ebook img

Photodisintegration of $^3H$ in a three dimensional Faddeev approach PDF

0.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Photodisintegration of $^3H$ in a three dimensional Faddeev approach

Photodisintegration of 3H in a three dimensional faddeev approach S.Bayegan1,a,M.A.Shalchi1,andM.R.Hadizadeh2 1 DepartmentofPhysics,UniversityofTehran,P.O.Box14395-547,Tehran,Iran 2 Instituto de F´ısica Teo´rica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bl. II, Barra Funda, 01140-070,Sa˜oPaulo,Brazil 0 Abstract. Aninteractionofaphotonwith3HisinvstigatedbasedonathreedimensionalFaddeevapproach. 1 0 Inthisapproachthethree-nucleonFaddeevequationswithtwo-nucleoninteractionsareformulatedwithconsid- 2 eration of the magnitude of the vector Jacobi momenta and the angle between them with the inclusion of the spin-isospin quantum numbers, without employing a partial wave decomposition. In this formulation the two n bodyt-matricesandtritonwavefunctionarecalculatedinthethreedimensionalapproachusingAV18potential. a Inthefirststepweusethestandardsinglenucleoncurrentinthisarticle. J 3 1 Introduction position are two-body off-shell t-matrices, which depend ] h onthemagnitudesoftheinitialandfinalJacobimomenta t and the angle between them. Fachruddin et al. have cal- - Sincetheearlydaysofthestudyofthenuclearphysicsso cl manyeffortshavebeenperformedon3Nsystemsconsider- culatedtheNNboundandscatteringstatesina3Drepre- u ingrealorvirtualphotoninteractions[1]-[2].Alsoseveral sentationusingtheBonn-BandtheAV18potentials[15]- n studiesonthebehaviorof3Nboundstatesinrealorvirtual [16].Recentlytherehasbeeneffortstodothesamecalcu- [ lation using chiral potential [23]. our aim in this work is photon absorbtion have been reported[3]-[4]. Before six- to formulate photodisintegration of 3H in a three dimen- 1 ties variational approach was used for these calculations sional Faddeev approach. In the firststep we ignore three v and works using this approach are still continuing. After 2 introducing Faddeev formulation for three body systems bodyforcesandwejustusethesinglenucleoncurrent.We 6 [5]-[6],neweffortsusingthisschemewerestarted.Asan willuseAV18potentialandtritonwavefunctionwhichhas 3 example one can point out the early calculations of elec- beencalculatedinourpreviouswork[20]. 0 trodisintegration [7] and photodisintegration[8] with 3He Thismanuscripthasbeenorganizedasfollow:insec- 1. and3H.Animprovementinthephotodisintegrationcalcu- tion 2 we explain our basic states and we evaluate all of 0 lation of the bound and 3N continuum with the same 3N the matrix elements in these basis. In section 3 we intro- 0 hamiltonianhavebeenperformed[9].Therearealsoother duceoursingularityproblemanditssolution.Wefinishin 1 approaches to calculate electromagnetic interactions with section4withasummaryandoutlook. : v light nuclei such as Green-function-Monte-Carlo method i [10],hypersphericalharmonicexpansions[11],andLorentz X integraltransform(LIT)method[12].Thereisaverygood 