ebook img

Photo-Induced Topological Phase Transition and a Single Dirac-Cone State in Silicene PDF

0.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Photo-Induced Topological Phase Transition and a Single Dirac-Cone State in Silicene

Photo-Induced Topological Phase Transition and Single Dirac-Cone State in Silicene Motohiko Ezawa Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan Silicene(amonolayer ofsiliconatoms) isaquantum spinHallinsulator(QSHI),whichundergoes atopo- logical phase transition to a band insulator under external electric field Ez. We investigate a photo-induced topologicalphasetransitionbyirradiatingcircularpolarizedlightatfixedEz. Thebandstructureandalsothe 2 topologicalpropertyaremodifiedbyphotondressing. ByincreasingtheintensityoflightatEz = 0,aphoto- 1 induced quantum Hall insulator (P-QHI)isrealized, where thequantum Hall effect occurswithout magnetic 0 field. Itsedgemodesareanisotropicchiral,inwhichthevelocitiesofupanddownspinsaredifferent. There 2 appearsaspinpolarizedmetalcharactrizedbytopologicalflatbandsatthecriticalpointbetweentheQSHIand P-QHI.AtEz > Ecr withacertaincriticalfieldEcr, aphoto-induced spin-polarizedquantum Hallinsulator l u emerge.Thisisanewstateofmatter,possessingoneChernnumberandonehalfspin-Chernnumbers.Theedge J modesupportsaperfectlyspin-polarizedcurrent,whicharedifferentfromthechiralorhelicaledgemodes.We newlydiscoveredasingleDirac-conestatealongaphaseboundary. Adistinctivehallmarkofthestateisthat 8 2 oneofthetwoDiracvalleysisclosedwithalineardispersionandtheotheropenwithaparabolicdispersion. ] l Introduction: Topological insulator (TI) is a distinctive inducedquantum Hall insulator (P-QHI). Here, PS-QHI is a l a state of matter indexed by topological numbers, and char- newstate ofmatterindexedbyoneChernandonehalfspin- h acterized by an insulating gap in the bulk and topologically Chern numbers, where the edge state supports a perfectly - s protectedgaplessedges1,2. Thetopologicalclassificationhas spin-polarizedcurrenttransportingbothchargesandspins. e beenappliedtostaticsystems3,butrecentlyextendedtotime- The phase diagram in the (E , 2/Ω) plane shows a rich m periodic systems4–9. A powerful method to drive quantum structure. There are QSHI, BI,zPA-QHI and PS-QHI, as we . systems periodicallyis to apply electromagneticradiation to have stated. There appear spin polarized metal (SPM) and t a them. It can change material properties. It has been argued spinvalley-polarizedmetal16 (SVPM) onthecrossingpoints m that TIs are obtained from a semimetal5 and from a band ofthetwophaseboundaries.Theyhavedifferentspinconfig- - insulator8 (BI) in this way. Topologicalbandstructuresmay urations.Aparticularlyintriguingstateappearsalongaphase d well be engineeredby application of coherent laser beam in boundary,whichhasonlyoneclosedgapwithalineardisper- n grapheneandsemiconductors. sion.WecallitthesingleDirac-cone(SDC)state. Itisutterly o c anewstateasfarasweareawareof.Theelectricfieldbreaks In this paper we propose a new type of topologicalphase [ inversionsymmetry,whilethelightbreakstime-reversalsym- transitioninsilicene,aphoto-inducedtransitionfromaTIto metry.Whentheyarebothbroken,thegapcanbedifferentat 1 anotherTIbychangingitstopologicalclass. Siliceneconsists KandK’points. v ofa honeycomblatticeofsilicon atomswithbuckledsublat- 4 Tightbindingmodel: Thesilicenesystemisdescribedby tices made of A sites and B sites. The states near the Fermi 9 thefour-bandsecond-nearest-neighbortightbindingmodel16, energyareπorbitalsresidingneartheKandK’pointsatop- 6 posite cornersof thehexagonalBrillouinzone. Silicene, be- 6 07. ipnhgysrieccse1n3–t1ly8.sTynhteheloswiz-eedn1e0–r1g2y, disyngaifmteidcswiinththeenKormanodusKly’rviaclh- H =−t X c†iαcjα+i3λ√SO3 X νijc†iασαzβcjβ leysisdescribedbytheDiractheoryasingraphene.However, i,j α i,j αβ 2 h i hh ii :1 (DSiOra)cgealepctorfon1s.5a5remmeVassinivesidliuceentoe.arIetliastivreemlyalrakragbelesptihna-otrtbhiet +iλR1(Ez) X c†iα(σ×dˆij)zαβcjβ v i,j αβ masscanbecontrolled15byapplyingtheelectricfieldE per- h i i z 2 X pendiculartothesilicenesheet. −i3λR2 X µic†iα(σ×dˆij)zαβcjβ r Silicene is a particular type of TI, that is a quantum spin i,j αβ a hh ii Hall insulator14 (QSHI). It undergoes a topological phase +ℓXµiEzc†iαciα, (1) transition15fromaQSHItoaBIas E increasesandcrosses z iα | | the critical field E . In this paper, we investigate photo- cr induced topological phase transition at fixed Ez. The off- where c†iα creates an electron with spin polarization α at resonance coherentlaser beam rearrangesthe band structure site i, and i,j / i,j runover all the nearest/next-nearest h i hh ii byphotondressing:Berrycurvaturesinthemomentumspace, neighbor hopping sites. We explain each term. (i) The first originatingfromtheSOcoupling,aremodifiedinthephoton- term represents the usual nearest-neighborhopping with the dressed bands so that the occupied electronic states change transfer energy t = 1.6eV. (ii) The second term19 repre- topologicalproperties4. Weshowthat,byapplyingstrongcir- sents the effective SO coupling with λ = 3.9meV, where SO cularpolorizedlightwithfrequencyΩ,siliceneistransformed σ = (σ ,σ ,σ ) isthe Paulimatrixofspin, withν = +1 x y z ij from a QSHI or a BI into a photo-induced spin-polarized if the next-nearest-neighboringhoppingis anticlockwiseand quantumHallinsulator(PS-QHI)andeventuallyintoaphoto- ν = 1ifitisclockwisewithrespecttothepositivez axis. ij − 2 (iii)Thethirdterm16 representsthefirstRashbaSOcoupling associated with the nearest neighbor hopping, which is in- duced by external electric field. It satisfies λ (0) = 0 and R1 becomes of the order of 10µeV at the critical electric field E = λ /ℓ = 17meVÅ 1. (iv)Theforthterm20 represents c SO − the second Rashba SO coupling with λ = 0.7meV asso- R2 ciated with the next-nearest neighbor hopping term, where µ = 1 for the A (B) site, and dˆ = d / d with the i ij ij ij vector±dij connectingtwositesiandjinthesa|mes|ublattice. FIG.1: (Coloronline)Theband structureofasiliceneintheSDC (v)Thefifthterm16 isthestaggeredsublatticepotentialterm. state. ThegapisopenattheKpointwithaparabolicdispersionbut Duetothebuckledstructurethetwosublatticeplanesaresep- closedattheK’pointwithalineardispersion. aratedbyadistance,whichwedenoteby2ℓwithℓ = 0.23Å. Itgeneratesastaggeredsublatticepotential∝ 2ℓE between z where is typically less than 1 for intensity of lasers and siliconatomsatAsitesandBsitesinelectricfieldEz. pulsesaAvailableinthefrequencyregimeofourinterests. The Low-energyDiractheory:Weanalyzethephysicsofelec- gauge potential satisfies the time-periodicity, A(t + T) = tronsneartheFermienergy,whichisdescribedbyDiracelec- A(t), with T = 2π/Ω. The electromagnetic potential is trons near the K and K’ points. We also call them the Kη introduced into the Ha|m|iltonian (2) by way of the minimal points with η = . The effective Dirac Hamiltonian in the momentumspace±reads16 substitution,thatis,replacingthemomentum~kiwiththeco- variantmomentumP ~k +eA . i i i ≡ H =~v (ηk τ +k τ )+λ σ ητ ℓE τ A question arises whether a topological classification is η F x x y y SO z z z z − possibleinnon-equilibriumsituation,thatis,whentheHamil- +aητ λ (k σ k σ ) z R2 y x− x y tonian has an explicit time dependence. The answer is yes, +λR1(Ez)(ητxσy τyσx)/2, (2) providedthepotentialistime-periodic. Aconvenientmethod − istousetheFloquettheory5–9. Thetopologicalclassification whereσ andτ arethePaulimatricesofthespinandthesub- a a ispossiblewiththeaidofthestaticeffectiveHamiltonianap- latticepseudospin,respectively.Thefirsttermarisesfromthe propriatelyconstructed. nearest-neighborhopping,wherev = √3at=5.5 105m/s F 2 × We summarize the result of the floquet theory. When is the Fermi velocity with the lattice constant a = 3.86Å. the light frequency is off-resonant for any electron transi- There is no recognizable effect from the term λR1(Ez) as tions, light does not directly excite electrons and instead ef- far as we have numerically checked. Although we include fectively modifies the electron band structures through vir- all terms in numerical calculations, in order to simplify the tual photonabsorptionprocesses. Such an off-resonantcon- formulas and to make the physical picture clear, we set dition is satisfied for the frequency ~Ω t in our model λR1(Ez)=0inallanalyticformulas. with π bands. The influence of suc|h |of≫f-resonant light is There are four bands in the energy spectrum of Hη. The summarized7 in the static effective Hamiltonian defined by band gap is located at the K and K’ points, and given by ∆H =(i~/T)logU,whereU = exp[ i/~ T H(t)dt] 2∆(E ),where16 eff T − R0 z isthetimeevolutionoperatorwith thetime-orderingoper- | | T ator. Inthelimitof 1,∆H isparticularlysimplenear ∆(Ez)=−sztzλSO+ℓEz, (3) the Dirac points: ∆AH≪eff = (~Ωef)f−1[H 1,H+1] + O(cid:0) 4(cid:1), wThitehythareesgpoinodszq=uan±tu1manndutmhebesursbalatttthiceeKpsaenuddoKs’pipnotiznt=s. T±h1e. wis,heHre 1H±=1 Ti1sRt0hTeHFo(Tur)ieer±cito|Ωm|dpto.neTnhte−ofmHodaimfiiclatotinoinano,Aftthhaet spin s is an almost good quantum number even away from Hami±ltonian due to the time-periodic perturbation is under- z the K and K’ pointsbecauseλ is a smallquantity. On the stoodasthe sumoftwosecond-orderprocesses, whereelec- R2 other hand, the pseudospin t is strongly broken away from tronsabsorbandthenemitaphoton,andviceversa. z theKandK’pointsforE =0. Byexplicitlycalculatingthecommutation,wehavetheef- z As E increases,thega6pdecreaseslinearly,andclosesat fectiveHamiltonian,Hη =H +∆H ,with | z| eff η eff thecriticalpoint E = E withE = λ /ℓ = 17meV/Å, | z| cr cr SO 2 and then increases linearly. Silicene is a semimetal due to ∆H = A [(~v )2ητ (aλ )2σ gapless modes at E = E , while it is an insulator for eff −~Ω F z − R2 z z cr |Ez|6=Ecr. | | −aλR2~vF(ητxσy −τyσx)]. (5) Photo-inducedtopologicalinsulator:Weconsiderabeam The modification of the band structure is remarkable, which ofcircularlypolarizedlightirradiatedontothesilicenesheet. wedemonstratebasedonanalyticformulasbyneglectingthe Thecorrespondingelectromagneticpotentialisgivenby second Rashba terms (∝ λ ) since λ is a small constant. R2 R2 A(t)=(AsinΩt,AcosΩt), (4) Thegapisgivenby2|mD|withtheDiracmass m = s t λ +ℓE η~v2 2Ω 1. (6) whereΩisthefrequencyoflightwithΩ>0fortherightcir- D − z z SO z− FA − culationandΩ<0fortheleftcirculation.Thelightintensity HencewecancontroltheDiracmassbyapplyingelectricfield is characterized by the dimensionless number = eAa/~, E and/orcoherentlaser beam∝ 2/Ω. Note thatthe band z A A 3 FIG.2: (Coloronline) Phasediagraminthe(Ez,A2/Ω)plane. A circle shows a point where the energy spectrum is calculated and showninFig.3. Heavylinesrepresentphaseboundariesindexedby