ebook img

Photon orbital angular momentum in astronomy PDF

40 Pages·2008·0.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Photon orbital angular momentum in astronomy

A&A492,883–922(2008) Astronomy DOI:10.1051/0004-6361:200809791 & (cid:2)c ESO2008 Astrophysics Photon orbital angular momentum in astronomy N.M.EliasII1,2 1 ZentrumfürAstronomiederUniversitätHeidelberg,Landessternwarte,Königstuhl12,69117Heidelberg,Germany 2 Max-Planck-InstitutfürAstronomie;Königstuhl17,69117Heidelberg,Germany e-mail:[email protected] Received17March2008/Accepted7October2008 ABSTRACT Context.Photonorbitalangularmomentum(POAM)hasbeencreatedinthelaboratory,yetitisstillrelativelyunknown.Howdoes POAMmanifestitselfinastronomy?ArethereanyapplicationsformeasuringastrophysicalPOAM? Aims.Inthispaper,I1)explainPOAMinanastronomicalcontext;2)definethePOAMobservablesforastronomy;3)creategeneric systems-based calculi thatdescribe how POAMpropagates fromcelestial sphere todetector; 4) usethecalculi withseveral astro- nomicalinstrumentsasexamplesoftheirutility;5)demonstrateanapplicationforastrophysicalPOAMmeasurements;and6)relate POAMtoexistingastronomicalinstrumentsandconcepts. Methods.ElectricfieldsareexpandedintoazimuthalFouriercomponents,andtheintensitiesareexpandedintocorrelationsorran- cors.Thesourceelectricfieldsarespatiallyincoherent.Inthesystems-basedcalculi,theinputsarelocatedonthecelestialsphere,the systemisrepresentedbypropagationthroughfreespaceandinstrument,andtheoutputsarelocatedinaspecificplane.Thediffrac- tionandpoint-spreadfunctionexpansionsareverygenericandcanbeusedwithanytypeofinstrument.Iemploytheseexamplesto demonstratethecalculi(inorderofincreasingdifficulty):freespace,singletelescopes,interferometers,coronagraphs,andrancorime- ters. Results.TheazimuthalFouriercomponentsoftheelectricfieldcorrespondtoPOAMvortexstates.Rancorscontainlessinformation thancorrelations,yettheyareeasiertomeasureandcanbeusedinmanyapplications.Propagationthroughanaberratedtelescope appliesexternaltorque,whichmaybeexpressedintermsofZernikepolynomials.Iprovethatasectoredphasemaskinafocal-plane coronagraphappliestorquetothelow-orderstates,producinganull.Also,IprovethataMichelsoninterferometerisinherentlyca- pableoffilteringPOAM;e.g.,tracking180◦ fromthecentralfringeeliminatesevenstates,producinganull.Alimitedrancorimeter canbecreatedbyplacingafocal-planewedgemaskinacoronagraph.Theresultingrancorscanbeusedtoperformsuper-Rayleigh observationsofunresolvedunresolvedobjects,suchasbinarystars.TherearethreetypesofsourcePOAM:intrinsic,structure,and pointing.InstrumentalPOAM,whichmustbecalibrated,includesopticalaberrationsandatmosphericturbulence. Conclusions.Thispaperrepresentsthestartingpointforfutureresearch:1)makingaprioripredictionsabouttheintrinsicPOAMof astronomicalsources;2)designingground-andspace-basedPOAM-measuringinstruments;3)understandingexistinginstrumentsin termsofPOAM;4)minimizingtheeffectsofrandomnoiseonPOAM;and5)calibratingalltypesofinstrumentalPOAM. Keywords.instrumentation:miscellaneous–methods:analytical–methods:observational–techniques:miscellaneous 1. Introduction Electromagneticfieldsmaybedescribedintermsofintensity,wavelength,coherence,andangularmomentum.Angularmomentum consistsoftwodistinctparts,spinandorbital(Marcuse1980;Heitler1984).Spinangularmomentumisclassicallyrepresentedby photonsrotatingabouttheir own axis. Orbitalangularmomentum,on the otherhand,is somewhatof a misnomerbecause under normalcircumstancesphotonsdonotorbitabouta fixedpointin space. Thecanonicalviewof orbitalangularmomentumshows the photon Poynting vector precessing about the nominal propagation direction, i.e., spiral wavefronts. Spin and orbital angular momentum are different in another fundamental way, namely that the former consists of two orthogonal states while the latter consistsofaninfinitenumberoforthogonalstates. 1.1.History Becausetheconceptofphotonorbitalangularmomentum(POAM)isdifficulttovisualizeandunderstand,itismerelymentioned (Jackson1975;Mandel&Wolf 1995)andevenneglected(Reitzetal. 1980;Griffiths1981)inelementaryelectromagneticstext- books. Furthermore, a search of the scientific literature shows that the number of POAM articles is smaller than the number of photonspinangularmomentum(PSAM,morecommonlyknownaspolarization)articles.Inrecentyears,however,theamountof theoreticalandappliedPOAMresearchhasbeenincreasingsteadily. Allenetal. (1992)recognizedthatlightbeamswithahelicalphasedependencecarryquantizedPOAMthatisindependentof PSAM.Tamm&Weiss(1990)havedirectlygeneratedLaguerre-Gaussian(LG)laserbeams,whichexhibitthesehelicalwavefronts. POAMmaybegeneratedwithspatiallightmodulators(SLMs),whicharepixelatedliquid-crystaldevices(Bazhenovetal. 