2 Integral equation of nuclear matrix r review of Faddeev calculations on the interaction of real a elements without partial wave or virtual photon with 3He [13]. In this work like previ- decomposition ous calculations the partial wave decomposition has been used. In PW approach one should sum all PW to max- imum angular momentum where the calculation is con- Tocalculatethephotodisintegrationobservablewefirstneed verged. The problem is that in higher energies this max- tocalculatenuclearmatrixelementsintheFaddeevscheme. imum angular momentum increases and we should solve FormoredetailsseeRef.[13]. morecomplicatedequations.Toavoidthiscomplexityone should use vector momentum as basis states [14]. To this N = 1 φ (1+tG )PU (1) 0 0 aim in the past decade the main steps have been taken 2h | | i byOhio-Bochumcollaboration(Elster,Glo¨ckleetal.)and Bayeganetal.toimplementthe3Dapproachinfew-body U =(1+P)Jψ +tG PU (2) 0 boundandscatteringcalculations(seeforexamplesRefs. | i | i | i [15]-[22]).Itshouldbeclearthatthebuildingblockstothe InaboveequationstisNNt-operatorwhichobeysLipmann- few-bodycalculationswithoutangularmomentumdecom- Schwingerequations,G isfreepropagator,Pispermuta- 0 tion operator, ψ is three body bound state and U is an | i | i a e-mail:[email protected] axillarystate.Threebodyforceshavebeenignored. φ is 0 | i EPJWebofConferences asubsectionofthefullyantisymmetricfreestate, Φ ,in Where: 0 | i whichnucleons2and3areinsubsystem. 1 1 π =q+ q π = q+q (10) 1 2 ′ 2 2 ′ Φ =(1+P)φ (3) | 0i | 0i Nowwithrespecttoaboverelationandsymmetryconsid- φ0 isalsoourbasicstatetosolvetheintegralequation erationswecanevaluateequations(7)and(8)asfollow: | i (2)andisantisymmetricunderpermutationofnucleons2 1 1 3 1 and3. N = p q, p qm m m ν ν ν U 2{h−2 − 4 − 2 2 3 1 2 3 1| i φ0 pqm1m2m3ν1ν2ν3 a (4) 1p+ 3q, p 1qm m m ν ν ν U | i≡| i h−2 4 − − 2 3 1 2 3 1 2| i} In equation (4) p and q are jacobi momenta and m’s 1 andν’sarethespinandisospinoftheindividualnucleons + d3qa pm m ν ν t q+q,m m ν ν a respectively. X Z h 2 3 2 3||2 ′ ′2 ′3 2′ 3′i m m Orthonormalityandcompletenessrelationsoftheseba- ′2 ′3 ν ν sicstatescanbeconsideredasbellow: 2′ 3′ 1 1 q q, q m m m ν ν ν U (11) q2+q2+qq h−2 ′− ′ ′2 ′3 1 2′ 3′ 1| i ahpqm1m2m3ν1ν2ν3|p′q′m′1m′2m′3ν1′ν2′ν3′ia E− ′m · ′ 1 = δ(p p)δ δ δ δ pq, m m m ν ν ν U 2{ − ′ m2m′2 m3m′3 ν2ν2′ ν3ν3′ h 1 2 3 1 2 3| i δ(p+p)δ δ δ δ δ(q q)δ δ (5) = pq, m1m2m3ν1ν2ν3(1+P)Jψ − ′ m2m′3 m3m′2 ν2ν3′ ν3ν2′} − ′ m1m′1 ν1ν1′ h | |1i + d3qa pm m ν ν t q+q,m m ν ν a X Z h 2 3 2 3||2 ′ ′2 ′3 2′ 3′i m m ′2 ′3 X Z d3pd3q|pqm1m2m3ν1ν2ν3ia ν2′ ν3′ m m m 1 1 1 2 3 q q, q m m m ν ν ν U (12) ν1 ν2 ν3 E q2+q′2+q·q′h−2 ′− ′ ′2 ′3 1 2′ 3′ 1| i a pqm m m ν ν ν 1 (6) − m × h 1 2 3 1 2 3|≡ Thefirstermintheequation(12)canbeevaluatedas: Considering these properties we can rewrite the integral a pq, m m m ν ν ν (1+P)Jψ 1 2 3 1 2 3 equations(1)and(2)inourbasicstats. h | | i = d3pd3q N = 1a pqm m m ν ν ν (1+tG )PU mX,ν Z ′ ′ 2 h 1 2 3 1 2 3| 0 | i a pq′,′m m m