P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 December12,2006 15:29 SpringerSeriesin OPTICAL SCIENCES 115 foundedbyH.K.V.Lotsch Editor-in-Chief: W.T.Rhodes,Atlanta EditorialBoard: A.Adibi,Atlanta T.Asakura,Sapporo T.W.Ha¨nsch,Garching T.Kamiya,Tokyo F.Krausz,Garching B.Monemar,Linko¨ping H.Venghaus,Berlin H.Weber,Berlin H.Weinfurter,Mu¨nchen i P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 December14,2006 17:38 SpringerSeriesin OPTICAL SCIENCES TheSpringerSeriesinOpticalSciences,undertheleadershipofEditor-in-ChiefWilliamT.Rhodes,Georgia InstituteofTechnology,USA,providesanexpandingselectionofresearchmonographsinallmajorareas ofoptics:laserandquantumoptics,ultrafastphenomena,opticalspectroscopytechniques,optoelectronics, quantuminformation,informationoptics,appliedlasertechnology,industrialapplications,andothertopics ofcontemporaryInterest. Withthisbroadcoverageoftopics,theseriesisofusetoallresearchscientistsandengineerswhoneed up-to-datereferencebooks. Theeditorsencourageprospectiveauthorstocorrespondwiththeminadvanceofsubmittingamanuscript. Submission of manuscripts should be made to the Editor-in-Chief or one of the Editors. See also http://springeronline.com/series/624 Editor-in-Chief WilliamT.Rhodes GeorgiaInstituteofTechnology SchoolofElectricalandComputerEngineering Atlanta,GA30332-0250,USA E-mail:[email protected] EditoralBoard AliAdibi BoMonemar SchoolofElectricalandComputerEngineering DepartmentofPhysics VanLeerElectricalEngineeringBuilding andMeasurementTechnology GeorgiaInstituteofTechnology MaterialsScienceDivision 777AtlanticDriveNW Linko¨pingUniversity Atlanta,GA30332-0250 58183Linko¨ping,Sweden [email protected] E-mail:[email protected] ToshimitsuAsakura HerbertVenghaus Hokkai-GakuenUniversity Heinrich-Hertz-Institut FacultyofEngineering fu¨rNachrichtentechnikBerlinGmbH 1-1,Minami-26,Nishi11,Chuo-ku Einsteinufer37 Sapporo,Hokkaido064-0926,Japan 10587Berlin,Germany E-mail:[email protected] E-mail:[email protected] TheodorW.Ha¨nsch HorstWeber Max-planck-Institutfu¨rQuantenoptik TechnischeUniversita¨tBerlin Hans-Kopfemann-Strasse1 OptischesInstitut 85748Garching,Germany Strassedes17.Juni135 Email:[email protected] 10623BerlinGermany E-mail:[email protected] TakeshiKamiya MinistryofEducation,Culture,Sports HaraldWeinfurter ScienceandTechnology Ludwig-Maximilians-Universita¨tMu¨nchen NationalInstituteforAcademicDegrees SektionPhysik 3-29-1Otsuka,Bunkyo-ku Schellingstrasse4/III Tokyo112-0012,Japan 80799Mu¨nchen,Germany E-mail:[email protected] E-mail:[email protected] FerencKrausz Max-planck-Institutfu¨rQuantenoptik Hans-Kopfemann-Strasse1 85748Garching,Germany E-mail:[email protected] ii P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 Peter Gu¨nter Jean-Pierre Huignard (Editors) Photorefractive Materials and Their Applications 3 Applications With316Illustrations iii P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 PeterGu¨nter Jean-PierreHuignard InstituteofQuantumElectronics ThalesResearchandTechnologyFrance NonlinearOpticsLaboratory RD128 SwissFederalInstituteofTechnology 91767PalaiseauCedex ETHHoenggerbergHPFE8 France CH-8093Zurich Email:[email protected] Switzerland Email:[email protected] With316figures. LibraryofCongressControlNumber:2006925859 ISBN-10:0-387-34443-8 e-ISBN0-387-34728-3 Printedonacid-freepaper. ISBN-13:978-0387-34443-0 (cid:2)C 2007SpringerScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermis- sionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY10013, USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnectionwith anyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilaror dissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com iv P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 Preface Thisisthethirdandfinalvolumeofathree-volumeseriesdevotedtophotorefrac- tiveeffects,photorefractivematerials,andtheirapplications.Sincethepublication ofourfirsttwoSpringerbookson“PhotorefractiveMaterialsandTheirApplica- tions” (Topics in Applied Physics, vols. 61 and 62) almost 20 years ago a great dealofresearchhasbeendoneinthisarea.Newandoftenunexpectedeffectshave beendiscoveredandtheoreticalmodelsdeveloped,knowneffectscouldfinallybe explained, and novel applications have been proposed. We believe that the field hasnowreachedahighlevelofmaturity,evenifresearchcontinuesinallareas