Phylogenetic Analysis 3.3. Phylogenetic Analysis SequencesweresubmittedtoGenBank(ListS1;SupplementaryMaterials),andtheirrelevantaccession Two isolates identified in this investigation, namely 57T (pink pigment) and 58T (yellow Two isolates identified in this investigation, namely 57T (pink pigment) and 58T (yellow numbersarelipsitgemdenitn), gthroeupSeud pwpithle Km. tuernfatnaenrsyis Manda Ate. rluitaeolslu.s, respectively (Figure 3), as predicted from the pigment), grouped with K. turfanensis and A. luteolus, respectively (Figure 3), as predicted from the BLAST results with GenBank and EzTaxon-e, given in the Table S2 (Supplementary Materials). BLAST results with GenBank and EzTaxon-e, given in the Table S2 (Supplementary Materials). Reference strains are included in the analysis (accession numbers listed in Table S3; Supplementary 3.3. PhylogenetRicefAerennacley sstriasins are included in the analysis (accession numbers listed in Table S3; Supplementary Materials), and pathogenic isolates are Arthrobacter woluwensis, Arthrobacter cumminsii, Arthrobacter Materials), and pathogenic isolates are Arthrobacter woluwensis, Arthrobacter cumminsii, Arthrobacter mysorens, Kocuria rhizophila, K. marina, K. varians, K. kristinae and K. rosea [18]. Three unknown Twoisolatmeyssoirdenes,n Ktioficuerida rihnizotphhiisla,i nKv. mesartiinga,a Kti.o vnar,iannas, mK.e klryist5in7aTe a(npdi nKk. rposiega m[18e]n. Tt)hraene dun5k8noTw(ny ellowpigment), sequences from hot-spring isolates identified in other studies, and listed in the GenBank database, sequences from hot-spring isolates identified in other studies, and listed in the GenBank database, grouped withwKer.e tiuncrlufadnede.n Asritshroabnacdter ANC.CluP tfreoomlu hso,t srpersinpgse icnt iPvakeilsytan( gFriogupuerde w3it)h, thaes papthroegdenicict egrdoufpr om the BLAST were included. Arthrobacter NCCP from hot springs in Pakistan grouped with the pathogenic group of A. woluwensis. Uncultured Arthrobacter clone BR5clone TPB_GMAT_5_1 grouped with the cultured resultswithGoef nAB. waonlukwenasnis.d UnEczulTtuarxedo Anr-ther,obgacitvere cnlonien BRth5celonTea TbPlBe_GSM2A(TS_u5_p1 gprloeumpede nwtitahr thye cMultautreedr ials). Reference strainsareincludedintheanalysis(accessionnumberslistedinTableS3;SupplementaryMaterials), and pathogen ic isolates are Arthrobacter woluwensis, Arthrobacter cumminsii, Arthrobacter mysorens, Kocuriarhizophila,K.marina,K.varians,K.kristinaeandK.rosea[18]. Threeunknownsequencesfrom hot-spring isolates identified in other studies, and listed in the GenBank database, were included. ArthrobacterNCCPfromhotspringsinPakistangroupedwiththepathogenicgroupofA.woluwensis. UnculturedArthrobactercloneBR5cloneTPB_GMAT_5_1groupedwiththeculturedArthrobacterGM37 isolatefromhotspringsinIndia,suggestingthattheycouldbecloselyrelated. KocuriaB38,anisolate fromhotspringsinIndia,groupedwithK.flava. Int. J. Environ. Res. Public Health 2017, 14, 1070 8 of 18 Arthrobacter GM37 isolate from hot springs in India, suggesting that they could be closely related. Int.J.Environ.Res.PublicHealth2017,14,1070 8of18 Kocuria B38, an isolate from hot springs in India, grouped with K. flava. FiFgiugruer e3.3 .UUnrnorootoetde dpaprasrimsimonoyn ytretree efofro rAActcintionboabcatcetreiari ashsohwowinign gthteh eplpalcaecmemenetn otfo ifsiosloaltaet e575T7 Twwithit h KKocoucruirai aanadn disiosloaltaet e585T8T wwitiht hAArtrhtrhorboabcatcetre rwwitihth bbooootsttsrtarpap vvalauluese.s . Following MUSCLE alignment (SeaView), a parsimony tree of the 16S rDNA gene sequences of FollowingMUSCLEalignment(SeaView),aparsimonytreeofthe16SrDNAgenesequencesofthe the Proteobacteria isolates was drawn using a partial sequence of 510 bp, with bootstrapping. A Proteobacteriaisolateswasdrawnusingapartialsequenceof510bp,withbootstrapping.Amethanogenic methanogenic archaeon (GenBank accession No. DQ372975.1) was the outgroup used. The results of archaeon(GenBankaccessionNo.DQ372975.1)wastheoutgroupused.Theresultsofthisinvestigation this investigation showed that three classes of the Proteobacteria were represented, namely showedthatthreeclassesoftheProteobacteriawererepresented,namelyAlphaproteobacteria(n=2), Alphaproteobacteria (n = 2), Betaproteobacteria (n = 8), and Gammaproteobacteria (n = 3). Reference Betaproteobacteria (n = 8), and Gammaproteobacteria (n = 3). Reference type strains were included type strains were included in the analysis (Table S3; Supplementary Materials) and the opportunistic intheanalysis(TableS3;SupplementaryMaterials)andtheopportunisticpathogensareSphingomonas pathogens are Sphingomonas paucimobilis, Cronobacter sakazakii, Hafnia alvei and H. paralvei, Tepidimonas paucimobilis,Cronobactersakazakii,HafniaalveiandH.paralvei,Tepidimonasarfidensis,Ralstoniamannitolilytica arfidensis, Ralstonia mannitolilytica and Ralstonia pickettii, Cupriavidus metallidurans and C. gilardii. andRalstoniapickettii,CupriavidusmetalliduransandC.gilardii. From published sequences in GenBank, four isolates that have not been cultured but sequenced FrompublishedsequencesinGenBank,fourisolatesthathavenotbeenculturedbutsequenced from hot springs in other studies were included in the phylogenetic tree to establish whether they fromhotspringsinotherstudieswereincludedinthephylogenetictreetoestablishwhetherthey were similar to isolates obtained in this study, or to determine whether their identity could be further were similar to isolates obtained in this study, or to determine whether their identity could be characterised. furthercharacterised. 3.4. Detection of Legionella spp. 3.4. DetectionofLegionellaspp. A total of four water samples were analysed in triplicate. All samples analysed were negative Atotaloffourwatersampleswereanalysedintriplicate. Allsamplesanalysedwerenegative for the 16S rDNA gene amplified. A real-time PCR assay for Legionella is given in Figure S2A for the 16S rDNA gene amplified. A real-time PCR assay for Legionella is given in Figure S2A (Supplementary Materials) while Figure S2B (Supplementary Materials) shows the high-resolution (SupplementaryMaterials)whileFigureS2B(SupplementaryMaterials)showsthehigh-resolution melt (HRM) curve analysis of the PCR reaction. The mean melting temperature of the positive melt(HRM)curveanalysisofthePCRreaction. Themeanmeltingtemperatureofthepositivesamples sawmapsl8e6s. 1w±as 08.61.1◦C ±. 0.1 °C. 3.35..5 A. Antnibtiiboitoicti cRReseissitsatnacnec e IsIosloaltaetse sKKocoucruirai,a ,AArtrhtrhorboabcatcetre ranandd HHafanfniai asspppp. .wewree rererseisstiasntat nttot otwtwo oanatnibtiiboitoictsic sini nddififfefreernent t cocmombibniantaitoinons sofo fcecfetfrtiraiaxxoonnee,, nnaalliiddiixxiicc aacciidd aanndd ccaarrbbeenniiccilillilnin,,a assi ninddiciactaetdedin inT aTbalbel3e. 3Is. oIslaotleatCer Conroobnaocbtaerctseprp . spwpa. swsaesn sseitnivsietivtoe atoll atlel nteann atnibtiiboitoictsicws whihleileth theeu unnkknnoowwnni issoollaattee ((iissoollaattee 7722TT)) bbeelloonnggiinngg toto ththe efafmamilyil y EEntnetreorboabcatcetreiraicaecaeea,e w,wasa salasloso rerseissitsatnant ttoto twtwoo aanntitbibioiotitcisc,s ,nnaammeelyly chchlolorarammpphheennicicool laanndd cceeftfrtiraiaxxoonnee. . Int.J.Environ.Res.PublicHealth2017,14,1070 9of18 Table3.AntibioticresistanceprofilesofActinobacteriaandProteobacteriaisolatesagainsttendifferentantibiotics. IsolateNo. Identification CAR100 GEN10 KAN30 STR10 TET30 CEF30 CHL30 COT25 NA30 NOR10 57T Kocuriaturfanensis 15 9 12 7 12 0 14 16 0 2 58T Arthrobacterluteolus 0 5 3 4 9 1 6 11 0 2 79M Hafniaalvei 0 2 3 1 4 0 5 6 3 7 80Lk Cronobactersp. 1 4 5 5 6 2 6 6 3 11 72T unknownEnterobacteriaceae 5 6 10 5 7 0 0 16 5 14 CAR:Carbenicillin;GEN:gentamicin;KAN:kanamycin;STR:streptomycin;TET:tetracycline;CHL:chloramphenicol;CEF:ceftriaxone;COT:co-trimoxazole;NA:nalidixicacid; NOR:norfloxacin;allinµg.Valuesof0indicateresistancewhilenumericalvaluesarezonesofinhibitioninmillimetres. Int.J.Environ.Res.PublicHealth2017,14,1070 10of18 4. Discussion PhylumProteobacteria(mostlybetaandgammaProteobacteria)dominatesthemicrobiomeof TshipiseandMphephu(upto30%),whilethephylumActinobacteriawasfoundtooccuratlessthan 1%[54]. However,metagenomicstudiesreportdiversityasproportionsofdifferentDNAsequences withoutanyinformationontheviabilityofcells. Infact,Gram-positivespore-formingBacillusofthe phylumFirmicutesarethemostpredominantbacteriaisolatedfromhotspringsglobally[32,33,35], although there are sporadic reports of isolation by culture of Pseudomonas spp. of the phylum ProteobacteriainAlgeria[57]andIceland[58]. 4.1. PhylumActinobacteria Fromsedimentsamples,twopigmentedmesophilicisolates,namely57Tand58T,wereidentified tobeKocuriaturfanensisandArthrobacterluteus,respectively,usingthesearchtool,BLASTforGenBank and EzTaxon-e (Table S2; Supplementary Materials) and confirmed using phylogenetic analysis (Figure3). Kocuriaspp. ASB107,closelyrelatedtoK.polarisandK.rosea,whichwasisolatedfromIranian Ab-e-Siahhotsprings,showedresistancetogammaandultraviolet(UV)rayswithatemperature growthrangeof0to37 ◦C[39]. AnotherisolateofK.roseaMG2fromthesameIranianhotspring optimallygrewatpH9. 2andatatemperatureof28◦C.Itcouldalsotolerate15%NaClsalinity,high doses of radioactivity and grew in the presence of 4% hydrogen peroxide [40], providing further proof that members of this genus are capable of multiple-extreme resistance. An unpublished Kocuriaspp.B38wasisolatedfromBakreshwarhotspringsinIndiaandwasincludedinthephylogeny tree to establish whether there was any similarity between that one and the one isolated during thisinvestigation. KocuriaB38groupedwithKocuriaflava,anairborneActinobacteria[59]GenBank KC492107,withabootstrapvalueof90%,suggestingthatitispossibletoculturecloselyrelatedKocuria isolatesthatwerepreviouslyreportedunculturedfromhotspringsatothersites.PathogenicKocuriasp. areK.rhizophila,K.marina,K.rosealistedinreviews[18,60],andK.kristinae[61,62]andK.varians[63]. All,exceptforK.rosea,fellintoaseparategroup. EventhoughneitherK.turfanensisnorK.flavahas beenreportedasopportunisticpathogens,itdoesnotexcludethepossibilitythattheyalsohavethe abilitytoacquirevirulencefactors. Similarly, radio-resistant Arthrobacter sp. has been isolated from hot springs in Japan [64] and Tibet [65]. Three 16S rDNA gene sequences from Arthrobacter sp. isolated from hot springs wereincluded inthephylogeneticanalysis(Figure3). Interestingly, Arthrobacter NCCP1348from Pakistan(GenBankAccessionLC065375)wasrelatedtopathogenicA.woluwensis,whileArthrobactersp. GM37AC3K2stronglygroupedwithunculturedArthrobactersp. cloneTPB_GMAT_AC3. Thislatter observationwasnotsurprisingsincebothcamefromthesameinvestigationofhotspringsinIndia (Table S3; Supplementary Materials). Three species of pathogenic Arthrobacter were included in the phylogenetic analysis and A. woluwensis, and A. mysorens were closely related. Interestingly, A.cumminsiigroupedclosedwiththepathogenicKocuriaspecies. Aliteraturesearchdidnotreveal A.luteolusasanopportunisticandemergingpathogen; however,thetypestrainofA.luteoluswas isolatedoriginallyfromhumanclinicalspecimens[66],andthereforethisdoesnotentirelyexclude thisspeciesfrombeingapotentialopportunisticpathogen. 4.2. PhylumProteobacteria Fourteen Proteobacteria were represented by three classes: Alphaproteobacteria (n = 2), Betaproteobacteria (n = 8) and Gammaproteobacteria (n = 4) (Table S2; Supplementary Materials). Ofthese,fourisolatescouldnotbeclassifieduptogenuslevelastheywere<97%similartoGenBank databaseentries. Fourcouldbeidentifiedtothegenuslevel,andsixidentifiedtothespecieslevel.
Description: