ebook img

Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. PDF

2013·0.86 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Photoactivatable metal complexes: from theory to applications in biotechnology and medicine.

Photoactivatable metal complexes: from theory to applications in biotechnology and medicine rsta.royalsocietypublishing.org NicholaA.SmithandPeterJ.Sadler DepartmentofChemistry,UniversityofWarwick,CoventryCV47AL, UK Introduction This short review highlights some of the exciting Citethisarticle:SmithNA,SadlerPJ.2013 new experimental and theoretical developments in Photoactivatablemetalcomplexes:from the field of photoactivatable metal complexes and theorytoapplicationsinbiotechnologyand their applications in biotechnology and medicine. medicine.PhilTransRSocA371:20120519. The examples chosen are based on some of the http://dx.doi.org/10.1098/rsta.2012.0519 presentationsattheRoyalSocietyDiscussionMeeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young Onecontributionof18toaDiscussionMeeting field.Eventhephotochemistryofwell-knownsystems such as metal–carbonyl complexes is still being Issue‘Photoactivatablemetalcomplexes:from elucidated. Striking are the recent developments in theorytoapplicationsinbiotechnologyand theoryandcomputation(e.g.time-dependentdensity medicine’. functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed SubjectAreas: on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) inorganicchemistry,photochemistry, possess favourable emission properties which allow chemicalbiology functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide Keywords: spatially controlled photorelease of bioactive small metalcomplexes,excitedstates, molecules (e.g. CO and NO)—a novel strategy for photochemistry,phototherapy,imaging, site-directed therapy. This extends to cancer therapy, theoryandcomputation where metal-based precursors offer the prospect of generatingexcited-statedrugswithnewmechanisms of action that complement and augment those of Authorforcorrespondence: currentorganicphotosensitizers. PeterJ.Sadler e-mail:[email protected] 1. Introduction The absorption of ultraviolet and visible light by molecules can dramatically influence their reactivity. 2013TheAuthors.PublishedbytheRoyalSocietyunderthetermsofthe CreativeCommonsAttributionLicensehttp://creativecommons.org/licenses/ by/3.0/,whichpermitsunrestricteduse,providedtheoriginalauthorand sourcearecredited. (a) 2 p* 2 p* 1 1,3LC .rs e 1,3LMCT LLL M .......ta.royals .o 1,3MLCT L M ....ciety d t2 1,3MC MM .........publishing p1 ......org .P .h p2 ground state L M ....ilTra .n .s (b) ..R .S .o .c excitation ...A3 S2 phfolusoprheosrceesncceence ..........71:20120519 internal conversion . and vibrational relaxation T 2 non-radiative S relaxation 1 quenching T 1 intersystem crossing delayed fluorescence S 0 Figure1.(a)Simplifiedorbitalandexcited-statediagramforad6metalcomplexwithoctahedralcoordination(strongcrystal fieldisassumed).Eachblackarrow(↑↓)representsanelectronwithitsassociatedspin.Arrowsrepresenttheelectron involvedineachelectronictransition.Inthesingletstate,electronsarespindown,whereasinthetripletstate,theyare spinup.(b)Jabłonskienergyleveldiagram.Possiblephysicalprocessestriggeredbylightexcitationofad6metalcomplexare representedbydashed(radiationless)andsolid(radiative)lines.ReproducedbypermissionoftheRoyalSocietyofChemistry fromFarreretal.[1].(Onlineversionincolour.) Excited-statemoleculeshavedifferentelectronicdistributionscomparedwithgroundstatesand thereforedifferentgeometries,bondanglesandbondlengths.Forexample,intheexcitedstates oftransitionmetalcomplexes,themetal–ligandbondlengthscanelongate(oftenselectively),not onlymakingligandreleaseandexchangemorefacile,butalsoselective.Theeffectsofelectronic excitation on ligand exchange rates can be dramatic: substitution reactions on some relatively inert metal ions which might take hours in the ground state can occur within nanoseconds in excited states. Electronic excitation leading to the population of higher energy levels can be followed,notonlybyemission(fluorescence)fromsingletstatesanddecaybacktotheground state,butalsobythedecayoflong-livedstates(phosphorescence)thatareformedfromsinglet excited states via intersystem crossing (sometimes promoted by spin–orbit coupling). In turn, triplet states may have their own differences in geometry compared with singlet excited states andgroundstates. –1)2.0 × 104 0.3 3 m 2000 0.01 c e–1ction coefficient ()(M 115...500 ××× 111000443 10000350 400 4500 00..21 foscillator strength () .....................rsta.royalsocietypublishin n .g exti 0 250 300 350 400 450 5000 .....org . l (nm) ..Ph Figure2.Calculated(grey)andexperimental(black)absorptionspectrumofthePtIVphotoactivatableanti-cancercomplex .....ilTran trans,trans,trans-[Pt(N3)2(OH)2(py)2]inH2O.Theexcitedstatesareshownasverticalbarswithheightsequaltotheextinction ....sRS caonedffimciixeendts1.LAMcCcTo/rd1iInLg(OtHoT→DDFPTt,,tNh3e,twwhoeraebIsLo=rptiionntrab-alnigdasnidn)tthraenUsVitiroengsi.oTnhcealnowbeinatsesnigsintyedtratonsdiitsiosoncsiaintitvhee1bLMluCeTre(gNi3on→oftPhte) ......ocA37 fsopretchtreupmhoatroeadcitsisvoitcyiaitnivdeucweidthbmybixlueedl1iLgMhtC.TA/d1aILptcehdarfaroctmerF,ainrrveorlveitnagl.N[23]a.n(OdnOliHneligvaenrsdiosnanindcPotl.oSuur.c)htransitionsmightaccount .........1:20120519 . Fortransitionmetalcomplexes,awidevarietyofelectronictransitionsarepossible.Thesecan be metal-centred (MC), ligand-centred (LC) or involve both the metal and the ligands: metal- to-ligand charge transfer, MLCT (for readily oxidized metal ions and ligands with low-lying acceptororbitals),orligand-to-metalchargetransfer,LMCT(forreadilyreducedmetalionswith strong donor ligands; figure 1). Charge-transfer transitions are usually intense and give rise to thepossibilityofcompletetransferofanelectronfrommetaltoligandorviceversaintheexcited stateandtoirreversiblephotodecomposition(redox)reactions. In general, the photochemistry of metal coordination complexes is poorly understood. Progress is currently gaining pace through the development, on the one hand, of theory, especiallytime-dependentdensityfunctionaltheory(TDDFT),and,ontheother,oftechniquesfor monitoringthepopulationofexcitedelectronicstatesandtheiraccompanyingstructuralchanges, and for tracking photo-induced decomposition pathways. Pulsed radiation sources (e.g. lasers, synchrotron beams) are beginning to allow photochemical events to be followed on nano-, pico- and even femtosecond time scales. Moreover, the tunability of light sources now allows electronic transitions to be selectively activated. Density functional theory (DFT) calculations on transition metal complexes often show how a broad absorption band can conceal beneath itseveralelectronictransitions.Anexampleisshowninfigure2. Fastlaserscandelivermultiplepulsesinrapidsuccession,allowinglongerwavelengthlight to be used to activate higher energy transitions through the population of virtual electronic excitedstates(e.g.two-andthree-photonabsorption).Thiscanhaveadvantageswheredeeper penetration of the longer wavelength light is needed (e.g. into tissues for therapy) and where confinementofthephotoactivationtocafemtolitrevolumesisrequired. Perhaps the widest appreciation of the importance of photochemistry in nature is in photosynthesiswhereplantsandotherorganismsusepigments(especiallychlorophyll,ametal complex containing magnesium) to capture energy from sunlight (ca 700nm) to bring about the conversion of water to oxygen and carbon dioxide