Kη and sz =↑↓. There appear a SDC state along the line, which ischaracterizedbyasinglegaplessDiracconeattheK pointwith η spinsz.Thetopologicalcharges(C,Cs)arealsoindicated. gapsat the K andK’ pointsare differentin general. We can makeoneDiracconegaplessandtheotherDiracconegapped. ThisistheSDCstate. Therealizationofdifferentbandgaps FIG.3: (Color online) The photon-dressed band structure of a sil- icenenanoribbonatmarkedpointsinthephasediagram(Fig.2).The atthetwovalleysisanentirelynewphenomenon. verticalaxisistheenergyinuitoft,andthehorizontalaxisisthemo- We are able to write down the tight-binding Hamiltonian mentum.WecanclearlyseetheDiracconesrepresentingtheenergy yielding ∆H as the low-energy theory near the K and K’ eff spectrumofthebulk.LinesconnectingthetwoDiracconesareedge points.TheleadingtermisgivenbytheHaldanemodel24, modes.Thespinszispracticallyagoodquantumnumber,whichwe haveassignedtotheDiraccones. ∆Heff =iη~vF2A2/(3√3Ω) X νijc†iαcjβ+O(λR2). (7) i,j αβ hh ii boundariesare given by m = 0 with (6). The topological InFig.1wehaveillustratedthebandstructureoftheSDCstate D numbersare (C,C ) = (0,0) in the BI, (0,1) in the QSHI, calculatedbasedonthetight-bindingHamiltonian. s ( 2,0) in the P-QHI, and ( 1,1) in the PS-QHI for E > Spin-Chern number: The topological quantum numbers − − 2 0 and Ω > 0 in Fig.2. In all these states the band gap is aisreatghoeoCdhqeurnanntuummbneurmCbearn,dthteheZZ2indinedxexis. idIefntthiceaslptionthsze open,wheretheFermilevelispresent,andtheyareinsulators. 2 WehavederivedtheseresultswithouttheRashbainteractions. spin-Chernnumber modulo2. Theyaredefinedwhenthe stateisisthgeapspuemdm,Cati=oCnCso+f+thCe−BaenrrdyCcsur=vat12u(rCe+in−thCe−)m,owmheenre- ThTeyhereHmaallincotrnudeuwcthiveintythiesygiavreenswfoirtcehaecdhosnpiandciaobmaptiocnalelny.tby tCTu±hmeyspaarceewoevlelrdaellfioncecdupevieednsitfattehseosfpeilnecitsronnostwaitghosozd=qu±an1-. uchsianrgget-hHeaTllKaNndNsfpoinrm-Hualall23c,oσnxsdzyuc=tivei2ti/e(s2aπr~e)σPxyη==±σCx↑ysηz+. Tσhx↓ye tumnumber21,22. Inthepresentmodelthespinisnotagood andσs =σ σ . TheyareequaltotheChernandspin- xy x↑y − x↓y quantum number because of spin mixing due to the Rashba Chernnumbersuptothenormalizatione2/2π~. couplingsλR1andλR2. Aconvenientwayistocalculatethem Photo-inducededgemodes:Wehavediscoveredaclassof inthesystemwithouttheRashbacouplingsandthenadiabat- newphasesbyapplyingcircularpolorizedlighttosilicenein icallyswitchingonthesecouplings21,22. thepresenceofelectricfieldE , assummarizedinthephase z WhenwesetλR1 =λR2 =0,theHamiltonian(2)becomes diagram(Fig.2). TheTIischaracterizedalsobygaplessedge blockdiagonal. Foreachspinsz = 1andvalleyη = ,it modes. We have calculated the band structure of a silicene describesa two-bandsystem in the f±orm,H = τ d, w±here nanoribbonwithzigzagedges,whichwegiveinFig.3fortyp- dx = η~vFkx, dy = ~vFky, dz = mD. The sum·mation of ical points in the phase diagram (Fig.2). Let us summarize theBerrycurvatureisreducedtothePontryaginindexinthe typicalfeaturesoftheP-QHI,PS-QHI,SDCandSPMstates, two-bandsystem2. Weexplicitlyhave17 whichhaveneverbeendiscussedinliterature. TheP-QHIexhibitsquantumHalleffectswithoutmagnet- 1 η = sgn(m ) (8) ics field. They have anisotropic chiral edge modes. It is re- Csz 2 D markable that the velocities of up and down spins in chiral for the K valley. The Chern and spin-Chern numbers are edge states are different, as found by the different slopes of η givenby = ( η+ η)and = 1( η η), the edge modes in Fig.4. This is not the case in graphene5. which arCe