1990). Leachetal. (2002)havedevelopedatechnique,employingamodifiedMach-Zehnderinterferometer,tomeasurethePOAMstateof ArticlepublishedbyEDPSciences 884 N.M.EliasII:Photonorbitalangularmomentuminastronomy individualphotons.AllofthisprogresshasbeensummarizedbyPadgettetal. (2004).Molina-Terrizaetal. (2007)alsopublished ageneralreviewofvariousaspectsofPOAM. Harwit (2003) described astrophysical processes that generate POAM, including light scattering off inhomogeneities in the environmentssurroundingenergeticsources(e.g.masers,pulsars,andquasars),andphotonsscatteringoffrotatingblackholes.In addition,hementionstheadvantagesofPOAMforSETI,namelymultiple-bitencodingperphoton,entanglement,andthelackof naturalhigh-POAMsources.Sjöholm & Palmer (2007)andThidé et al. (2007)have also conductedPOAM simulationsatradio wavelengths,whichmayberelevantforastronomicalapplications. 1.2.Applications So,whataretheapplicationsforPOAMinastronomy? The most obvious application is the characterization of POAM and how it relates to underlying physical processes. Harwit (2003)showed that exotic astronomicalsourcesgenerateelectric fields with non-zeroPOAM. Do commonastronomicalsources alsogeneratenon-zeroPOAM?Ifso,whatproducesit?Canitbeexploitedtoobtainvaluableinformation? I found these questions difficult to answer because laboratory and astrophysical POAM differ from each other in funda- mental ways. Laboratory POAM sources typically consist of individual vortices and are created by lasers and dedicated optics. AstrophysicalPOAMsources,ontheotherhand,couldcontainindividualvortices,butitismorelikelythattheycontainmultiple vorticesduetolarge-scalestructure.Inaddition,theelectricfieldsproducedbylaboratorysourcesaregenerallyspatiallycoherent, while the electric fields arising from the celestial sphere are generally spatially incoherent. These distinctions are important and mustbetakenintoaccount. The focus of this paper has shifted significantly with time. I had originally wanted to investigate POAM generated by astro- nomical sources. I do invest some effort on that topic, but I decided to leave these detailed analyses for the future. I found that understandingPOAM observablesand how they propagate is a prerequisite for understandingastrophysicalPOAM mechanisms aswellasadvancedtopicslikeinstrumentdesign,randomerrorminimization,andsystematicerrorcalibration.Tothatend,Icre- ate new observablesand propagationcalculi and present several importantexamples of how they are used, including a practical application. 1.3.Overview In Sect. 2, I describe astronomical POAM in terms of a semi-classical/semi-quantum model that is suitable for astronomy. The electric fields are analogous to quantum wavefunctions, while the intensities are analogous to probabilities. Vortices are helical wavefrontswithquantizedPOAMthatareindependentofcoordinatesystemorigin. In Sect. 3, I expand arbitrary spatially incoherent electric fields on the celestial sphere in terms of azimuthal Fourier series. EachcomponentrepresentsasinglePOAMstate.Theintensitycanbeexpandedintermsofcorrelationsofthestates.Correlations betweendifferentstatesarecalledorbitalpolarization,analogoustoPSAMspinpolarization.Theintensitycanalsobeexpandedin termsofitsownazimuthalFourierseries.Eachtermiscalledarancor,whichisequivalenttothesumofcorrelatedstateswiththe samerancorindexandrelatedtoorbitalpolarization.Also,IderivethePOAMexpectationvalueintermsofintegratedprobabilities. InSect.4,Icreatetwocalculi,startingwiththeelectricfieldandintensityoverlapintegrals,thatcanbeusedtomodelPOAM propagationfromcelestialspherethroughfreespaceandinstrumentto detector.Inthe followingfive sections,Iuse these calculi in conjunction with astronomically relevant examples (in order of increasing difficulty) to demonstrate their utility: free space (Sect.5),singletelescope(Sect.6),focal-planecoronagraph(Sect.7),Michelsoninterferometer(Sect.8),andlimitedrancorimeter (Sect.9).Propagationthroughfreespaceandanunaberratedtelescopeappliesnoexternaltorquetotheelectricfield.Coronagraphs applytorqueto(modulate)thezero-orderstateofthecentralstar,producingacentralnull.Michelsoninterferometersfilterstates accordingtothebaselineanddelay,e.g.,single-Bracewellinterferometerstrack180◦fromthecentralfringetoeliminateevenstates and produce a null. I convertthe coronagraphto a limited rancorimeterby replacing the focal-plane phase mask with a rotating opaquewedgemask.Itmeasuresonlyrancors,yetitcanperformtaskssuchassuper-Rayleighmodelingofanunresolvedbinary star. InSect.10,Idefineanaturalzero-POAMcalibrationsource:anunresolvedorpartiallyresolvedstaratthefield-of-view(FOV) center. Several simple POAM sources are also discussed, which are used to describe instrinsic, structure, and pointing POAM. Structure and pointing POAM are related to each other. In Sect. 11, I derive general expressions for the responses of aberrated systemsthatlead toinstrumentalPOAM,andshowthatZernikepolynomialsmaybe writtenintermsofPOAM expansions(and viceversa).InstrumentalPOAM(duetoopticalaberrationsandatmosphericturbulence)isanalogoustoinstrumentalPSAMbecause theybothmustbecalibratedformeaningfulscientificresults. 2. SimplePOAMmodel In astronomy, treating POAM with pure quantum mechanics is not necessary most of the time. Gori et al. (1998) presented a simplifiedsemi-classical/semi-quantumPOAMmodel,drawingonformalismsfromboththeclassicalandquantumregimes.Inthis section,Igeneralizetheirapproach. Usingthefirst-orderparaxialapproximation,thePOAM expectationvaluedependsontheazimuthalderivativeofthe electric field as well as the intensity in the plane of interest. Vortex electric fields represent pure POAM states with a constant POAM expectationvaluethatisindependentofcoordinatesystemorigin.Themathematicsinothersectionsofthispaperusetheformulae → inthissection,replacingthevectorHwithvectorsfromotherplanes. N.M.EliasII:Photonorbitalangularmomentuminastronomy 885 2.1.Thesemi-classical/semi-quantumregime ConsideranensembleofphotonstravelingperpendicularlythroughaplanealongtheZ axis.Theplanecanrepresentthecelestial sphere(locally,aplane),theobservationplane(containingtheentrancepupiloftheinstrument),theinstrumentimageplane,etc. I assume that all of the photons have the same polarization, so the PSAM nature of the radiation can be ignored. The scalar spatial/temporalwavefunctionontheplaneis (cid:2) (cid:2) (cid:2) (cid:2) → (cid:2) → (cid:2) → Ψ(H;t) = (cid:2)(cid:2)Ψ(H;t)(cid:2)(cid:2) ejΦ(H;t), (1a) → whereH=(H ,H )=(Hcos(cid:2),Hsin(cid:2))isthevectorintheplane,H andH aretheCartesiancoordinates,Histheradialcoordinate x y x y intheplane,(cid:2) istheazimuthalcoordinateintheplane,andtisthetime.Itcanbedividedintoamodulusfunction (cid:3) (cid:4) (cid:5) (cid:4) (cid:5) → → → |Ψ(H;t)| = Re2 Ψ(H;t) + Im2 Ψ(H;t) (1b) andanaberrationfunction ⎡ ⎤ Φ(H→;t) = tan−1⎢⎢⎢⎢⎢⎢⎣ImΨ(H→→;t)⎥⎥⎥⎥⎥⎥⎦. (1c) ReΨ(H;t) Thiswavefunctionmaybeemployedtorepresentoneormorephotons. Thespatialprobabilitydensityisproportionaltothetimeaverageofthesquaredmagnitudeofthewavefunction, (cid:12) (cid:2) (cid:2) (cid:13) (cid:2) (cid:2) → 1(cid:2) → (cid:2)2 p(H) ∝ (cid:2)(cid:2)Ψ(H;t)(cid:2)(cid:2) , (2a) 2 where(cid:6)·(cid:7)denotesthetimeaverage2.Itshouldbenormalizedsuchthattheintegralovertherelevantregionintheplaneisunity.The wavefunctionisproportionaltotheelectricfield (cid:2) (cid:2) (cid:2) (cid:2) → → (cid:2) → (cid:2) → Ψ(H;t) ∝ E(H;t) = (cid:2)(cid:2)E(H;t)(cid:2)(cid:2) ejΦ(H;t), (2b) whichmeansthatthespatialprobabilitydensityisproportionaltotheintensity (cid:12) (cid:2) (cid:2) (cid:13) (cid:2) (cid:2) → → 1(cid:2) → (cid:2)2 p(H) ∝ I(H) = (cid:2)(cid:2)E(H;t)(cid:2)(cid:2) . (2c) 2 Therefore,thenormalizedprobabilitydensityistheintensitydividedbytheintensityintegratedoveragivenregionintheplane,or → → → I(H) I(H) p(H) = (cid:14) = , (2d) → Iplane d2HI(H) whered2H =dH dH =dHH d(cid:2)isthedifferentialareaelement. x y Usingthefirst-orderparaxialapproximation,thetimeaveragePOAMperphotonabouttheZaxisis ⎡ ⎤ LZ(H→) = (cid:15)LZ(H→;t)(cid:16) = h (cid:4)HxκHy(H→) − HyκHx(H→)(cid:5) = (cid:2) ⎢⎢⎢⎢⎢⎢⎣Hx∂Φ∂H(H→) − Hy∂Φ∂H(H→)⎥⎥⎥⎥⎥⎥⎦ = (cid:2)∂Φ∂((cid:2)H→), (3a) y x wherehisthePlanckconstant,(cid:2)=h/2πisthereducedPlanckconstant, (cid:15) (cid:16) → (cid:12) → (cid:13) → → 1 ∂Φ(H) 1 ∂Φ(H;t) κ (H) = κ (H;t) = = (3b) Hx Hx 2π ∂H 2π ∂H x x and (cid:15) (cid:16) → (cid:12) → (cid:13) → → 1 ∂Φ(H) 1 ∂Φ(H;t) κ (H) = κ (H;t) = = (3c) Hy Hy 2π ∂H 2π ∂H y y arethetransversewavenumbers,and → (cid:12) → (cid:13) ∂Φ(H) 1 1 → ∂E∗(H;t) = − Im E(H;t) (3d) ∂(cid:2) → 2 ∂(cid:2) I(H) 2 Ileavethelengthofthetimeaveragearbitrary,becauseitdependsonthephotonrate,theamountofatmosphericturbulence,detectorstatistics, andthespecificapplication. 886 N.M.EliasII:Photonorbitalangularmomentuminastronomy is theazimuthalderivativeofthe aberrationfunctionderivedinAppendixA.Equation(3a)canbeconvertedto itsclassical form when h κ → p and h κ → p (the linear momenta). The transverse wavenumbers are proportional to the slopes of the Hx Hx Hy Hy aberration function and are constant only across uniform wavefronts. The POAM expectation value per photon is the weighted averageovertheplane,or (cid:17) (cid:17) → → → → ∂Φ(H) Lˆplane = d2Hp(H)L (H) = (cid:2) d2Hp(H) · (4) Z Z ∂(cid:2) Inrealsystems,integrationsoveradditionalvariablesmayberequired(Sects.4and8). 