ν ν ν (1+P)Jpq, m m m ν ν ν a 1 h 1 2 3 1 2 3| | ′ ′ ′1 ′2 ′3 1′ 2′ 3′i = 2ahpqm1m2m3ν1ν2ν3|P|Ui ×ahp′q′, m′1m′2m′3ν1′ν2′ν3′|ψi (13) 1 Nowweconcentrateontheelementsoftheseequationsi.e. + a pqm m m ν ν ν tG PU (7) 2 h 1 2 3 1 2 3| 0 | i current,two-bodyt-matrixandtritonwavefunction,more precisely. a pqm m m ν ν ν U 1 2 3 1 2 3 h | i =a pqm m m ν ν ν (1+P)Jψ 2.1 current 1 2 3 1 2 3 h | | i +a pqm m m ν ν ν tG PU (8) 1 2 3 1 2 3 0 Consideringthesymmetrypropertieswehave: h | | i The effect of permutation operator on our basic states a pq, m m m ν ν ν (1+P)JSNψ 1 2 3 1 2 3 h | | i canbeconsideredasfollow: =3a pq, m m m ν ν ν (1+P)JSN(1)ψ 1 2 3 1 2 3 h | | i pqm m m ν ν ν Ppqm m m ν ν ν (14) h 1 2 3 1 2 3| | ′ ′ ′1 ′2 ′3 1′ 2′ 3′i 1 3 1 Matrixelementsofsinglenucleoncurrentcanbeevaluated =δ(p+ p + q)δ(q p + q) 2 ′ 4 ′ − ′ 2 ′ asfollow: δ δ δ δ δ δ × m1m′2 1m2m′3 m33m′1 ν1ν2′ ν2ν3′ ν3ν1′1 ahpq, m1m2m3ν1ν2ν3|J(1)|p′q′, m′1m′2m′3ν1′ν2′ν3′i +δ(p+ 2p′− 4q′)δ(q+p′+ 2q′) =δ(q′ q+ 2Q) − 3 δ δ δ δ δ δ × m1m′3 m2m′1 m3m′2 ν1ν3′ ν2ν1′ ν3ν2′ 1 =δ(p+π2)δ(p′ π1) ×2[δ(p−p′)δm2m′2δm3m′3δν2ν2′δν3ν3′ − δ δ δ δ δ δ δ(p+p)δ δ δ δ ] J (Q,q) × m1m′2 m2m′3 m3m′1 ν1ν2′ ν2ν3′ ν3ν1′ − ′ m2m′3 m3m′2 ν2ν3′ ν3ν2′ × m1 m′1 +δ(p π )δ(p +π ) ν ν − 2 ′ 1 1 1′ δ δ δ δ δ δ (9) (15) × m1m′3 m2m′1 m3m′2 ν1ν3′ ν2ν1′ ν3ν2′ 19th InternationalIUPAPConferenceonFew-BodyProblemsinPhysics InaboveequationQisthemomentumofphoton.Weneed to rewrite the single nucleon current operator in a form which is suitable for our basic states. The current opera- tπSt p,p,cosθ =VπSt p,p,θ ΛΛ ′ ΛΛ ′ torwhichwewilluseis: ′ ′ (cid:0) 1(cid:1) (cid:0) (cid:1) 1 J =GE(Q)k12m+Nk′1 + 2miNGM(Q)σ×(k1−k′1) (16) + 2Z dp′′p′′2Z1 d(cid:0)cosθ′′(cid:1)vΛπS′1t,Λ(cid:0)p′,p′′,θ′,θ′′(cid:1)G0(cid:0)p′′(cid:1) − tπSt p ,p,θ Which is summation of convection current and spin cur- 1Λ ′′ ′′ rent.G (Q)andG (Q)areelectricandmagneticformfac- (cid:0) (cid:1) 1 E M 1 torsrespectively.Fortheconvectionpartwehave: + dp p 2 d cosθ vπSt,Λ p,p ,θ ,θ G p 2Z ′′ ′′ Z ′′ Λ′0 ′ ′′ ′ ′′ 0 ′′ (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) k1+k′1 =2q+Q+ 32K (17) t0πΛSt p′′,p,θ′′−1 (22) (cid:0) (cid:1) As we will show we have to choose coordinate system in Where which the z axis is along the Q vector and we also need tensor component of current so the second and the third 2π tTehrmussfoofrtthheecroignhvtechtaionndcsuidrreenotfweequhaatvioen:(17) will vanish. vΛπS′Λt,′Λ′(p′,p′′,θ′,θ′′)=Z dφ′′e−iΛ(φ′−φ′′)VΛπS′Λt′′ p′,p′′ (cid:0) (cid:1) 0 q Jco1nvec =GE(Q)m±1 (18) (23) ± N Andthetensorcomponentofspinpartcanalsobeeval- uatedas: 2.3 tritonwavefunction √2Q For evaluating the Triton wave function we need to make J±S1pin = −2mN GM(Q)S± (19) athreeolanteiownhbiecthwheaesnbteheinswcaalvceulfautendctiinonthienfooullrobwaisnigcbstaastiess[2t0o]: 1 1 2.2 two-bodyt-matrix pq(s )Sm (t )Tm ψ = pq,X ,αψ (24) S T pq h 2 2 | i h | i Two body t-matrices can be related to the one which cal- culatedinhelicitybasis: Wecanrelatethesestatestoourfreespinandisospinstates withClebsch-Gordancoefficients. 