to sugars [3]. Another example of photochemistryofenvironmentalimportanceconcernsthebioavailabilityofironintheoceans. This appears to be controlled on a large scale by the production of α-hydroxycarboxylic siderophores such as aquachelatin by marine bacteria which bind FeIII tightly (and manifest a ligand-to-FeIII charge-transfer band at ca 300nm) and then undergo photochemical reduction to liberate FeII and CO2 [4,5]. This photochemistry of iron in the sea is reminiscent of that of the complex [FeIII(oxalate)3]3−, widely used as a chemical actinometer for determinations of quantum yields of photochemical reactions [6]. Probably the best known example of essential 4 photochemistry for humans is the synthesis of vitamin D, required to produce hormones which regulate the concentrations of calcium and phosphate for healthy bones and to avoid .rs o7-sdteSeoehmlyedcatrleaodccihaeox(laermisctkeperloetssl)b.wyVitlilthaenmoaiwcntiobDneiousfssseyudnnttlhoigeihsliltzu(esUdtrVap)the[7op]t.orocghreemssicianllythienrathpeidslkyinadfvroamncitnhgefisteeldroiodf ........ta.royalso .c inorganicandespeciallymetal-basedphotochemistry.Aparticularemphasisisplacedoncurrent ...iety w2.orTkhwehoicrhy,hcaosmpopteunttaiatliaopnplaicnadtiounlstrinafbaiosttedchentoelcotgiyoanndmedicine. ........publishin .g Currentadvancesintheuseofcomputationalmethods,especiallyDFTandTDDFT,areproviding ......org .P icnosmigphltesxeinstaontdhetheeliercdtreocnoimcptroasnitsiiotinonpsatrhewspaoyns.siEbvleenfomrothreepaobwsoerrpfutiloinstbhaencdosmobfitnraatniosintioofnthmeeotrayl .....hilTra .n andcomputationwithfastdetectionmethodswhichallowthedecayofveryshort-livedexcited ...sR statesandtheirstructurestobeprobed.Forexample,populationoftheantibondingMCorbitals ..So .c in the 3MC state, in which the Ru–L bond is stretched, appears to be responsible for amine ..A iflVonaicstsesiilbrifstlrayeotseemtsxemct[ihRteacutrpi(oobosnppsyiuon)lf2ga(ttLhiion)e2nt]om2o+efthtta(hewle3chdMoeimrsLespCoblcTepixaysttii=navttee2o;3,iM2st(cid:5)su-Cbb1isMspetyaqLrtuCeideT[ni8nts]e.tma;TtyLiexp=iiinncgaatmlhloyeif,nvDtehi,FseiTeb.3glcMea.lrpLceuyCgrliTaiodtniaionninesds)fco3caMlolnmoCwipneslcetdlauxtebdesyes. ............371:20120519 the effects of solvation using, for example, the polarizable continuum model which can be implementedusingtheGaussianprogram[9].Fry&Mascharak[10]haveusedDFTandTDDFT calculations to reveal the key structural features required for the photolability of NO in metal nitrosylsderivedfromligandscontainingcarboxamidodonors. Metal carbonyl complexes have long been the subject of photochemical studies, but fast methods such as picosecond time-resolved infrared spectroscopy can reveal new features of such reactions. For example, the reaction pathways for [(η6-benzene)Mo(CO)3] depend on the excitationwavelength;useof400nmlightpopulatesametal-to-arenecharge-transferexcitedstate withliberationofCOona500fstimescale,incontrasttotherecoveryoftheinitialcomplexwith 266nmexcitation[11]. Transient species formed by 400nm photoexcitation of aqueous [Ru(dppz)(tap)2]2+ (where dppz=dipyrido[3,2-a:2(cid:5),3(cid:5)-c]phenazine;tap=1,4,5,8-tetraazaphenanthrene)whenintercalated into[poly(dG-dC)]2havebeenobservedonapicosecondtimescalebytransientvisibleabsorption spectroscopy, which allows the monitoring of metal complex intermediates, and transient infrared absorption spectroscopy that allows the direct study of DNA nucleobases. Excitation of the RuII complex when bound to [poly(dG-dC)]2 leads to the formation of the reduced complex[RuI(dppz)(tap)2]+ andproton-coupledelectrontransferprocessesinvolvingGandC nucelobases[12]. Thedeterminationofthestructuresoftransientspeciesinlight-inducedprocessespresentsa challengefortime-resolvedtechniques.Forexample,time-resolvedwideangleX-rayscattering (TR-WAXS)hasbeenusedtostudythephotochemistryofcis-[Ru(bpy)2(py)2]2+.TR-WAXScan detectthereleaseofapyridineligandandthecoordinationofasolventmoleculeonafastertime scalethan800nsoflaserexcitation.Thisultrafastdissociationofpyridine(fromaRuII complex whichishighlyinertinthegroundstate)appearstoinvolve3MLCTor3MCstateswhichdecay ontimescales of100psto 5ns, theformerofwhichinvolves elongationand weakeningofthe Ru–N(py)bond[13]. Wementionbrieflynowthreerecentadvancesinmethodsfordeliveryoflighttosamples. 