mentionedaboveandwithnewdiscoveriesarrivingquiteregularly. Wethereforehavedecidedtoinvitesomeofthetopexpertsinthefieldtoput togetherthestateoftheartintheirrespectivefields,havingbeenencouragedto do so for more than ten years by the publisher, due to the fact that the former volumeshavelongbeenoutofprint. The first volume is devoted to a description of the basic effects leading to photoinducedrefractiveindexchangesinelectroopticalmaterials.Inthesecond volumethestatusofthemostrecentdevelopmentsinthefieldofphotorefractive materialsisreviewedandtheparametersgoverningphotorefractivenonlinearity arehighlighted. Thisthirdvolumedealswiththeapplicationsofthephotorefractiveeffectsand ofmaterials.Startingabout35yearsago,theattractivenessofthephotorefractive effectfordatastorage,opticalmetrology,opticalsignalprocessing,imagecorre- lation,andseveralothersnonlinearopticalapplicationshasbeenrecognized.One ofthemainreasonsforthisisthelargenonlinearityorrefractiveindexchange, whichcanbeinducedbylowlightintensitiesusingthephotoinducedspace-charge fieldsinelectroopticalmaterials.Manynewconceptshavebeendemonstratedin laboratoriesoveralltheseyears.Severaloftheseconceptshavealsoproveduseful inotherareasofnonlinearoptics.Particularlyinterestingwastheobservationof a large energy transfer from pump beams to the signal beam in two- and four- wavemixingexperiments.Theseeffectsleadtocoherentamplificationofawave formcoveringspatialinformationandtoself-pumpedopticalphaseconjugation withapplicationsintheareaofwave-frontcorrectionofself-inducedopticalres- onators. Also, it is now possible with photorefractive nonlinearities to control optically the group velocity of a modulated signal beam interfering with a con- tinuousbeaminthecrystal.Intheseinteractionsbasedondynamicholography, a large group index can be achieved for the demonstration of superluminal and slowdownlightpropagationofasignalbeamcarryingtemporalinformation. v P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 vi Preface Inthisthirdvolumeaseriesofapplicationsofphotorefractivenonlinearoptics andofopticaldatastorageandprocessingarepresentedinseveralchapters. Thisandtheothertwovolumesonphotorefractiveeffects,materials,andappli- cationshavebeenpreparedmainlyforresearchersinthefield,butalsoforphysics, engineering, and materials science students. Several chapters contain sufficient introductorymaterialforthosenotsofamiliarwiththetopictoobtainathorough understanding of the photorefractive effect. We hope that for researchers active inthefieldthesebookswillprovideausefulreferencesourcefortheirwork. We would like to thank all the authors who contributed to this work for their excellentcontributionsandgreateffortsinpresentingattractiveoverviewsofthe topicstheyhavedevelopedinthisbook.WeareverymuchindebtedtoMrs.Lotti No¨tzliforhergreatadministrativesupport. Zürich,Orsay,October2005 PeterGünter,Zurich Jean-PierreHuignard,Orsay October2005 P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 Contents 1 Introduction..................................................................... 1 PeterGu¨nterandJean-PierreHuignard 2 DigitalHolographicMemories............................................... 7 LambertusHesselinkandSergeiS.Orlov 2.1 Introduction................................................................. 7 2.2 OpticalArchitectures...................................................... 8 2.3 HolographicOptics........................................................ 11 2.4 MultiplexingTechniques.................................................. 17 2.5 HolographicRecordingMaterials........................................ 21 2.6 PhotorefractiveMaterials.................................................. 22 2.7 FixingofHologramsinPhotorefractiveMedia......................... 25 2.8 SystemsIssues.............................................................. 30 2.9 DemonstrationPlatforms.................................................. 32 3 TheTransferFunctionofVolumeHolographicOpticalSystems..... 51 GeorgeBarbastathis 3.1 Introduction................................................................. 51 3.2 3DSpatialHeterodyningwithVolumeHolograms.................... 52 3.3 DerivationoftheOpticalResponseofVolumeHolograms........... 56 3.4 Examples.................................................................... 58 3.5 ConclusionsandDiscussion.............................................. 