2.2.Vortices Ingeneral,Lˆplane dependsonthecoordinatesystemorigin.InEq.(4),POAMismeasuredwithrespectto(H ,H )=(0,0).IfIshift Z x y thereferencepointby(ΔH ,ΔH ),thePOAMintheplanebecomes x y (cid:17) (cid:4) (cid:18) (cid:19) (cid:5) (cid:18) (cid:19) Lˆplane,(cid:9) = h d2H (H + ΔH ) κ (H→) − H + ΔH κ (H→) = Lˆplane + h ΔH κˆplane − ΔH κˆplane , (5a) Z x x Hy y y Hx Z x Hy y Hx where (cid:17) → → κˆplane = d2Hp(H)κ (H) (5b) Hx Hx and (cid:17) → → κˆplane = d2Hp(H)κ (H) (5c) Hy Hy arethetransversewavenumberexpectationvalues.AspatiallyinvariantPOAMexpectationvalue,orLˆplane,(cid:9)=Lˆplane,requiresκˆplane= Z Z Hx κˆplane =0fornon-zeroΔH andΔH . Hy x y WhatkindofelectricfieldyieldsaspatiallyinvariantPOAMexpectationvalue?Consider (cid:20) (cid:21) → E(H;t) → Em(H;t)ejm(cid:2) = |Em(H;t)| ejΘm(H;t) ejm(cid:2), (6a) whichiscalleda vortexbecauseofitshelicalformforeach H (Indebetouw1993).Theparameterm mustbeanintegerquantum number,otherwisethehelixwillbediscontinuousin(cid:2).Theintensityofthisvortexis (cid:12) (cid:2) (cid:2) (cid:13) (cid:12) (cid:13) (cid:2) (cid:2) → 1(cid:2) → (cid:2)2 1 I(H) = (cid:2)(cid:2)E(H;t)(cid:2)(cid:2) → Im,m(H) = |Em(H;t)|2 , (6b) 2 2 whichisindependentof(cid:2).Themodulusandaberrationfunctionsare (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) → (cid:2) (cid:2)(cid:2)Ψ(H;t)(cid:2)(cid:2) ∝ |Em(H;t)| (7a) and → Φ(H;t) = Θ (H;t) + m(cid:2). (7b) m The modulus is also independentof (cid:2), and for a given H and t the aberration function is a linear function of (cid:2). This aberration functionleadstoκˆplane =κˆplane =0aswellasthefundamentalequation Hx Hy Lˆplane = m(cid:2). (8) Z Note that Lˆplane is independent of coordinate system origin, which means that vortices must be pure POAM states. Laboratory Z studies of POAM typically employ LG laser modes, which uniquelyset the radial dependencesof the E (H;t) (Tamm & Weiss m 1990).Fornaturalastronomicalsources,however,thereareaninfinitenumberofpossibleradialdependences,sothegenericform oftheE (H;t)ispreferredhere. m N.M.EliasII:Photonorbitalangularmomentuminastronomy 887 3. ArbitraryPOAMexpansions In this section, I expand the electric field into an azimuthal Fourier series, where each component represents a POAM state. I expresstheintensityintermsofcorrelationsofthesestates.Correlationsbetweendifferentstatesarecalledorbitalpolarization.The intensitycanalsobeexpandedintoitsownazimuthalFourierseries,whereeachrancorcomponentisequivalenttoaninfinitesum ofcorrelations.Igiveestimatesforthermselectricfieldamplitudesandphases.Last,IdefinethePOAMexpectationvalueinterms ofaninfinitesumofintegratedprobabilities. Astronomical electric fields generally do not consist of a single vortex, so how can they be expressed within the POAM paradigm?Since(cid:2) isperiodicin2π,anyelectricfieldmaybeexpandedintermsofanazimuthalFourierseries, (cid:17) → (cid:22)∞ F 1 2π → E(H;t) = E (H;t)ejm(cid:2) ⇔ E (H;t) = d(cid:2)e−jm(cid:2)E(H;t). (9a) m m 2π m=−∞ 0 → I employ the same vector H as in Sect. 2. Yao et al. (2006) used constants and Kennedy et al. (2002) used LG expansions for theFouriercomponents,butheretheyarearbitraryfunctionsofH andt.Thisexpansionisjustthemacroscopicdescriptionofthe POAMstatespectrumintheplane.ItisanalogoustotheJonesvector, ⎧ → → → → J ⎪⎪⎨E (H→;t) = Hˆ ·→E(H→;t) E(H;t) = EHx(H;t)Hˆx + EHy(H;t)Hˆy ⇔ ⎪⎪⎩EHx(H→;t) = Hˆx·→E(H→;t) , (9b) Hy y whichisthemacroscopicdescriptionforPSAM. Theintensity,expressedintermsofthestatesinEq.(9a),is (cid:22)∞ (cid:22)∞ (cid:22)∞ (cid:22)∞ (cid:22)∞ → I(H) = I (H)ej(m−n)(cid:2) = I (H) + 2Re I (H)ej(m−n)(cid:2), (10a) m,n m,m m,n m=−∞n=−∞ m=−∞ m=−∞n=m+1 wherethe (cid:12) (cid:13) 1 I (H) = I∗ (H) = E (H;t)E∗(H;t) (10b) m,n n,m 2 m n arethecomponentsofthecorrelationspectrum.Thesumsconsistoftwotypesofterms,autocorrelated(m=n)andcross-correlated (m(cid:2)n).Thecross-correlatedtermscontainorbitalpolarization,orrancor2.ThesequantitiesareanalogoustoPSAMspinpolariza- tion.Ifallofthecrosscorrelationsarezero,theradiationisunrancored. Thermsstatesofanysourcecanbedetermineddirectlyfromitscorrelations.Thermsmagnitudeofeachstatemcomesfrom the(m,m)autocorrelation (cid:27) (cid:12) (cid:13) (cid:28) 1 E¯ (H) = |E (H;t)|2 = I (H)· (11a) m m m,m 2 The rmsphasesarezeroforautocorrelations.Usingthen = 0state as a reference,the