3. Lightdelivery Thechoiceofthewavelengthoflighttoactivatecomplexesisnotaneasydecision.Firstly,thelight sourcemustbeefficientinactivatingthecomplex.Oftenitisdesirabletoirradiatethecomplex 2+ 5 ,2 PF – 6 .rs .......ta.royals .o .c ...iety .p 3MLCT ESA .......ublishin .g .....org . .P .h TPA ....ilTra .n .s ..R .S .o .c ..A .3 .7 Fepxiogcwiuteerrde--lism3t.aittTeiwnagob-psporhoropptteoirontniea(sEb.SRsAoe)rppartolilodonuwce(hTdigPfAhro)lymicnoGntirjhuaegrdasotietndegtlreuattl.hm[e1n5e]ituawml-itt(ohII-)plisegyrasmtnedimsscisoh,nsaurfgcrohem-atsrJatonhhsanfteWsrhi(ol1ewMynLaC,ntTod)bSbeoanunssd.e(dOanfnodlirntsehuevbiersreosqipoutniecniantl ..........1:20120519 colour.) whereanintenseMLCTbandispresent.However,thismaynotbepracticalforuseintheclinic. Ultravioletlightispotentiallyharmfulandsoisnotfavoured.Redlightpenetratesdeeperinto tissuesoisusuallypreferred.Two-photonactivationusinglaserpulsesoccurswhentwophotons, usually at a wavelength of more than 600nm, are sequentially absorbed to achieve excitation that a single photon at a shorter wavelength (approximately half) can achieve. Three-photon absorption is also achievable. This offers the possibility of activating complexes which absorb atashortwavelengthusinglongerwavelengthsoflaserlightwhichpenetratetissuesdeeply. The rules for designing metal complexes which can absorb two photons are not fully understood, but often large complexes of the type D–M–A which contain highly conjugated donor (D) and acceptor (A) ligands bound to the metal (M) are suitable. For example, RuII complexes containing highly conjugated fluorene-substituted 1,10-phenanthroline ligands exhibit two-photon activation between 600 and 700nm, with a two-photon cross section of ca 530GM, which is an order of magnitude higher than that for the ligand alone [14]. The two-photon absorption of RuII bifluorene-substituted 1,10-phenanthroline complexes is closely related to that of the ligand (figure 3) [15]. The introduction of extended conjugation into the amine ligands of square–planar Pt(II) complexes has allowed two-photon activation of ligandexchangeusingredandnear-infrared(NIR)light.Interestingly,theoptimumwavelength for two-photon activation of cis-[PtCl2(MOPEP)2], where MOPEP is the π-conjugated ligand 4-[2-(4-methoxyphenyl)ethynyl]pyridine, is shorter than twice the single-photon absorption wavelength[16]. Another promising method of producing shorter wavelength light from longer wavelength irradiation involves the use of upconverting nanoparticles, for example, made of YF3 doped with lanthanide ions (Yb3+ and Tm3+). Ford et al. have used lanthanide-doped upconversion − nanoparticlestomediatenitricoxide(NO)releasefromRoussin’sblacksaltanion[Fe4S3(NO)7] , using NIR light from a simple diode laser operating at 980nm [17]. In another example, the connection of two CrIII sensitizers around a central ErIII acceptor in a self-assembled cation provides high local metal concentrations that favour efficient nonlinear energy transfer and upconversionluminescence(figure4).Uponselectivelow-energyNIRirradiationofCrIII-centred transitions,thecomplexexhibitsmoleculartwo-photongreenErIII-centredemission[18]. ES(2) 6 .rs ET ET ........ta.royalso .c ...iety