74 4 PhotorefractiveMemoriesforOpticalProcessing........................ 77 M.Duelli,G.Montemezzani,M.Zgonik,andP.Gu¨nter 4.1 VolumetricOpticalDataStorage......................................... 79 4.2 OpticalPatternRecognition............................................... 94 4.3 HolographicAssociativeMemories...................................... 104 4.4 PhotorefractiveMaterialsasVolumeStorageMedia.................. 109 4.5 OpticalCorrelatorsUsingPhotorefractiveCrystals................... 120 4.6 All-OpticalNonlinearAssociativeMemories.......................... 122 4.7 Summary.................................................................... 128 vii P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 viii Contents 5 True-Time-DelayAdaptiveArrayProcessingUsing PhotorefractiveCrystals....................................................... 135 G.R.KriehnandK.Wagner 5.1 IntroductiontoTrue-Time-DelayArrayProcessing................... 135 5.2 OutputTimeDelayandtheBEAMTAPAlgorithm.................... 138 5.3 TheTraveling-FringesDetector.......................................... 141 5.4 PhotorefractiveVolumeHolographyUsing Polarization-Angle,Read–WriteMultiplexing......................... 143 5.5 ExperimentalImplementationofBEAMTAP.......................... 158 5.6 Conclusion.................................................................. 166 6 PhotorefractiveMesogenicCompositesforApplications toImageProcessing............................................................ 169 HiroshiOno,AkiraEmoto,andNobuhiroKawatsuki 6.1 OverviewofMesogenicCompositesforPhotorefractive Applications................................................................. 169 6.2 FundamentalPropertiesofPhotorefractiveMesogenic CompositesforImageProcessing........................................ 172 6.3 ApplicationstoImageProcessing........................................ 182 7 Solid-StateLaserswithaPhotorefractive Phase-ConjugateMirror...................................................... 193 T.Omatsu,M.J.Damzen,A.MinassianandK.Kuroda 7.1 Introduction................................................................. 193 7.2 OpticalPhaseConjugationforSolid-StateLasers..................... 194 7.3 Phase-ConjugateDiode-PumpedNd:YVO LaserAmplifiers....... 197 4 7.4 Phase-ConjugateLaserResonator........................................ 209 7.5 Phase-ConjugateLaserDiode............................................ 212 7.6 Summary.................................................................... 219 8 DynamicHolographicInterferometry:DevicesandApplications.... 223 PhilippeLemaireandMarcGeorges 8.1 Introduction:HistoricalBackground.................................... 223 8.2 RequirementsforApplicabilityofHI.................................... 226 8.3 PotentialitiesofPhotorefractiveCrystals forHolographicInterferometry........................................... 229 8.4 HolographicCamerawithContinuousLaser IlluminationforScatteringObjects...................................... 233 8.5 HolographicCameraswithContinuousLaser IlluminationforTransparentObjects.................................... 242 8.6 HolographicCamerawithPulsedLasers................................ 244 8.7 Conclusion.................................................................. 249 P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 October27,2006 7:40 Contents ix 9 Self-OrganizingLaserCavities............................................... 253 GillesPauliat,NicolasDubreuil,andGe´raldRoosen 9.1 Introduction................................................................. 253 9.2 Self-OrganizingCavitieswithAdaptiveFabry-PerotFilters.......... 254 9.3 DesignofSelf-OrganizingCavitieswith4-Level LaserAmplifiers............................................................ 263 9.4 Self-OrganizingCavitieswithSemiconductorAmplifiers............ 268 9.5 Self-OrganizingCavitiesOperatingontheTransverseStructure.... 273 9.6 Conclusion.................................................................. 273 10 SlowandFastLightsinPhotorefractiveMaterials....................... 277 GuoquanZhang,FangBo,andJingjunXu 10.1 DispersivePhotorefractivePhaseCoupling........................... 278 10.2 Phase-Coupling-InducedSlowandFastLights....................... 280 10.3 ExperimentsonSlowandFastLights inPhotorefractiveMaterials............................................. 