rmsphaseofeachstate m comesfromthe (m,0)crosscorrelation, (cid:29) (cid:30) ΔΦ¯ (H) = tan−1 ImIm,0(H) = tan−1 Im (cid:29)12Em(H;t)E0∗(H;t)(cid:30) · (11b) m,0 ReIm,0(H) Re 12Em(H;t)E0∗(H;t) Theothercrosscorrelationscontainredundantrmsphases,andtheyserveasausefulcheck. An ensemble of limited measurementscan often be used to gain valuable insights about astronomicalsources. For example, thediameterofastarortheorbitalparametersofabinarystarcanbeextractedfromafinitenumberofinterferometricvisibilities. ForthePOAMcase,significantresultscanbeobtainedwithoutreferringtotheelectricfieldsatall.ConsidertheazimuthalFourier seriesoftheintensity (cid:22)∞ → I(H) = I (H)ejm(cid:2), (12a) m m=−∞ wherethe (cid:17) 1 2π → (cid:22)∞ Im(H) = d(cid:2)e−jm(cid:2)I(H) = Ik,k−m(H) (12b) 2π 0 k=−∞ arethecomponentsoftherancorspectrum.ThePOAMinformationcontainedintherancorsisnotcomplete,butitmaybesufficient forcertaintypesofmodeling(Sect.9.2).Asamatteroffact,ifrancorsaremeasuredwithsufficientspatialresolution,itispossible 2 Ichosetheword“rancor”becauseitisconvenient andasynonymforpolarization.Relatedexpressionsnaturallyfollow,e.g.,rancorimetry, rancorimeter,(un)rancored,and(de)rancorizer. 888 N.M.EliasII:Photonorbitalangularmomentuminastronomy toreconstructanimageusingonlythisFourierseries.Notethateachrancorisaninfinitesumofcorrelationswiththesamerancor indexm(AppendixB). Calculating Lˆplane in termsof correlationsis relativelystraightforward.Accordingto AppendixA, the azimuthalderivativeof Z theaberrationfunctionis ⎡ ⎤ ∂Φ(H→) = 1 Re (cid:22)∞ (cid:22)∞ nI (H)ej(m−n)(cid:2) = 1 ⎢⎢⎢⎢⎢⎣ (cid:22)∞ mI (H) + 2Re (cid:22)∞ (cid:22)∞ nI (H)ej(m−n)(cid:2)⎥⎥⎥⎥⎥⎦. (13) ∂(cid:2) → m,n → m,m m,n I(H) m=−∞n=−∞ I(H) m=−∞ m=−∞n=m+1 SubstitutingthisequationintoEq.(4),IobtainthePOAMexpectationvalue (cid:22)∞ Lˆplane = pplanem(cid:2), (14a) Z m,m m=−∞ where (cid:14) ∞ (cid:17) pplane = Impl,amne = 2π 0(cid:14) dHHIm,m(H) = 2π ∞dHHp (H) (14b) m,m Iplane → m,m d2HI(H) 0 is the probability of a single photon being in state m, p (H) is the corresponding probability density, Iplane is the integrated m,m m,m correlation(m,m),Iplane istheintensityintegratedovertheplane, (cid:17) (cid:17) (cid:22)∞ Iplane ∞ I (H) ∞ pplane = 0 = 2π dHH 0 = 2π dHHp (H) = 1, (14c) m,m Iplane Iplane 0 m=−∞ 0 0 Iplane istheintegratedunrancoredterm,andp (H)istheunrancoredprobabilitydensity.Therancoredprobabilitydensitiescontain 0 0 phaseinfofrmation,buttheydonotcontributetoLˆplane becausetheej(m−n)(cid:2) areperiodicin(cid:2). Z 4. POAMpropagationthroughagenericsystem InSects.2and3,IpresentedthePOAMexpansionsofelectricfieldsandintensities.Thoseexpressionscanbeappliedtoanyplane → by simply changingthe spatial coordinateH. In this section, I employ a mathematicalsystems approach using overlap integrals todescribehowthePOAMexpansionsofelectricfieldsandintensitiespropagatethroughagenericsystem,fromcelestialsphere → → → → (input; H → Ω) to a specific plane (output; H → N). These generic expansions can be applied to any optical system; I present importantandverydifferentexamplesinSects.5–9todemonstratetheirutility. 4.1.Electricfields Theexpressionforthepropagationofelectricfieldsisgivenby (cid:17) → → → → → → E(N;a,t) = d2ΩD(N,Ω;a)E(Ω;t), (15) → whereN=(N ,N )=(Ncosν,Nsinν)isthevectorinthespecificplane, N and N aretheCartestiancoordinatesinthespecific x y x y → plane,Nistheradialcoordinateinthespecificplane,νistheazimuthalcoordinateinthespecificplane,Ω=(α,δ)=(ρcosφ,ρsinφ) isthevectoronthecelestialsphere,αandδaretheCartestiancoordinatesonthecelestialsphere,ρistheradialcoordinateonthe → celestialsphere,φisazimuthalcoordinateonthecelestialsphere,and a isanoptionallistofparameters.Thisequationisanoverlap integral, linking the input electric fields on the celestial sphere to the output electric fields in the specific plane via the system diffractionfunction(DF). Equation(15)isvalidforbothspatiallycoherentandincoherentelectric fieldsonthecelestialsphere,butin thispaperI deal onlywiththelatter.TheDF,whichdescribesthepropagationbehaviorthroughfreespaceandinstruments,couldbeafunctionof timeinthepresenceoftheatmosphereandthermomechanicalinstrumentstresses.Inthemathematicalsystemsapproach,theDFis alsoknownastheelectric-fieldimpulseresponse. WhentheelectricfieldsandDFofEq.