Photochemical Ligation Techniques for Carbohydrate Biosensors and Protein Interaction Studies Oscar Norberg Doctoral Thesis Stockholm 2012 Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av doktorsexamen i kemi med inriktning mot organisk kemi fredagen den 30 mars kl 10.00 i sal F3, KTH, Lindstedtsvägen 26, Stockholm. Avhandlingen försvaras på engelska. Opponent är Prof. Stéphane Vincent, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgien ISBN 978-91-7501-271-1 ISSN 1654-1081 TRITA-CHE Report 2012:10 © Oscar Norberg, 2012 E-print, Stockholm Oscar Norberg, 2012: “Photochemical Ligation Techniques for Carbohydrate Biosensors and Protein Interaction Studies”, KTH Chemical Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Abstract This thesis concerns the development of surface ligation techniques for the preparation of carbohydrate biosensors. Several methodologies were developed based on efficient photochemical insertion reactions which quickly functionalize polymeric materials, with either carbohydrates or functional groups such as alkynes or alkenes. The alkyne/alkene surfaces were then treated with carbohydrate azides or thiols and reacted under chemoselective Cu-catalyzed azide-alkyne cycloaddition (CuAAC) or photo-radical thiol-ene/yne click chemistry, thus creating a range of carbohydrate biosensor surfaces under ambient conditions. The methodologies were evaluated by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) flow through instrumentations with recurring injections of a range of lectins, allowing for real-time analysis of the surface interactions. The developed methods were proven robust and versatile, and the generated carbohydrate biosensors showed high specificities and good capacities for lectin binding. The methods were then used to investigate how varying the glycan linker length and/or a sulfur-linkage affect the subsequent protein binding. The survey was further explored by investigating the impact of sulfur in glycosidic linkages on protein binding, through competition assays with various O/S-linked disaccharides in solution interactions with lectins. Keywords: Carbohydrates, Biosensors, CuAAC, Photochemistry, Thiol-ene/yne, Perfluorophenylazide (PFPA), Lectins, Molecular recognition, Quartz crystal microbalance (QCM), Surface plasmon resonance (SPR) III List of Publications This thesis is based on the following papers, referred to in the text by their Roman numerals I-VI: I. Photo-Click Immobilization of Carbohydrates on Polymeric Surfaces - A Quick Method to Functionalize Surfaces for Biomolecular Recognition Studies Oscar Norberg, Lingquan Deng, Mingdi Yan and Olof Ramström Bioconjugate Chem., 2009, 20, 2364-2370 II. Photo-Click Immobilization on Quartz Crystal Microbalance Sensors for Selective Carbohydrate-Protein Interaction Analyses Oscar Norberg, Lingquan Deng, Teodor Aastrup, Mingdi Yan and Olof Ramström Anal. Chem., 2011, 83, 1000-1007 III. Stereoselective Synthesis of Light-Activatable Perfluorophenylazide- Conjugated Carbohydrates for Glycoarray Fabrication and Evaluation of Structural Effects on Protein Binding by SPR Imaging Lingquan Deng, Oscar Norberg, Suji Uppalapati, Mingdi Yan and Olof Ramström Org. Biomol. Chem., 2011, 9, 3188-3198 IV. Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution Oscar Norberg, Irene H. Lee, Teodor Aastrup, Mingdi Yan and Olof Ramström Biosens. Bioelectron., 2012, in press V. Stereocontrolled 1-S-Glycosylation and Comparative Binding Studies of Photoprobe-Thiosaccharide Conjugates with Their O-Linked Analogs Lingquan Deng, Xin Wang, Suji Uppalapati, Oscar Norberg, Hai Dong, Adrien Joliton, Mingdi Yan and Olof Ramström Submitted for publication IV VI. Synthesis and Binding Affinity Analysis of α1-2- and α1-6-O/S-linked Dimannosides for the Elucidation of Sulfur in Glycosidic Bonds using Quartz Crystal Microbalance Sensors Oscar Norberg, Germain Fauquet, Ann-Kathrin Saur, Teodor Aastrup, Mingdi Yan and Olof Ramström Preliminary manuscript Book chapters not included in this thesis: VII. Dynamic Combinatorial Chemistry – Ligands for Biomolecules Olof Ramström, Luis Amorim, Rémi Caraballo and Oscar Norberg In: Dynamic Combinatorial Chemistry (Eds.: J. Reek, S. Otto) Wiley-VCH Verlag GmbH & Co. 2010, 109-150 VIII. Synthesis of Glyconanomaterials via Photo-Initiated Coupling Chemistry Xin Wang, Oscar Norberg, Lingquan Deng, Olof Ramström and Mingdi Yan In: ACS Symp. Ser., 2011, 1091, 49-67 V Author’s Contribution The following is a description of my contribution to Publications I to VI, as requested by KTH. Paper I: I contributed to the formulation of the research problems, performed the experimental work and wrote the manuscript. Paper II: I contributed to the formulation of the research problems, performed the experimental work and wrote the manuscript. Paper III: I contributed to the formulation of the research problems, performed part of the experimental work and wrote part of the manuscript. Paper IV: I contributed to the formulation of the research problems, performed the majority of the experimental work and wrote the manuscript. Paper V: I contributed to the formulation of the research problems and performed part of the experimental work. Paper VI: I contributed to the formulation of the research problems, performed part of the experimental work and wrote the manuscript. Part of the synthesis was performed by Diploma worker Germain Fauquet and Erasmus student Ann-Kathrin Saur under my supervision. VI Abbreviations Ac Acetyl AcOH Acetic acid AcSH Thioacetic acid ACVA 4,4-Azobis(4-cyanovaleric