284 10.4 SlowandFastLightswithaStationary RefractiveIndexGrating................................................. 290 10.5 ProspectsandConclusions.............................................. 292 11 HolographicFilters............................................................. 295 KarstenBuse,FrankHavermeyer,WenhaiLiu,ChristopheMoser andDemetriPsaltis 11.1 Introduction................................................................ 295 11.2 TelecommunicationNetworks........................................... 297 11.3 ReflectionGratings....................................................... 301 11.4 MaterialIssues............................................................ 303 11.5 HolographicRecording.................................................. 306 11.6 Devices..................................................................... 309 11.7 SummaryandOutlook................................................... 317 12 NeutronPhysicswithPhotorefractiveMaterials......................... 321 MartinFally,ChristianPruner,RomanoA.Rupp,andGerhardKrexner 12.1 BasicConcepts............................................................ 322 12.2 Materials................................................................... 326 12.3 Experiments............................................................... 329 12.4 ElectroNeutron-Optics................................................... 341 12.5 NeutronHolography...................................................... 345 12.6 OutlookandSummary................................................... 348 Index.................................................................................... 355 P1:OTE/SPH P2:OTE SVNY276-Gunter-v3 September22,2006 16:34 1 Introduction PeterGu¨nterandJean-PierreHuignard The objective of this third volume of the series on photorefractive effects and materialsistohighlightthemostrecentapplicationsofphotorefractivenonlinear optics. As already outlined in volumes 1 and 2, which develop the basic phys- ical mechanisms and the material properties, photorefractive effects exhibit a largediversityofveryspecificproperties.Attheorigininthe70’s,photorefrac- tivecrystalswereproposedforhigh-capacityvolumeholographicstorageusing hologram multiplexing. At that time, this ambitious application already stimu- lated research on materials and system architectures in order to optimize their storage capacity. Nevertheless, if the concepts were demonstrated in the labo- ratory, no storage system based on holography was developed due the progress ofothertechnologiessuchasmagneticsandread-onlybit-by-bitrecordingwith an optical disk. Then it was realized that the recording of dynamic holograms in photorefractives through two-wave or four-wave mixing makes it possible to transferenergyfromapumpbeamtoaprobe,thusleadingtocoherentamplifi- cationofawavefrontcarryingspatialinformation.Theseeffects,obtainedwith low incident optical powers, opened a wide range of new applications extend- ing from image amplification to self-organized optical cavities. Photorefractive holography also permits one to demonstrate novel beam interactions leading to control of the group velocity of a light pulse. Beside this, the dynamic aspects oftheholographicrecordingandreadoutinphotorefractivematerialsenablesthe real-time implementation of optical processing functions operating in parallel overalargenumberofpixels.Also,thesedynamicphotorefractivevolumegrat- ingsexhibitspectralandspatialband-passresponsesleadingtouniqueproperties forsignalorimagefilteringaswellaspatternrecognitionbyopticalcorrelation methods based on Fourier transform processors. Moreover, there is now a re- newed interest in the field of holographic storage applications due to advances in key technologies such as spatial light modulators and detector arrays. High- resolution holograms can now be recorded in some polymer or photorefractive materialsafterafixingprocessforhigh-densitystorageofbinarytwo-dimensional data with multigigabit output rates. This exhaustive list of specific characteris- tics involving the materials’ properties as well as the interactions between the interferingbeamsisrichinnewproposalsforapplicationsinphotonics.Thedif- ferentchaptersincludedinthisthirdvolumeaddressallthedomainsintroduced above.Theyarewrittenbyleadingexpertsinthefield,whoprovideanextended 1