ES(1) emissEonS(1) ES(1) .........publishing .....org . .P .h ....ilTra .n GS GS GS .s ..R .S .o CrIII ErIII CrIII ...cA .3 .7 FBFrioogtmuhrcehhe4rro.em,Illituuhmsetr(eaIIutIi)roocnpeoinuftmurep(sIcIoaI)nrevceeenrxstciroietneudonfbd[yCerrlEogrwoCer-(seLnt)3ew]r9og+-yp(ihrLroa=tdoinaatusioepngcmofnreovnmetrestdihoepniorvlygiadroeeunnnteadrtgesytlaigttraean(ndGs)Sfet)ortpo(ErotThd)euficrroeemgxrceittehenedlicsghthartotemesmi(uEismSs(i(o1I)InI)).. .........1:20120519 . centrestotheeuropium(III)centre.Astheexcitedstateofeuropium(III)(ES(2))decays,greenlightisemitted.Adaptedfrom Aboshyan-Sorghoetal.[18].(Onlineversionincolour.) 1.0 0.8 0.6 0.4 0.2 25µm 0 Figure5.Scanningelectronmicrographshowingthecrosssectionofakagomehollow-corephotoniccrystalfibre.Adapted fromChenetal.[19]withpermissionfromJohnWileyandSons.(Onlineversionincolour.) Hollow-core photonic crystal fibres (figure 5) allow photochemical reactions to be carried out efficiently on a nanolitre scale. Long optical path lengths are possible as a result of very low intrinsic waveguide loss. The light travels in a diffractionless single mode with a constanttransverseintensityprofile.Forexample,thephotochemicalconversionofvitaminB12 + (cyanocobalamin,CNCbl)tohydroxocobalamin([H2OCbl] )inaqueoussolution,areactionwith very low quantum yield, requires 104 times less sample volume compared with conventional techniquesandoccurs103timesfasterthaninaconventionalcuvette[19]. 4. Photo-inducedreleaseofbioactivemolecules There is interest in the delivery of small molecules which can act as second messengers and transmitsignalsintocells.ExamplesincludeNO,carbonmonoxide(CO)andhydrogensulfide (H2S). 7 .rs N .......ta.royals .o .c O NO N ....ietyp S ON FSe FSe NO S N NFe O ........ublishing N NO O N ONOO ......org 2 .P .h ....ilTra .n N .s ..R .S 1 2 .o .c ..A .3 .7 N3 H N 3+ .........1:20120519 HO N N N . Rh Pt N N N OH H N N 3 3 4 4+ N N N N N N N Ru Ru N N N N N N N 5 Figure6.Variousphotoactivatablemetalcomplexes. NO is synthesized by the enzyme NO synthase in the endothelium of blood vessels and causesthesurroundingsmoothmuscletorelax,resultinginvasodilation.Itisahighlyreactive gas but can be stabilized by binding to metal ions, and released from some complexes by photoactivation, for example, Roussin’s red salt ester (RSE, [Fe2(μ-RS)2(NO)4]). Attachment of a chromophore to RSE can enhance the light harvesting ability of the complex and allow it to beactivatedbylongerwavelengthlight.Thereisefficientenergytransferfromtheexcitedstate of the chromophore, N-phenyl-N-(3-(2-ethoxy)phenyl)-7-(benzothiazol-2-yl)-9,9-diethylfluoren- 2-ylamine,tothemetalcentre(complex1infigure6)[20]. Ford et al. have shown that porphyrins which absorb strongly in the visible region can act asantennaetoimprovethephotoactivityofmetalcomplexes,suchasRSE,[Fe2(μ-SEt)2(NO)4]. Upon photoactivation in the Q band of the porphyrin, NO is released at a higher rate 8 compared with that for RSE alone. The porphyrin complex can be activated by a femtosecond pulsed NIR laser at 810nm, allowing two-photon activation [21]. Da Silva and co-workers [(th2te2irs]pyhco=amvteeprlpsehxyoriwrdenilneeat,sheabstdqNliip=Oid1,o2nn-baneinorrzpaoadqrituaicitniloeosnnecwadniitihmbienveius)isbteoldeitstloigtahdrtgeelfitovvreriath[tReoup(ipcteoarslpsaiybd)lm(ebidntqrisie)taNrtamOtie]o3nn+t; .........rsta.royalso .c ecmoatfhannysrlgke-a2lienn-paesyseceraiNdnniOcnieterra.o-n2sd-yMcladarecsbsocothmrxoaapyrmaledkixdruea[g)Mn,-rldoensa(iPdcsaoetaPd-nwyit3noA)tr(okNcieanOresb)t]oi+ob[ca2oc3(tmP]erapPbhaayatuiv=bmeleNanms,nhNiooi-bwbbiialnsec(t2me-trphaiaytae.trriidaiyrl,rlmawdeiittahhtyivoli)nsaimboliefnlei-gtNhhe-t ...........ietypublishin .g signPahlolitnogacmtivoelecmueletailnctohmepbloedxyes[2c4a]n.Fboeruexsaedmptole,d[eMlivne(trpCa)O(CwO)h3i]c+h,(tlpikae=NtrOis,(2is-paylrsiodyal)naamtuinrea)l .......orgP cbaeninreclreeaasseedCObywehxetenndirirnagdiathteedcboynjuvgisaitbiolenliignhtt.heThleigasennds,itaivsitiynotfhethMe ncoImcaprlbexontyollcigohmtpclaenx .....hilTra [Mn(pqa)(CO)3]+ (pqa=(2-pyridylmethyl)(2-quinolylmethyl)amine) [25]. Functionalization of ....nsR manganese complexes with peptides offers potential for the selective delivery of CO-releasing ..So .c manganesecomplexestocells[26].Time-resolvedIRspectroscopyispowerfulformonitoringthe ..A .3 bbreueletuByasersesiecdidoatefocsCiddtOhe(leiGfvrsoAemrmBaoAlttlhh).seeisrOgebnccitaooalllhmoinegpdgilcremaaxlleloyRsleua[c2c(u7ItiI]lv)e.escosNpmOepcilaeensxdessuCcsOhu,cahpshtahoseto[nRaecuut(irbvopactyhi)oe2nm(PoiPcfahml3a)e(mGtaiAlncoBoAamc)i]pd2l+eγx-caeamsncinabnoe ...........71:20120519 activatedbyvisiblelightandthereleasedGABAcaninducereceptor-mediatedresponsesinthe brain[28].Thetimeconstantfornicotine(Nic)releasefrom[Ru(bpy)2(Nic)2]2+isshort,17ns[29]. Similarly,thecomplex[Ru(bpy)2(PMe3)(GluH2)]2+releasesglutamatewithin50nsonirradiation withvisiblelight.Moreover,thelattercomplexisalsoactivatedbytwo-photonactivationwith 800nmlight[30]. For therapy, specific enzyme inhibitors can be generated by photoactivation. [Ru(bpy) (4AP)4]2+ (4AP=4-aminopyridine) preferentially liberates an equatorial 4AP molecule when irradiated at 488nm [31]. [Ru(bpy)2(CPI)2]2+ releases (S)-2-acetamido-N-(cyanomethyl)-3- phenylpropanamide (CPI) on irradiation with white light which inhibits cathepsin, a cysteine protease, and represents a possible strategy for anti-cancer drug design [32]. On release of 5- cyanouracil (5CNU) from [Ru(bpy)2(5CNU)2]2+ on irradiation with visible light, the resulting aqua complex [Ru(bpy)2(H2O)2]2+ can bind to DNA. The complex can therefore have a dual modeofactionthrough5CNUreleaseandDNAbinding[33]. Photochemotherapyiscurrentlyusedclinicallyandisnormallytermedphotodynamictherapy (PDT).InPDT,theactivespecieswhichkillscancercellsissingletoxygen(1O2),producedasa resultofphotoactivationofaphotosensitizer(e.g.aporphyrin)withlight;theexcitedtripletstate ofthephotosensitizercanthenconvertgroundstate3O2to1O2.PDTis,therefore,effectivewhen cellsarerichinO2 althoughmanytumoursarerelativelyhypoxic.Redlightisusuallyusedfor PDTbecauseitpenetratesintotissuemoredeeplythanshorterwavelengthlight. Some metal complexes can be activated by red or even NIR irradiation if an appropriate choice of ligands is made. For example, the vanadium curcumin complex [VO(cur)(dppz)Cl] (dppz=dipyrido[3,2-a:2(cid:5),3(cid:5)-c]phenazine) is more active towards cancer cells than the clinical photosensitizerphorofrinwhenactivatedbyvisiblelight[34].Similarly,theanthrocenylligand (L) in [Fe(L)(cat)NO3] (where L=9-[(2,2(cid:5)-dipicolylamino)methyl]anthracene, cat=catecholate) actsasaphotosensitizerandasaDNAintercalator(complex2infigure6).Thepresenceofthe catecholateligandprovidesIRabsorption[35].Photoactivated[Ru(tpy)(dppn)]2+ produces1O2 veryefficientlyandleadstocross-linksinthetumoursuppressorproteinp53,aswellasproducing protein–DNAcross-links[36]. Photoactive PtIV diazido complexes also offer potential dual mode activity; excited singlet andtripletstatescanreleasereactiveorbiologicallyactiveligandsandformPtII specieswhich can bind to DNA [37]. For example, the diazido complex trans,trans,trans-[Pt(OH)2(N3)2(py)2] (py=pyridine) (3 in figure 6) is stable in the dark even in the presence of the tripeptide glutathione(γ-L-glutamyl-L-cysteinylglycine),areducingagentpresentinmostcellsatmillimolar 9 concentrations.ThiscomplexundergoesphotoreductionwhenirradiatedbyUVA(320–400nm), blue or green light and produces unusual cross-links on DNA [2,38]. These are probably