shoPwnη=i±n tCh+e phCa−se diagCrsam (PFiηg=.2±).2TCh+e−pCh−ase Similarly,thevelocitiesofupanddownspinsinhelicaledge 4 states are different in QSHI. The difference increases as the intensityoflightincreases. The edge mode of the PS-QHI is peculiar such that, e.g., only down spins propagate. Namely, a perfectly spin- polarized edge mode is realized. Note that helical or chiral edge modes consist of two modes per edge, while the per- fectly spin-polarized edge mode contain only one mode per edge,asinFig.4. Similaredgemodesarerealizedinquantum Hall effectsunderstrong magneticfield, where spin are per- fectly polarized in each Landau level. However, the present edgemodeis realizedwithoutmagneticfield. We also point outthattopologicalstateswithbothnonzeroChernandspin- Chernnumbershaveneverbeenknown. The SPM appears at the critical point between the QSHI andtheP-QHI.Itisinterestingtocomparethestate withthe SVPMstateappearingatthecriticalpointbetweentheQSHI andtheBI.DuetotheidenticalspinconfigurationattheKand K’points, thereemergespin polarizedtopologicalflatbands intheSPMstate(Fig.4). Finally, a particularly intriguing state is the SDC state emerging along the phase boundary, where, e.g., the gap is open at the K point but closed at the K’ point. The spin is uppolarizedatKpointanddownpolarizedatK’point. Thus thenetspinispolarizedintheSDCstate. Hence,thisstateis FIG.4: (Coloronline)Enlargededgestatesofsilicenenanoribbons ferromagnetwithoutmagneticfieldorexchangeinteractions. fortheQSHI,SPM,P-QHIandPS-QHI.Ananisotropichelical(chi- ral)currentflowsinQSHI(P-QHI),wherethevelocitiesofupand I am very much grateful to N. Nagaosa and T. Oka for down spins aredifferent ineach edge. A topological flat band ap- manyhelpfuldiscussionsonthesubject. Thisworkwassup- pearsinSPM. portedin part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture No. 22740196. 1 M.ZHasanandC.Kane,Rev.Mod.Phys.82,3045(2010). Yamada-Takamura,Phys.Rev.Lett.108,245501(2012). 2 X.-L.QiandS.-C.Zhang,Rev.Mod.Phys.83,1057(2011). 13 S.Cahangirov,M.Topsakal,E.Aktürk,1H.Sahin,andS.Ciraci, 3 A.P.Schnyder,S.Ryu,A.FurusakiandA.W.W.Ludwig,Phys. Phys.Rev.Lett.102,236804(2009). Rev.B78,195125(2008). 14 C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 4 W.Yao,A.H.MacDonaldandQ.Niu,Phys.Rev.Lett99,047401 (2011). (2007). 15 M.Ezawa,NewJ.Phys.14,033003(2012). 5 T.OkaandH.Aoki,Phys.Rev.B79,081406(R)(2009). 16 M. Ezawa, cond-mat/arXiv:1203.0705 (tobe published inPhys. 6 J.InoueandA.Tanaka,Phys.Rev.Lett.105,017401(2010). Rev.Lett.). 7 T.Kitagawa,T.Oka,A.Brataas,L.Fu,andE.Demler,Phys.Rev. 17 M.Ezawa,cond-mat/arXiv:1205.6541. B84,235108(2011). 18 M.Ezawa,cond-mat/arXiv:1206.5378 8 N.Lindner,G.RefaelandV.Gaslitski,Nat.Phys.7,490(2011). 19 C.L.Kane andE.J. Mele, Phys. Rev. Lett.95, 226801 (2005); 9 B.Dóra,J.Cayssol,F.SimonandR.Moessner, Phys.Rev.Lett. ibid95,146802(2005). 108,056602(2012). 20 C.-C.Liu,H.Jiang,andY.Yao,Phys.Rev.B,84,195430(2011). 10 P.Vogt,,P.DePadova,C.Quaresima,J.A.,E.Frantzeskakis,M. 21 E.Prodan,Phys.Rev.B80,125327(2009). C.Asensio,A.Resta,B.EaletandG.L.Lay,Phys.Rev.Lett.108, 22 D.N.Sheng,Z.Y.Weng,L.ShengandF.D.M.Haldane,Phys. 155501(2012). Rev.Lett.97036808(2006). 11 C.-L.Lin, R.Arafune, K.Kawahara, N.Tsukahara, E.Minami- 23 D.J.Thouless,M.Kohmoto,M.P.Nightingale,andM.denNijs, tani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5, Art Phys.Rev.Lett.49,405(1982). No.045802(2012). 24 F.D.M.Haldane,Phys.Rev.Lett.61,2015(1988). 12 A.Fleurence,R.Friedlein,T.Ozaki,H.Kawai,Y.Wang,andY.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.