(15)areexpandedinazimuthalFourierseries,POAMpropagationbecomesclear.There are three different generic expansions, all displayed in Table 1. The formulae for the input sensitivities, output sensitivities, and input/outputgainsoftheDFarelocatedinTable2.IderivetheseresultsinAppendixC. Thefirstelectric-fieldexpansionusestheinputsensitivityoftheDF.Eachtermindicateshowtheinputstatesfromthecelestial spherearemodifiedbytheinstrumentbeforetheyarriveatthespecificplane.Thisexpansionisoflimitedusebecauseeachcompo- nentisnotaspecific-planestate,butIincludeitforthesakeofcompleteness.Eachterminthesecondexpansionisaspecific-plane state,writtenintermsoftheoutputsensitivityandthetotalinputelectricfield.Thisformisemployedinsituationswheretheexact form of the input POAM spectrum is not specified. The third expansionis a combinationof the first two, using the input/output gainsandtheinputstates.Thegainsaredirectindicatorsofhowmuchsourcestatemisconvertedintospecific-planestate p.This formmaybeusedforanumberofdifferentpurposes,includingopticalsystemanalysis. N.M.EliasII:Photonorbitalangularmomentuminastronomy 889 → → → → → → Table1.ThePOAMexpansionsofE(N;a,t)intermsofthePOAMexpansionsofD(N,Ω;a)(Table2)andE(Ω;t). POAMexpansiontype Expression Input E(N→;→a,t)=(cid:31)∞m=−∞Eˆm((cid:14)N→;→a,t) whereEˆ (N→;→a,t)=2π ∞dρρD−m(N→,ρ;→a)E (ρ;t) Output E(N→;→a,tm)=(cid:31)∞p=−∞E(cid:14)p(N0;→a,t)ejpν m → → → → whereE (N;a,t)= d2ΩD (N,Ω;a)E(Ω;t) p p Input/Output wE(hN→er;e→aE,t)(=N;(cid:31)→a∞p,=t)−∞=E(cid:31)p(∞N;→a2,tπ)(cid:14)ej∞pνdρρD−m(N,ρ;→a)E (ρ;t) p m=−∞ 0 p m → → → Table2.ThePOAMexpansionsoftheD(N,Ω;a). POAMexpansion Expression Inputsensitivity: (cid:14) Integralform(forward) D−m(N→,ρ;→a)= 1 2πdφejmφD(N→,Ω→;→a) Sumform(reverse) D(N→,Ω→;→a)=(cid:31)2∞mπ=−∞0 D−m(N→,ρ;→a)e−jmφ Outputsensitivity: (cid:14) Integralform(forward) D (N,Ω→;→a)= 1 2πdνe−jpνD(N→,Ω→;→a) Sumform(reverse) D(pN→,Ω→;→a)=(cid:31)2∞pπ=−0∞Dp(N,Ω→;→a)ejpν Input/Outputgain: (cid:14) (cid:14) Integralform(forward) D−m(N,ρ;→a)= 1 2πdφejmφ 1 2π dνe−jpνD(N→,Ω→;→a) Sumform(reverse) D(pN→,Ω→;→a)=(cid:31)2∞pπ=−∞0 (cid:31)∞m=−∞D2−pπm(N0,ρ;→a)e−jmφejpν 4.2.Intensities Forspatiallyincoherentelectricfieldsonthecelestialsphere,theexpressionforthepropagationofintensitieshasthesameoverlap- integralformasEq.(15), (cid:12) (cid:2) (cid:2) (cid:13) (cid:17) (cid:17) (cid:2) (cid:2) (cid:12) (cid:2) (cid:2) (cid:13) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) → → 1(cid:2) → → (cid:2)2 → → → → (cid:2) → → → (cid:2)2 1(cid:2) → (cid:2)2 I(N;a) = (cid:2)(cid:2)E(N;a,t)(cid:2)(cid:2) = d2ΩP(N,Ω;a)I(Ω) = d2Ω (cid:2)(cid:2)D(N,Ω;a)(cid:2)(cid:2) (cid:2)(cid:2)E(Ω;t)(cid:2)(cid:2) . (16) 2 2 I derive this equation in Appendix D. The intensity impulse response of the mathematical systems approach is more commonly knownasthepoint-spreadfunction(PSF)inastronomy. WhentheinputelectricfieldsandDFofEq.(15)areexpandedinazimuthalFourierseriesandpluggedintoEq.(16),POAM propagationbecomesclear. There are eight differentgeneric expansionsinvolvingboth correlationsand rancors, all displayed in Table 3. The formulae for the input sensitivities, output sensitivities, and input/outputgains of the PSF are located in Table 4. I derivetheseresultsinAppendixC. ThefirsttwoexpansionsusethecorrelatedandrancoredinputsensitivitiesofthePSF.Eachtermshowshowtheinputcorrela- tionsorrancorsaremodifiedbytheinstrumentbeforetheyarriveatthespecificplane.Theseexpansionsareoflimitedusebecause eachcomponentisnotaspecific-planecorrelationorrancor,butIincludethemforthesakeofcompleteness.Eachterminthenext twoexpansionsiseitheracorrelationorrancor,writtenintermsofthetotalinputintensity.Theseformsareemployedinsituations where the exact forms of the input correlation or rancor spectra are not specified. The last four expansions are combinations of the first two, using the input/outputgains and the input correlations and rancors. The gains are a direct indication of how much inputcorrelation(m,n)(orrancorm)isconvertedintospecific-planecorrelation(p,q)(orrancor p).Theseformsmaybeusedfor anumberofdifferentpurposes,includingopticalsystemanalysis. 5. POAMpropagationthroughfreespace → → → → Spatiallyincoherentelectricfieldsonthecelestialsphere(H→Ω)travelthroughfreespacetotheobservationplane(H→R),which containstheentrancepupiloftheinstrument.Inthissection,IformtheDF,PSF,andthePOAMexpansionsforthissimplesystem andprovethat1)eachstateonthecelestialspheregivesrisetoonlythesamestateintheobservationplane;2)onlytheunrancored correlationsintheobservationarenon-zero;and3)theintegratedprobabilitiesandPOAMexpectationvalueareconserved,which meansthatnoexternaltorqueisappliedtothewavefronts. 5.1.Classicalforms TheDFforpropagationthroughfreespaceis D(N→,Ω→;→a) → D(R→,Ω→) = ej2πκR→·sˆ(Ω→) = ej2πκR→·sˆxy(Ω→) ≈ ej2πκRρcos(ψ−φ), (17a) 890 N.M.EliasII:Photonorbitalangularmomentuminastronomy → → → → → → Table3.ThePOAMexpansionsofI(N;a),foraspatiallyincoherentsource,intermsofthePOAMexpansionsofP(N,Ω;a)(Table4)andI(Ω). POAMexpansiontype Expression Input I(N→;→a)=(cid:31)∞m=−∞(cid:31)∞n=−(cid:14)∞Iˆm,n(N→;→a) (correlated) whereIˆ (N→;→a)=2π ∞dρρP−m+n(N→,ρ;→a)I (ρ) Input I(N→;→a)m=,n(cid:31)∞m=−∞Iˆm(N→(cid:14);0→a) m,n (rancored) whereIˆ (N→;→a)=2π ∞dρρP−m(N→,ρ;→a)I (ρ) Output I(N→;→a)=m(cid:31)∞p=−∞(cid:31)(cid:14)∞q=−∞0Ip,q(N;→a)ej(p−q)ν m → → → → (correlated/unexpanded) whereI (N;a)= d2ΩP (N,Ω;a)I(Ω) Output I(N→;→a)p=,q(cid:31)∞p=−∞I(cid:14)p(N;→a)epj,pqν → → → → (rancored/unexpanded) whereI (N;a)= d2ΩP (N,Ω;a)I(Ω) p p I(cnoprurte/Olautetdp/uctorrelated) wI(hN→e;r→ae)I=((cid:31)N∞p;=→a−∞)=(cid:31)(cid:31)∞q=−∞∞Ip,q(cid:31)(N∞;→a)2eπj((cid:14)p−∞q)νdρρP−m+n(N,ρ;→a)I (ρ) I(cnoprurte/Olautetdp/urtancored) wI(hN→e;r→ae)Ip=,q((cid:31)N∞p;=→a−∞)=(cid:31)(cid:31)∞q=−m∞∞=−I∞p,q2(πNn=(cid:14);−∞→a∞)deρj(ρp0−Pq)−νm(N,ρp;,q→a)I (ρ) m,n I(nrapnucto/Oreudt/pcuotrrelated) wI(hN→e;r→ae)Ip=,q((cid:31)N∞;p=→a−)∞=I(cid:31)p(∞Nm=;−→a∞)(cid:31)ej∞pν0 2π(cid:14)∞dp,ρqρP−m+n(Nm,ρ;→a)I (ρ) I(nrapnucto/Oreudt/pruantcored) wI(hN→e;r→ae)I=p((cid:31)N∞;p=→a−)∞=I(cid:31)p(m∞N=;−→a∞)2eπjnp=(cid:14)ν−∞∞dρρ0P−m(N,ρp;→a)I (ρ) m,n p m=−∞ 0 p m → → → Table4.ThePOAMexpansionsofP(N,Ω;a). POAMexpansion Expression Inputsensitivity(separate): Integralform(forward) P−m,−n(N→,ρ;→a)=D−m(N→,ρ;→a)D−n,∗(N→,ρ;→a) Sumform(reverse) P(N→,Ω→;→a)=(cid:31)∞m=−∞(cid:31)∞n=−∞P−m,−n(N→,ρ;→a)e−j(m−n)φ Outputsensitivity(separate): Integralform(forward) P (N,Ω→;→a)=D (N,Ω→;→a)D∗(N,Ω→;→a) Sumform(reverse) P(pN→,q,Ω→;→a)=(cid:31)∞p=−p∞(cid:31)∞q=−∞Ppq,q(N,Ω→;→a)ej(p−q)ν Input/Outputgain(separate): Integralform(forward) P−m,−n(N,ρ;→a)=D−m(N,ρ;→a)D−n,∗(N,ρ;→a) Sumform(reverse) P(pN→,q,Ω→;→a)=(cid:31)∞p=−∞p(cid:31)∞q=−∞(cid:31)∞m=−q∞(cid:31)∞n=−∞P−p,mq,−n(N,ρ;→a)e−j(m−n)φej(p−q)ν Inputsensitivity(combined): SInutmegrfaolrmfor(mrev(eforsrew)ard) PP(−N→m(,N→Ω→,;ρ→a;)→a=)=(cid:31)∞m21π=−(cid:14)∞02πPd−φm(eN→jm,φρP;→(aN→),eΩ→−j;m→aφ)=(cid:31)∞k=−∞P−k,−k+m(N→,ρ;→a) Outputsensitivity(combined): SInutmegrfaolrmfor(mrev(eforsrew)ard) PP(pN→(N,Ω→,Ω→;→;a→a))==(cid:31)21∞pπ=(cid:14)−0∞2πPdpν(eN−,jΩ→pν;P→a()N→e,jΩ→pν;→a)=(cid:31)∞l=−∞Pl,l−p(N,Ω→;→a) Input/Outputgain(combined#1): SInutmegrfaolrmfor(mrev(eforsrew)ard) PP(−pN→m(,NΩ→,;ρ→a;)→a=)=(cid:31)∞2p1π=−(cid:14)∞02π(cid:31)d∞mφ=−e∞jmPφ−p21πm((cid:14)N02,πρd;ν→ae)−ejp−νjmPφ(N→ej,pΩν→;→a)=(cid:31)∞k=−∞(cid:31)∞l=−∞Pl−,lk−,−pk+m(N,ρ;→a) Input/Outputgain(combined#2): Integralform(forward) P−m(N,ρ;→a)= 1 (cid:14)2πdφejmφP (N,Ω→;→a)=(cid:31)∞ P−k,−k+m(N,ρ;→a) Sumform(reverse) P(pN→,q,Ω→;→a)=(cid:31)∞2pπ=−∞0(cid:31)∞q=−∞(cid:31)∞m=p−,q∞P−p,mq(N,ρ;→a)k=e−−∞jmφpe,qj(p−q)ν Input/Outputgain(combined#3): SInutmegrfaolrmfor(mrev(eforsrew)ard) PP(−pN→m,,−Ω→n(;N→a,)ρ)==(cid:31)2∞1pπ=−(cid:14)0∞2π(cid:31)d∞mν=e−−∞jp(cid:31)νP∞n=−−m∞,−nP(N→−pm,,ρ−n;(→aN),=ρ;(cid:31)→a∞l)=−e∞−j(Pml−−,lmn−),φp−ne(jNpν,ρ;→a) → whereR= (X,Y)=(Rcosψ,Rsinψ) isthevectorintheobservationplane, X andY aretheCartesiancoordinates,R istheradial coordinate,ψisazimuthalcoordinate,κ=1/λisthewavenumber, → → → sˆ(Ω) = sinρ cosφXˆ + sinρ sinφYˆ + cosρZˆ = s (Ω) + cosρZˆ ≈ ρ cosφXˆ + ρ sinφYˆ + 1Zˆ (17b) xy N.M.EliasII:Photonorbitalangularmomentuminastronomy 891 istheunitvectorpointingtowardthecelestialsphere,andXˆ,Yˆ,andZˆ aretheunitvectorsoriginatingfromtheobservationplane. → → Onlysˆ (Ω)isrequired,sinceRandZˆ areperpendicular.TheapproximationinEq.(17b)arisesbecausethedistancebetweenthe xy celestialsphereandtheobservationplaneisextremelylarge.ItleadstotheapproximationinEq.(17a),whoseexponentialkernelis theFraunhoferpropagator.Theelectricfieldintheobservationplanethenbecomes (cid:17) E(N→;→a,t) → E(R→;t) = d2Ωej2πκRρcos(ψ−φ)E(Ω→;t). (17c) Also,thisDFleadstoaPSFofunity,whichmeansthattheintensitybecomes (cid:17) → → → → I(N;a) → I(R) = d2ΩI(Ω) = Ics = constant. (18a) Aconstantintensityovertheentireobservationplanesuggeststhatthesourceemitsaninfiniteamountofenergy,whichisimpossi- ble.Inreality,theintensityisconstantoveraverylargespherecenteredonthesource.Locally,eachpointonthespheremaybewell approximatedbyanobservationplanethatis largerthanthe entrancepupilofanypracticalastronomicaltelescope,whichmeans thattheintensityintegralovertheentrancepupil (cid:17) → Ient = d2RI(R) = A Ics = constant (18b) ent ent willbefinite,whereA istheareaoftheentrancepupil. ent 5.2.POAMexpansions Eachstateintheobservationplanehastheform (cid:17) (cid:17) ∞ ∞ E (R;t) = 2π dρρD−m(R,ρ)E (ρ;t) = jm2π dρρJ (2πκRρ)E (ρ;t) = jmH [E (ρ;t);R], (19) m m m m m m m 0 0 where H [E (ρ;t);R]is themth-orderHankeltransform(Bracewell1986),and