1 ahpm1m2nν1ν2|t|p′m1m2ν1′ν2′ia = 4δ(ν1+ν2),(ν1′+ν2′) gγα = γα (25) h | i 11 11 ei(Λ0φp−Λ′0φ′p)X(1−ηπ)C(22t,ν1ν2)C(22t,ν1′ν2′) Where πst 11 11 C(22S,m1m2Λ0)C(22S,m′1m′2Λ′0) |αi=|(s21)SmS,(t21)TmTi XΛΛ′ dΛS0Λ(θp)dΛS′0Λ′(θ′p)PeiN(φp−dφ′pΛS)′dΛNS(θΛp(θp′p))dNSΛ′(θ′p) It is very import|aγnit=to|mm1emn2timon3νt1hνa2tνt3hie spin of the nu(c2l6e-) tπSt(p,p,cosθ ,z) (20) ΛΛ′ ′ pp′ onsisquantizedinthedirectionofthezaxiswhichinthe calculationofwavefunctionithasbeenchosentobeinthe Intheaboverelationz = E 3q2 istheenergyofsubsys- directionofq.Butwehavetoconsiderthezaxisalongthe − 4m tem. As we know two-body function has a singularity in direction of incident photon Q. So we should first rotate theenergyofdeuteron,z = Ed.Toremovethissingularity the spin of the nucleons in our basis to be settled in the weshouldconsidert-operatorasfollow: direction of q axis. Then we should use Clebsch-Gordan coefficients to obtain the wave function in the calculated basismentionedintheequation(24): a pm m nν ν tpm m ν ν a h 1 2 1 2|| ′ 1 2 1′ 2′i a pm m nν ν tˆpm m ν ν a pqm m m ν ν ν ψ = h 1 2 1 2|| ′ 1 2 1′ 2′i (21) h 1 2 3 1 2 3| i z−Ed = X XDm1m′1(θq,φq)Dm2m′2(θq,φq)Dm3m′3(θq,φq)gγα Twobodyt-matrixinhelicitybasishasbeencalculated m′1m′2m′3 α before[15]. pq,Xpq,αψ (27) ×h | i EPJWebofConferences 3 Singularity problem q/2+q′′ dp pG¯(q,q ,p) dqˆ δ(x x ) Inordertoconsiderthesingularityproblemwecanrewrit- Z ′ ′ ′′ ′ Z ′′ ′′− 0 ten the equation (11) an (12) in a unified form ignoring |q/2−q′′| isospindependentwhichissimilartospindependent. Um′2m′3m1(p′′πˆ2,q′′,Q)tˆma2m3m′3m′3(p,p′πˆ1,z) (31) U (p,q,Q)=U (p,q,Q) m1m2m3 m′1m2m3 IntheaboveequationG¯whichisalwayspositiveisdefined + d3q Um′2m′3m1(π2,q′′,Q)tˆma2m3m′3m′3(p,π1,z) as: mX′2m′3Z ′′ E− q2+q′′2m−q·q′′ E+iǫ−Ed− 34qm2 G¯(q,q′′,p′)= 1 (32) (28) E 3q′′2 + 1(p2+ 3q2) − d− 4m m ′ 4 Tosolvethisintegralequationweshouldevaluatesingular- x = cosθ indicatestheanglebetweenqandq and ′′ ′′ ′′ ity in the denominator of the propagator which is a func- x isintroducedasfollow: 0 tion of q and angle between q and q. So instead of sin- ′′ ′′ gularpointwehavearegionofsingularityinq q plane. 1 1 1 1 There is a solution to this moving singularity i−n R′′ef.[24]. x0 = qq (p′2− 4q2−q′′2)= qq (p′′2− 4q′′2−q2) ′′ ′′ For using this method we have to put z axis along the q. (33) Butbecauseofsimplificationincurrentoperatorandfinal cross section we should choose the z axis in the direction ofthemomentumofthephoton,Q.Soinordertoevaluate 4 Summary and outlook thesingularityweshoulduseanothermethodwhichisin- troducedinRef.