iaanfttneerrasttpurhraanoltdoaamtcrtaiinvnoas-t{iPoanct(i.pdyIn)o2tfe}t2re+ensticgnrigovsleys,n-litnhakesssea[a3sz9ui]d.pypIlnlermaadedindctai,tlisothnce,anaazdbimdeyiqnluisretanrdacithcieoadnlsbocyfanLw-tbhreiycphttroampphipgaehndt, .........rsta.royalso .c allow control of radical reactivity in cells [40]. The related diazido complex trans,trans,trans- ...iety [daPniatt(ziO-ycHlan)c2co(emNrp3d)l2reu(xNgessHw3a)r(hepicymh)]oiarsreeacaatcilvtlievcieisn-davsiivaomtria(nmnas)niinsoeoemscooepmrhspaiglneexaeclsoc.naTtnrwcaesort-mpthooodcteoulnr[r4ea1nb]ts.oTcrhlpientsiieocanplhopoftlfaoetraiscntutihvmee ........publishin .g pUoVssriebgiliiotyn)oufsainctgivlaotninggerpwlaatvineulemngcthosm(pel.egx.ersedthlaigthatb)stohrabt aptensehtorratteermwoarveedleenegptlhysin(et.og.tiisnsutehse. ......org .P Fliogranedxasmcapnleb,eligacatnivdasteudbsbtiytuttwioon-pihnostqounaarbe–soprlapntiaornP,tbIIutcoinmteprleesxteinsgcloyn,ttahienianbgsocropntjiuognamtedaxaimmuinme .....hilTra .n forone-photonabsorptionisdisplacedslightlyfromthetwo-photonwavelength[16]. ...sR .S .o .c 5. Photo-triggeredDNAbindingandimaging ..A .3 .7 Ttsuealmregcoetutivirnegcdeeolslfst,rmufceottilaololnwcoeofdmcapbnlyecxeerpshceotlotlosa.tcuFtmiovroateuixoranmcepmlllsei,g,htohtrebereevceeanptvtooerr-bysipnepdcoiinwfigcerpfmeupoltliesdcteuralAaterrggyt–aGrfgloyer–tsAthsipne ..........1:20120519 (RGD) has been incorporated as a substituent on a pyridine ligand in the ruthenium(II) arene complex [(η6-p-cym)Ru(bpm)(py-RGD)]2+. RGD receptors are overexpressed on cancer cells. Activation by visible light releases the peptide and gives the reactive aqua species, [(η6-p-cym)Ru(bpm)(H2O)]2+,whichcanbindtoDNA.WhenirradiatedinthepresenceofDNA, the complex can lose the p-cymene arene ligand and form a bi-functional adduct with two guanines[42]. Another useful property of RuII polypyridyl complexes is their luminescence. For example, the uptake and localization of [Ru(bpy)2(dppz)]2+ in cells can be tracked [43]. The complex [Ru(TAP)2PHEHAT]2+ interchalates into DNA in the dark, causing single strand breaks when irradiated with visible light [44]. Polyazaaromatic RuII complexes have potential as cellular diagnostics and photoreagents, especially for DNA attack and gene sequencing [45]. The dinuclear ruthenium(II) complex [(phen)2Ru(tpphz)Ru(phen)2]4+ (complex 5 in figure 6) is a DNA stain which can be imaged by techniques such as luminescence microscopy and transmission electron microscopy. The complex accumulates in the nucleus and stains heterochromatinwithinindividualchromosomes[46]. The complex [Rh(bpy)2(chrysi)]3+ (complex 4 in figure 6) targets single-base mismatches in DNAbynon-covalentbindingand,onirradiationwithUV/visiblelight,strandscissionoccurs. Thiscomplexcanthereforeidentifymismatchedsites.Incancercells,thereisoftenadeficiencyof mismatchrepairandthistechniquemightbeusefulasadiagnostictoolfordetectingcancercells [47,48].AlsopromisingareN-heterocyliccarbene(NHC)cyclometallatedplatinum(II)complexes, ∧ ∧ + ∧ ∧ [(C N N)Pt(NHC)] (where C N N is a chelated C- and N-bound ligand), which are highly luminescentsotheirlocalizationcanbefollowedbyemissionmicroscopy.Thecomplexesdonot interactwithDNAbutlocalizeincytoplasmicstructures[49]. Finally,wementionluminescentlanthanideprobesandcyclometallatedIrIII complexes[50]. Luminescentcyclometallatediridium(III)polypyridinecomplexescontainingdi-2-picolylamine [Ir(N∧C)2(phen-DPA)](PF6) (phen-DPA=5-(di-2-picolylamino)-1,10-phenanthroline; HN∧C= 2-phenylpyridine) on photoexcitation can give rise to intense and long-lived luminescence. Lee et al. have assigned the emission to a triplet metal-to-ligand charge-transfer 3MLCT dπ(Ir)→π∗ (N∧N) or to a triplet intraligand 3IL π→π∗ (N∧C) excited state, with substantial mixing of triplet amine-to-ligand charge-transfer 3NLCT n→π∗ (N∧N) character [51]. Luminescentcyclometallatediridium(III)polypyridineindolecomplexes,[Ir(N–C)2(N–N)](PF6), N–N=4-((2-(indol-3-yl)ethyl)aminocarbonyl)-4’-methyl-2,2’-bipyridine (bpy–ind), have an intenseandlong-livedluminescence(λem=540–616nm,τ=0.13–5.15μs).Inaddition,theIC50 10 (dose which kills 50% of the cells) values of the complexes towards human cervix epithelioid carcinoma (HeLa) cells range from 1.1 to 6.3μM, significantly more potent than cisplatin (iinn30vd.ei7csaμtitMgead)tetuhdnadbteythrflethobewpsyca–ymitnoedmexceoptrmeyrpiamlneexdnlltoaacslaeclroi-znsecdsaintininoitnnhsge.Tcpohenerifcnoeuclaclullelmaarricurrepogtsiacokonep[yo5.f2Tt]h.heecmomicrpolsecxoepsyhaimsbaegeens .........rsta.royalso .c ...iety .p 6. Conclusions .......ublishin Oofurinobrrgieafnircevmieewtalhapshohtiogchhleigmhitsetdrysmomaneyofofthwehiicnhteraersetindgiscnueswseddefvuerltohpemr einntsthienftohlleowfiienldg .....g.org . articles in this Discussion Meeting Issue. In particular, the photochemistry of metal complexes ..Ph can make new contributions to biological imaging and to the design of photoactivated ....ilTra chemotherapeutic agents. Recent developments in theory and computation (e.g. TDDFT) and ..ns in ultrafast-pulsed radiation techniques now allow photochemical reactions to be followed ...RS .o on picosecond/nanosecond time scales, and the pathways for photodecomposition to be ...cA investigatedandassociatedwithspecificelectronicallyexcitedstates.Thechoiceofthemetalion, ..37 iaotlnsllioymxtiphdoeartmtiaonenttastltoaittohen,etbdhueetsniagulnsmoobftehprehsolaitgnoadanctdtyisvpeteoscooo.mfScopomloerxedemisn.eaPtthaelodctoloicgmhapenmldesxiceaasnlpdevocesonsoetrssdsinifnagavetoinouenrraagblelioenmveomeltvrisyesniaoornet .........1:20120519 . properties which allow functional imaging of cells and tissues (e.g. DNA interactions); they can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO, NO, H2S, neurotransmitters and other signalling molecules) which can be exploited in site-directed therapy. For example, photoactivated metal-based anti-cancer pro-drugs offer the prospect of generating excited-state drugs with new mechanisms of action that can complement current organicphotosensitizers. WethanktheERC(grantno.247450),ScienceCity(AWM/ERDF)andEPSRC(PhDstudentshipforN.A.S.), members of COST Action CM1105, the Royal Society Discussion Meetings and our research group and collaboratorsforstimulatingdiscussions. References 1. Farrer NJ, Salassa L, Sadler PJ. 2009 Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 2009, 10690–10701. (doi:10.1039/ b917753a) 2. FarrerNJ,WoodsJA,SalassaL,ZhaoY,RobinsonKS,ClarksonG,MackayFS,SadlerPJ.2010 Apotenttrans-diimineplatinumanticancercomplexphotoactivatedbyvisiblelight.Angew. Chem.Int.Ed.49,8905–8908.(doi:10.1002/anie.201003399) 3. Hohmann-MarriottMF,BlankenshipRE.2011Evolutionofphotosynthesis.Annu.Rev.Plant Biol.62,515–548.(doi:10.1146/annurev-arplant-042110-103811) 4. Barbeau K, Rue EL, Bruland KW, Butler A. 2001 Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413, 409–413. (doi:10.1038/35096545) 5. BarbeauK.2006Photochemistryoforganiciron(III)complexingligandsinoceanicsystems. Photochem.Photobiol.82,1505–1516.(doi:10.1562/2006-06-16-IR-935) 6. Hatchard CG, Parker CA. 1956 A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. Lond. A 235, 518–536. (doi:10.1098/rspa.1956.0102) 7. KimlinMG.2008GeographiclocationandvitaminDsynthesis.Mol.AspectsMed.29,453–461. (doi:10.1016/j.mam.2008.08.005) 8. Salassa L, Garino C, Salassa G, Gobetto R, Nervi C. 2008 Mechanism of ligand photodissociation in photoactivable [Ru(bpy)2L2]2+ complexes: a density functional theory study.J.Am.Chem.Soc.130,9590–9597.(doi:10.1021/ja8025906)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.