J (·)isthemth-orderBesselfunctionofthe first m m m kind(AppendixE).Thisequationshowsthateachstateonthecelestialspheregivesriseonlytothesamestateintheobservation plane, which meansthat propagationthroughfree space doesnotapply externaltorque.A small uniformm (cid:2) 0 disk at the FOV centerproducesdecayingringswithlargeradiiintheobservationplane.Asthediskradiusincreases,theringradiidecrease. Thecorrelationsintheobservationplaneare (cid:17) (cid:17) ∞ ∞ Im,n(R) = 2π dρρP−mm,n,−n(R,ρ)Im−n(ρ) = jm−n2π dρρJm(2πκRρ)Jn(2πκRρ)Im−n(ρ). (20) 0 0 Onlytheunrancoredcorrelationsintheobservationplanearenon-zero,whichmeansthat (cid:17) → (cid:22)∞ (cid:22)∞ ∞ (cid:22)∞ I(R) = I (R) = I (R) = 2π dρρI (ρ) = Ics , (21a) 0 m,m m,m m,m m=−∞ m=−∞ 0 m=−∞ wherethesecondlastequalitycomesfromAppendixE,andthelastequalitycomesfromEq.(14b).Notonlyisthesumconstant (Eq.(18a)),buteachtermisconstantaswell.UsingEq.(14b)again,Ifindthat (cid:14) 2π RentdRRI (R) AentIcs pent = 0 m,m = m,m = pcs , (21b) m,m Ient AentIcs m,m whereR istheradiusoftheentrancepupil.Theintegratedprobabilityintheentrancepupilisidenticaltotheintegratedprobability ent on the celestial sphere.Therefore,the POAM expectationvalueis conserved(Lˆent = Lˆcs) and noexternaltorqueis appliedto the Z Z wavefronts,asshownpreviously. 6. POAMpropagationthroughasingletelescope → → → Electricfieldsintheobservationplane(H→R),whichoriginatefromaspatiallyincoherentsourceonthecelestialsphere(H→ → → → Ω) and propagatethrough free space, must be sent to an instrument for analysis (H → r). In this section, I employ a telescope for thistask (Fig. 1).Thetelescope hasanexitpupil,whichrepresentsthe imageof the entrancepupilplusaberrations.The exit pupilisincludedsothatPOAMdevices(e.g.,mask,hologram,sorter,etc.)ornon-POAMdevices(e.g.,deformablemirror)maybe introducedintotheopticalsystem.IformtheDF, PSF, andthePOAM expansionsforanunaberratedtelescopeandprovethat1) theinputsensitivities,outputsensitivities,andinput/outputgainsoftheDFcanbeexpressedintermsthesameprincipalDFPOAM functions;2)thesensitivities,outputsensitivities,andinput/outputgainsofthePSFcanbeexpressedintermsofthesameprincipal PSFfunctions;3)theintegratedprobabilitiesandPOAMexpectationvaluesareconserved,whichmeansthatnoexternaltorqueis appliedtothewavefronts. 892 N.M.EliasII:Photonorbitalangularmomentuminastronomy Fig.1.Theschematicdiagramofpropagationfromasourceonthecelestialspherethroughfreespaceandtelescopetotheimageplane. 6.1.Classicalforms → When the integral over Ω in Eq. (17c) is removed, the result is the electric field in the observation plane due to a point source (impulse)onthecelestialsphere,or E(R→,Ω→;t) = ej2πκR→·→sxy(Ω→)E(Ω→;t). (22a) Theelectricfieldintheexit-pupilplaneisamodifiedversionofEq.(22a) E(R→,Ω→;t) = ej2πκM→R·→sxy(Ω→)D(R→,Ω→)E(Ω→;t), (22b) → → whereR=R/M =(X,Y)=(Rcosχ,Rsinχ)isthevectorinthetheexit-pupilplane,XandYaretheCartesiancoordinates,Ris → → theradialcoordinate,χistheazimuthalcoordinate,D(R,Ω)isanamplitude/phaseaberrationfunctionoftheinstrumentfront-end projected into the exit-pupilplane, and M is the amount of beam compression between the entrance- and exit-pupilplanes. The electricfieldintheimageplaneduetoapointsourceonthecelestialsphereis (cid:17) E(→r,Ω→;t) = 1 d2Re−j2πκ→rf·→RE(R→,Ω→;t) = D(→r,Ω→)E(Ω→;t), (23a) A ep where (cid:17) D(→r,Ω→) = 1 d2Re−j2πκM[→Θr−→sxy(Ω→)]·→RD(R→,Ω→) (23b) A ep is the telescope DF, A = πR2 is the area of the exit pupil, R is the radius of the exit pupil, Θ = Mf is the plate scale (units ep ep ep → are length per angle, e.g. μm arcsec−1), f is the focal length between the exit-pupil plane and the image plane, r = (x,y) = (rcosξ,rsinξ)isthevector,xandyaretheCartesiancoordinates,ristheradialcoordinate,andξistheazimuthalcoordinate. The overlapintegrals, (cid:17) → → → → E(r;t) = d2ΩD(r,Ω)E(Ω;t) (24a) and I(→r) = (cid:17) d2ΩP(→r,Ω→)I(Ω→) = (cid:17) d2Ω (cid:2)(cid:2)(cid:2)(cid:2)(cid:2)D(→r,Ω→)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)2 (cid:12)1(cid:2)(cid:2)(cid:2)(cid:2)E(→r;t)(cid:2)(cid:2)(cid:2)(cid:2)2(cid:13), (24b) 2 → → → → areexpressedintermsoftheDFandPSFandhavethesameformsasinSect.4(N→ r and a → 0). → → ConsideranunaberratedtelescopewithD(R,Ω)→D =realconstant(thephaseisarbitrary,soIchoosezero).TheDFthen 0 becomes (cid:4) (cid:5) → → → → → → D(r,Ω) → D(r,Ω) = D J 2πκR Γ(r,Ω) , (25a) 0 1 tel

Description:
Key words. instrumentation: miscellaneous – methods: analytical – methods: while the electric fields arising from the celestial sphere are generally
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.