[25].Thereforeoneshouldseparateangle partofdeltafunctionsasfollow: InthispaperwehaveformulatedtheFaddeevintegralequa- tionsforcalculatingthephotodisintegrationobservableof tritoninathreedimensionalapproach.Tothisaimwein- δ(p π )δ(p π ) δ(p′+π1)δ(p′′−π1)= ′p−′2 1 ′p′′−′2 1 tirnodvueccteodrofourrmbsasaics wstaetlelsaswihnidchivicdounatlaisnpsinjaacnodbiismoospminenotaf δ(pˆ +πˆ)δ(pˆ πˆ) each nucleon. So we have avoided to decompose angle ′ 1 ′′ 1 − δ(p π )δ(p π ) states in terms of angular momentum states (partial wave δ(p′−π1)δ(p′′+π1)= ′p−2 1 ′p′−2 1 approach)whichistraditionallyusedtosolvethesekindof ′ ′′ equations.Thefinalintegralequationsarelesscomplicated δ(pˆ πˆ)δ(pˆ +πˆ) (29) ′− 1 ′′ 1 than the PW ones and are unique in number of the equa- Andthentheintegralequationcanberewriteasfollow: tions in all energies. We have also explained about over- comingofthemovingsingularityinourwork. ThecalculationofthisobservableusingtheAV18po- Um1m2m3(p,q,Q)=Um′1m2m3(p,q,Q) tentialisunderwayandtheresultswillbepublishedsoon. Adding two and three body currents as well as three + d3q dpdp Z ′′ ′ ′′ bodyforcesinourcalculationsareotherfuturemajorworks. X m′2m′3 The same calculation for radiative capture is also under Um′2m′3m1(π2,q′′,Q) tˆma2m3m′3m′3(p,π1,z) consideration. E− m1(p′′2+ 34q′′2)E+iǫ−Ed− 34qm2 (30) Acknowledgments Aftersomesimplificationtheintegralequationtransforms Thisworkwassupportedbycenterofexcellenceonstruc- tothisequation: tureofmatter,DepartmentofPhysics,UniversityofTehran. U (p,q,Q)=U (p,q,Q) m1m2m3 m′1m2m3 2 ∞ 1 + dp p References qmX′2m′3Z0 ′ ′E+iǫ− m1(p′2+ 43q2) 1. E.Wigner,Phys.Rev.43,(1993)252. q/2+p′ 2. E.Gerjuoy,J.Schwinger,Phys.Rev.61(1942)138. Z dq′′q′′G¯(q,q′′,p′)Z dqˆ′′δ(x′′−x0) 3. H.Collardetal.,Phys.Rev.Lett.11,(1963)132. 4. L.I. Schiff, H. Collard, R. Hofstadter, A. Johansson, q/2 p | − ′| M.R.Yearian,Phys.Rev.Lett11(1963)387. U (p πˆ ,q ,Q)tˆa (p,pπˆ ,z) m′2m′3m1 ′′ 2 ′′ m2m3m′3m′3 ′ 1 5. L.D.Faddeev,Zh.Eksp.Theor.Fiz.39(1960)1459 6. E.O.Alt,P.Grassberger,W.Sandhas,Nucl.Phys.B2 2 ∞ 1 dq q (1967)167 −qmX′2m′3Z0 ′′ ′′E+iǫ−Ed− 34qm2 7. D.R.Lehman,Phys.Rev.Lett.23(1969)1339 19th InternationalIUPAPConferenceonFew-BodyProblemsinPhysics 8. I.R. Barbour, A.C. Phillips, Phys. Rev. Lett. 19 (1967)1388 9. B. F. Gibson and D. R. Lehman, Phys. Rev. C11 (1975)29 10. J.Carlson,Phys.Rev.C36(1987)2026 11. M. Viviani, A. Kievsky, L.E. Marcucci, S. Rosati, R. Schiavilla,Phys.Rev.C61(2000)064001. 12. V.D. Efros, W. Leidemann, G. Orlandini, Phys. Lett. B338 13. J.Golaketal.,Phys.Rept.415(2005)89 14. R.A.Rice,Y.E.Kim,Few-BodySyst.14(1993)127 15. I. Fachruddin, Ch. Elster, Glo¨ckle, Phys. Rev. C 62 (2000)044002. 16. I.Fachruddin,Ch.Elster,W.Glo¨ckle,Phys.Rev.C63 (2001)054003 17. I. Fachruddin, Ch. Elster, W. Glo¨ckle, Phys. Rev. C 68(2003)054003 18. I.Fachruddin,W.Glo¨ckle,Ch.Elster,A.Nogga,Phys. Rev.C69(2004)064002 19. M. R. Hadizadeh and S. Bayegan, Eur. Phys. J. A 36 (2008)201 20. S.Bayegan,M.R.Hadizadeh,andM.Harzchi,Phys. Rev.C77(2008)064005 21. S.Bayegan,M.R.Hadizadeh,andW.Glo¨ckle,Prog. Theor.Phys.120(2008)887 22. S. Bayegan, M. Harzchi and M. R. Hadizadeh, Nucl. Phys.A814(2008)21 23. S. Bayegan, M. A. Shalchi, M. R. Hadizdeh, Phys. Rev.C79(2009)057001 24. H.Liu,Ch.Elster,W.Gloeckle,Phys.Rev.C72(2005) 054003 25. Ch.Elster,W.Glo¨ckle,H.Witala,FewBodySyst.45 (2009)1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.