acid) AgOTf Silver trifluoromethanesulfonate aq. Aqueous Bn Benzyl BSA Bovine serum albumin BS-II Griffonia (Bandeiraea) simplicifolia lectin II Bz Benzoyl CCD Charge-coupled device CI Confidence interval Con A Concanavalin A Cu(OTf) Copper(II) trifluoromethanesulfonate 2 CuAAC Copper(I)-catalyzed azide-alkyne cycloaddition DCM Dichloromethane DIBAL-H Diisobutylaluminum hydride DIPEA N,N-Diisopropylethylamine DMAP 4-Dimethylaminopyridine DMF Dimethylformamide DMPU 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone DMSO Dimethyl sulfoxide DNA Deoxyribonucleic acid DTT Dithiothreitol ((2S,3S)-1,4-bis(sulfanyl)butane-2,3-diol) EC The half maximal effective concentration 50 EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide ELISA Enzyme-linked immunosorbent assay ESI-MS Electrospray ionization mass spectrometry VII EtOAc Ethyl acetate Gal β-D-Galactose GlcNAc N-Acetyl-β-D-glucosamine h Hour Hex Hexane HIV Human immunodeficiency virus HMPA Hexamethylphosphoramide HSA Human serum albumin IC The half maximal inhibitory concentration 50 ITC Isothermal titration calorimetry K Association constant a K Dissociation constant d l Liquid LAH Lithium aluminum hydride Man α-D-Mannose MS Mass spectrometry M Molecular weight w NBS N-Bromosuccinimide (1-Bromo-2,5-pyrrolidinedione) NHS N-Hydroxysuccinimide NIS N-Iodosuccinimide NMR Nuclear magnetic resonance NOE Nuclear overhauser effect OEG Oligoethylene glycol PAAm Polyacrylamide PBS Phosphate buffered saline PEG Polyethylene glycol PEO Polyethylene oxide PEOX Poly(2-ethyl-2-oxazoline) PFPA Perfluorophenylazide PhCHO Benzaldehyde VIII pI Isoelectric point PNA Peanut agglutinin (Arachis hypogaea) PP Polypropylene PS Polystyrene PSA Pisum sativum agglutinin QCM Quartz crystal microbalance quant. Quantitative R2 Coefficient of determination RCA-I Ricinus communis agglutinin I rt Room temperature s.m. Starting material sat. Saturated SAM Self assembled monolayer SD Standard deviation SEM Standard error of the mean SPR Surface plasmon resonance SPRi Surface plasmon resonance imaging STD Saturation transfer difference TBABr Tetra-N-butylammonium bromide TBAI Tetra-N-butylammonium iodide TBANO Tetra-N-butylammonium nitrite 2 TBASAc Tetra-N-butylammonium thioacetate TEA Triethylamine THF Tetrahydrofuran Thiol-ene Thiol-alkene Thiol-yne Thiol-alkyne TMSOTf Trimethylsilyl trifluoromethanesulfonate Ts p-Toluenesulfonyl UV Ultraviolet WGA Wheat germ agglutinin (Triticum vulgaris) IX Table of Contents Abstract ......................................................................................................................... III List of Publications ....................................................................................................... IV Abbreviations ............................................................................................................... VII Table of Contents ........................................................................................................... X 1. Introduction ............................................................................................. 1 1.1. Carbohydrates .................................................................................................... 1 1.1.1. Chemical Aspects of Carbohydrates ......................................................... 2 1.1.2. Carbohydrate Synthesis ............................................................................ 3 1.2. Carbohydrates in Glycobiology ......................................................................... 4 1.3. Lectins in Biology and Technology ................................................................... 5 1.4. Methods to Study Protein Interactions with Glycans ........................................ 7 1.4.1. Isothermal Titration Calorimetry ............................................................. 7 1.4.2. Quartz Crystal Microbalance ................................................................... 9 1.4.3. Surface Plasmon Resonance ................................................................... 11 1.5. Glycan Surface Ligation Techniques .............................................................. 13 1.5.1. Surface Functionalization Chemistry using Unmodified Glycans .......... 13 1.5.2. Surface Functionalization Chemistry using Tagged Glycans ................. 15 1.6. Glycan Analogues in Drug Design .................................................................. 17 1.7. Aim of This Thesis .......................................................................................... 21 2. CuAAC Photo-Click Immobilization ................................................... 23 2.1. Introduction ..................................................................................................... 23 2.2. Perfluorophenylazides (PFPAs) ...................................................................... 23 2.3. Synthesis of Photo-probes and Linkers ........................................................... 24 2.4. Synthesis of Carbohydrate Azides for Click Chemistry Surfaces ................... 26 2.5. Method Design and Development ................................................................... 27 2.6. Method Evaluation .......................................................................................... 30 2.7. Method Expansion ........................................................................................... 32 2.8. Conclusions ..................................................................................................... 37 X
Description: