ebook img

Phosphorus Loadings to the World's Largest Lakes PDF

18 Pages·2017·3.18 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phosphorus Loadings to the World's Largest Lakes

Global Biogeochemical Cycles ’ RESEARCH ARTICLE Phosphorus Loadings to the World s Largest Lakes: 10.1002/2017GB005858 Sources and Trends KeyPoints: GabrielFink1,2 ,JosephAlcamo1,3 ,MartinaFlörke1 ,andKlaraReder1 (cid:129) Phosphorusloadingstolakesarea majorcauseoflakeeutrophication, 1CenterforEnvironmentalSystemsResearch,UniversityofKassel,Kassel,Germany,2NowatLandesanstaltfürUmwelt yettherearefewestimatesofthe Baden-WürttembergLUBW,Karlsruhe,Germany,3SussexSustainabilityResearchProgramme,UniversityofSussex, extentoftheseloadings,includingfor theworld’slargestlakes Brighton,UK (cid:129) TPloadingstolargelakesin developingcountriesareonthe averagemuchlargerthantolakesin AbstractEutrophicationisamajorwaterqualityissueinlakesworldwideandisprincipallycausedbythe developedcountries loadingsofphosphorusfromcatchmentareas.Itfollowsthattodevelopstrategiestomitigate (cid:129) ThemostimportantsourceofTP eutrophication,wemusthaveagoodunderstandingoftheamount,sources,andtrendsofphosphorus loadingsisinorganicfertilizer;the secondmostimportantare pollution.Thispaperprovidesthefirstconsistentandharmoniousestimatesofcurrentphosphorusloadings “background”loadingsfrom totheworld’slargest100lakes,alongwiththesourcesoftheseloadingsandtheirtrends.Theseestimates atmosphericdepositionand provideaperspectiveontheextentoflakeeutrophicationworldwide,aswellaspotentialinputtothe catchmentweatheringofP evaluationandmanagementofeutrophicationintheselakes.Wetakeamodelingapproachandapplythe WorldQualmodelfortheseestimates.Theadvantageofthisapproachisthatitallowsustofillinlargegapsin SupportingInformation: (cid:129) SupportingInformationS1 observationaldata.Fromtheanalysis,wefindthatabout66ofthe100lakesarelocatedindeveloping countriesandtheircatchmentshaveamuchlargeraveragephosphorusyieldthanthelakecatchmentsin Correspondenceto: developedcountries(11.1versus0.7kgTPkm(cid:1)2year(cid:1)1).Second,themainsourceofphosphorustothe G.Fink, examinedlakesisinorganicfertilizer(47%oftotal).Third,between2005–2010and1990–1994,phosphorus gabriel.fi[email protected] pollutionincreasedat50outof100lakes.Sixtypercentoflakeswithincreasingpollutionareindeveloping countries.PpollutionchangedprimarilyduetochangingPfertilizeruse.Inconclusion,weshowthatthe Citation: riskofP-stimulatedeutrophicationishigherindevelopingcountries. Fink,G.,Alcamo,J.,Flörke,M.,&Reder,K., (2018).Phosphorusloadingstothe world’slargestlakes:Sourcesand 1. Introduction trends.GlobalBiogeochemicalCycles,32, 617–634.https://doi.org/10.1002/ Eutrophicationisconsideredasoneofthemostimportantformsoflakepollutionbecauseoftheextentofits 2017GB005858 occurrenceandtheintensityofitsimpactonlakewaterquality(MillenniumEcosystemAssessment,2005). Eutrophicationisanoversupplyofnutrientstoanaquaticsystem,usuallycausingundesirablechangesin Received6DEC2017 Accepted18MAR2018 aquaticecosystemssuchastoxicalgalblooms,decreaseinwatertransparency,oxygendepletionoranoxia Acceptedarticleonline23MAR2018 duetodecompositionoforganicmatter,changesinspeciescomposition,increasedincidenceoffishkills, Publishedonline19APR2018 reduced species diversity, and a reduction in harvestable fish (Correll, 1998; Smith & Schindler, 2009). Corrected21MAY2018 Eutrophicationthreatensfreshwaterecosystemservicesimportanttohumanwell-beingsuchastheprovi- Thisarticlewascorrectedon21MAY sion of drinking water, the harvesting of fish, and the recreational use of lakes (Aylward et al., 2005). For 2018.Seetheendofthefulltextfor instance,inLakeTaihu,China,eutrophicationintheformofmassivealgalbloomshasendangeredthedrink- details. ingwatersupplyofmillionsofpeopleinShanghaiandothercities(Qinetal.,2007).Anotherwell-known exampleisLakeErie(CanadaandUnitedStates)wherethedischargeofagricultural,industrial,anddomestic wastewaterstimulatedalgalbloomsandfishkillsuntilthemid-1980s(Allinger&Reavie,2013).Ittakesupto decadesforlakestorecoverfromeutrophication(Jeppesenetal.,2005).Solvingeutrophicationproblems was given new attention in 2015, when UN Member States agreed “By 2020, [to] protect and restore water-related ecosystems, including … lakes” as part of Target 6.6 of the UN Sustainable Development Goals(UnitedNations,2015). Toassesstheriskofeutrophicationinlargelakes,itisimportanttounderstandtheloadingsofphosphorus(P) totheselakesfromtheircatchment.Therearetworeasonsforthis.First,Piscommonlythemainlimiting nutrient for phytoplankton growth in freshwater systems (Brönmark & Hansson, 2005; Dodson, 2005; Sterner,2008);hence,acertainlevelofPinlakesabovenormallypristinelevelsisacommontriggerofeutro- phication (Correll, 1998; Schindler, 1977; Yan et al., 2016). Second, P loadings into a lake also affect the balanceofothernutrients,suchasnitrogen,thatplayaroleinphytoplanktonproduction(e.g.,Finlayetal., 2013).BecauseoftheimportanceofP,manyinvestigatorshavemeasuredPloadingstolakes.Avarietyof methodshavebeenusedincludingpollutionsourceassessments(e.g.,Scherenetal.,2000)andmeasure- ©2018.AmericanGeophysicalUnion. AllRightsReserved. mentsofinflows(e.g.,Zimmer&Bendoricchio,2001).EstimatesofPloadingstovariouslakesaroundthe FINKETAL. 617 Global Biogeochemical Cycles 10.1002/2017GB005858 worldhavebeencompiledintheWorldLakeDatabase(ILEC,2015)andforEuropeinEuropeanEnvironment Agency (2005). Specifically for large lakes, estimates of P loadings have been published for Lake Victoria (Scherenetal.,2000),LakeMichigan(Johengenetal.,1994),LakeBaikal(Callender&Granina,1997),Lake Malawi (Pasche et al., 2012), Lake Erie (Dolan & McGunagle, 2005), Lake Winnipeg (LWSB, 2006), Lake Ladoga (Holopainen & Letanskaya, 1999), and Lake Onega (Bilaletdin et al., 2011). Some of these studies, forexample,Scherenetal.(2000),provideinformationonPsourcesaswell.Hence,therearealreadyesti- matesofcurrentPloadingstoseverallargelakes. However,inthispaperwepresentforthefirsttimeaconsistentestimateoftotalphosphorus(TP)loadingsto theworld’s100largestlakes.AsatoolweusetheWorldQualmodelfromtheglobalmodelingframework Water—Global Assessment and Prognosis (WaterGAP3; Alcamo et al., 2003; aus der Beek et al., 2010; Flörkeetal.,2013;Verzano,2009;Voßetal.,2012).Thesenewtop-down,model-basedcalculationsprovide addedvaluetocurrentPloadingestimatesinthefollowingways:First,theycovermanymorelargelakes andinamoreconsistentwaythanpreviousresearch;Second,usingthesamemodeltoestimatePloadings toseverallakesenablesconsistentcomparisonsbetweenlakesbecauseauniformmethodisusedforcalcu- lations;Itisdifficulttocompareliteraturevaluesfordifferentlakesbecausetheyhaveuseddifferentmethods (notedabove)anddifferentdatainputs.Third,usingadeterministicmassbalancemodeldrivenbyvarious sourcesofPallowsthelinkagebetweensourcesandresultingloadings.Thisprovidesimportantinformation topolicymakersandlakemanagersbecauseitmakesitpossibletoidentifywhichsourcesmustbereducedto substantiallyreduceloadings.Fourth,themodelcanbeusedtoestimatechangesinthesourcesofPwithina lakebasinandhencebeusedtogenerateatimeseriesofhistoricloadings.Fifth,themodelcanbeusedto makeprojectionsofchangesinPloadingsandhenceprovideinputtoassessmentsofchangesintheintensity ofproblemsasafunctionofsocioeconomicdriversandclimatechange.Likewise,itcanbeusedtocompute scenariosofprogresstowardachievingtargets,suchasthoseundertheSustainableDevelopmentGoals. Inthispaper,weaimtoanswerthreemainquestions: A WhatarethemagnitudesofPloadingstolargelakesworldwide,andhowdotheyvarybetweenlakes? B WhatarethemainsourcesofPloadingtolargelakesandhowdopatternsvaryworldwide? C Whatarethe20yeartrendsofPloadingstolargelakes? 2. The Investigated Lakes Inthisstudywefocusontheworld’smajorlakes,whichwedefineasthe100largestlakesandreservoirsin termsoflakesurfacearea,asidentifiedintheGlobalLakeandWetlandDatabase(Lehner&Döll,2004).We excludetheCaspianSea(technicallimitationforitssize)andtheAralSeaandLakeChad(rapidlychanging morphology).Hereafter,forthesakeofsimplicityweusetheterm“lake”forreservoirs. Although most lakes are small, the few with large volumes and/or surface areas are especially significant becauseoftheiruniqueecosystemsandlargefisheries.Insomecasestheyarealsoamajorsupplierofwater forirrigation,industry,andthedomesticsectors.The100largestlakescoverawiderangeofenvironmental conditionsandlevelsofwaterquality.Somelakesinthenortharecoveredwithiceformorethanhalfthe year,whilethetropicallakesofSouthAmericaneverfreeze.Anthropogenicloadsofnutrientsarehigherin intensivelyfarmed,industrial,andsemiruralorurbanareas(e.g.,LakeTaihu;Wangetal.,2014)andmuch lowerinremotecatchments(e.g.,GreatSlaveLake,Canada). Thelargelakesinvestigatedhereconsistsof11lakesinEurope,17inAfrica,28inAsia,1inOceania,33in NorthandCentralAmerica,and10inSouthAmerica.Thelake’smappingtoeachcontinentisdefinedby thelandmaskusedintheWaterGAP3modelingframework(Figure1).Foradetailedlistofthestudiedlakes, seesupportinginformation. 3. Methods 3.1. ModelingFrameworkWaterGAP3 ThemaintoolusedinthisstudyistheWorldQualmodeloftheWaterGAP3modelingframework.WaterGAP3 isagrid-based,integrativeassessmenttooloperatingona5-arcminglobalgrid(about9by9kmattheequa- tor)(Alcamoetal.,2003;ausderBeeketal.,2010;Flörkeetal.,2013;Verzano,2009;Voßetal.,2012)whichhas been applied in numerous studies (e.g., Reder et al., 2013; Ward et al., 2014; Williams et al., 2012). The FINKETAL. 618 Global Biogeochemical Cycles 10.1002/2017GB005858 Figure 1.Assignment of countries to continents used in this paper. Lighter orange = Central and North America; darker orange = South America; lighter blue=Europe;darkerblue=Africa;lightergreen=Asia;darkergreen=Oceania.Thepointsindicatethepositionsoftheinvestigatedlakes. modeling framework (Figure 2a) includes three modules: (i) The distributed global hydrological model (Alcamo et al., 2003; Döll et al., 2003; Eisner, 2016) simulates hydrological storage compartments with a dailytemporalresolution. Thehydrologicalmodel is drivenbya meteorologicaldataset(WATCHForcing DatamethodologyappliedtoERA-Interimdata,Weedonetal.,2014)andcalibratedandvalidatedagainst measured river discharge from 2,446 stations of the Global Runoff Data Center data repository (Eisner, 2016).(ii)Thewaterusemoduleincludesfivesectoralwaterusemodels(ausderBeeketal.,2010;Flörke etal.,2013).(iii)ThewaterqualitymodelWorldQual(Voßetal.,2012)simulatesmonthlyloadingsandin- stream concentrations from point sources and diffuse sources (Figure 2b) of TP, fecal coliform bacteria, total dissolved solids, and biochemical oxygen demand (Punzet et al., 2012; Reder et al., 2015; Voß et al., 2012;Williamsetal.,2012). Usingseverallargeglobaldatasets(Table1),theWorldQualmodelcalculatesTPloadingsintolakesintwo majorsteps.First,theTPloadingsineachgridcelljinthelakecatchmentarecalculatedandsummed(TP loadingisthetotalmassflowintoalake,andTPyieldistheareallynormalizedPtransport).Thisincludes Figure2.(a)OverviewoftheWater—GlobalAssessmentandPrognosis(WaterGAP3)modelingframework(Verzano,2009;modified),and(b)waterpollutantloading sectorsinWorldQualcategorizedaseitherpointsourcesordiffusesources. FINKETAL. 619 Global Biogeochemical Cycles 10.1002/2017GB005858 Table1 CompilationofGlobalDataSourcesUsedinTPLoadingCalculations Data Application Datasourceorrelatedpublication Originalspatialresolution Proteinconsumptiondata Domesticseweredandnonsewered FAO(2014) Countries Population Domesticseweredandnonsewered KleinGoldewijk(2005)andKlein 5arcmin Goldewijketal.(2010) Treatmentlevel Domesticsewered,manufacturing Williamsetal.(2012) Countries wastewater,urbansurfacerunoff Sanitationpractice Domesticnonsewered WHO/UNICEF(2013) Countries (scatteredsettlements) Fertilizerapplicationbycrop Inorganicfertilizer FAO(2003) Countries Totalfertilizerapplication Inorganicfertilizer IFA(2014) Countries Soilloss Alldiffusesources Nachtergaeleetal.(2011) 5arcmin Animaltypeanddensity Livestockwastes FAO(2014) Countries Phosphorusinmanure Livestockwastes ASAE(2003) Countries Livestockunits Livestockwastes FAO(2003) FAOregions Chemicalweathering Backgroundloads Hartmannetal.(2014) 0.008° Atmosphericdeposition Backgroundloads Mahowaldetal.(2008) 0.5° InputfromtheWaterGAP3hydrologymodel Urbansurfacerunoff Urbansurfacerunoff WaterGAP3calculationspublishedin 5arcmin Schellekensetal.(2017) Built-upfraction Urbansurfacerunoffretentioncalculation WaterGAP3standardinput 5arcmin (Alcamoetal.,2003) Watersurfacearea Retentioncalculation WaterGAP3standardinput 5arcmin (Alcamoetal.,2003) Surfacerunoff Alldiffusesources WaterGAP3calculationspublishedin 5arcmin Schellekensetal.(2017) Note.TP=totalphosphorus;FAO=FoodandAgricultureOrganization;WHO/UNICEF=WorldHealthOrganization/UnitedNationsChildren’sFund;ASAE= AmericanSocietyofAgriculturalEngineers;WaterGAP3=Water—GlobalAssessmentandPrognosis.FAOSTAT=FAOStatisticalDatabases;IFA=International FertilizerAssociation. loadingsfromdomesticseweredwastewater(Ld ),domesticnonseweredwastewater(Ld ),manu- dsTP,j dnsTP,j facturing wastewater (Ld ), urban surface runoff (Ld ), inorganic fertilizer (Ld ), and livestock mfTP,j usrTP,j ifTP,j wastes(Ld ).Themethodspresentedinsections3.1.1–3.1.7areusedforthesecalculations.Thesumof orgTP,j allcellloadingsinalakecatchmentis Xn LsumTP½tTP=month(cid:3)¼ LddsTP;jþLddnsTP;jþLdmfTP;jþLdusrTP;jþLdifTP;jþLdorgTP;j (1) j¼1 L represents the sum of all anthropogenic TP generated in the catchment. In the second step, the sumTP amount of these loadings retained in rivers, smaller lakes, and wetlands in the catchment is calculated (section3.1.8).Theremainderoftheloadingisassumedtodrainintothemainlakeofthecatchment. Ascomparedtootherlarge-scalemodels,WorldQualandtheWaterGAP3frameworkhaveglobalcoverage andcomputesnutrientsourcetermsonaglobal5-arcmingrid;itthereforecandepictthespatialvariability ofpollutionsources.Othermodelscomputenutrientexportatthemouthofrivers(e.g.,thelumpedmodels NEWS2,Mayorgaetal.,2010;NANI/NAPI,Hongetal.,2012),oronlyforselectedlarge-scalebasins(e.g.,the semidistributedanddistributedmodelsRiNUX,Loosetal.,2009;HBV-NP,Anderssonetal.,2005).Inthispaper we use WorldQual to compute the P loading on a grid cell basis and then sum up to a lake basin total, whereaswecomputePretentionasabasinaverage.ThemethodologyforcalculatingTPloadingsforvarious sectorsisdescribedinthefollowingsections. 3.1.1. DomesticSeweredWastewater The TP loading from domestic sewered wastewater is the phosphorus in domestic wastewater that is collectedinsewersbutnotremovedbywastewatertreatment.Thisloadingiscalculatedas Ld ½tTP=month(cid:3)¼Pc=12(cid:4)N=Pc(cid:4)Ex(cid:4)P=N(cid:4)Pop(cid:4)Cr(cid:4)ð1(cid:1)TrÞ (2) dsTP wherePc(tcap(cid:1)1year(cid:1)1)isthecountry-specificproteinconsumptionpercapitaandyear.DataforPcwere obtainedfromtheFoodandAgricultureOrganization(FAO,2014).ForcountrieswithnoPcinformationcon- tinentalaveragesweretaken.N/PcistheaveragefractionofNitrogen(N)inconsumedprotein(16%).Existhe FINKETAL. 620 Global Biogeochemical Cycles 10.1002/2017GB005858 ratioofexcreted/consumedprotein(36.5%onaverage,VanDrechtetal.,2009),P/NistheratioofPandNin human feces (17% on average, Van Drecht et al., 2009). Pop is the population in each grid cell (History DatabaseoftheGlobalEnvironment,HYDE,KleinGoldewijketal.,2010).Cr[0–1]isthefractionofpeople livingin the gridcell that are connectedto thesewage system. Tr is thecountry-average treatmentlevel forTPremovalinsewagetreatmentplants.Thisfactoraccountsforremovalinprimary,secondary,andter- tiarytreatmentandalsoaccountsforthedeficienciesinachievingthedesignremovalrate.DataforCrand TrarefromReder(2017). 3.1.2. DomesticNonseweredWastewater(ScatteredSettlements) “Domesticnonseweredwastewaterfromscatteredsettlements”consistsofwasteorwastewaterthatiscol- lectedatonsitedisposalfacilities(forexample,inseptictanksorhanginglatrines)andthenaftertreatment, ornot,isfinallyintroducedtosurfacewatersaspointsources.Italsoconsistsofwastesfromopendefecation and pit latrines that are washed off land surfaces by precipitation and enter lakes as a diffuse source. In WorldQualTPloadingsfromscatteredsettlements(Ld )areestimatedsimilarlytoequation(2)butalso dnsTP takeintoaccountthefractionofurbanandruralpopulationthatisnotconnectedtothesewagesystem. Todistinguishbetweendiffuseandpointsourcesfromscatteredsettlements,dataonsanitationpractices are derived from the Joint Monitoring Programme for water supply and sanitation (WHO/UNICEF, 2013), nationaldatabases,andtheliterature. 3.1.3. WastewaterFromtheManufacturingSector Wastewaterfrommanufacturingfacilitiesisassumedtobecollectedinasewagesystemandtransportedto wastewater treatment facilities where part of its phosphorus content is removed. The remainder is dis- chargedtothelocalsurfacewatersystem.TPloadingsoriginatingfrommanufacturingwastewaterarecalcu- latedfrom LdmfTP½tTP=month(cid:3)¼CTP;mf(cid:4)10(cid:1)9(cid:4)Rflmf=12(cid:4)ð1(cid:1)TrÞ (3) whereC (mgTP/L)istheaverageTPconcentrationinmanufacturingwastewater.WorldQualusesavalue TP,mf of3mgTP/Lasanaveragevalueoverliteraturevaluesfordifferentmanufacturingsectors.Rfl (L/year)isthe mf return flow from the manufacturing industry in each grid cell and month as calculated by the Water Use modelofWaterGAP3(ausderBeeketal.,2010;Flörkeetal.,2013).Similartothedomesticsector,manufac- turingloadsarereducedbythecountry-averagetreatmentremovalrate,Tr(0–1). 3.1.4. UrbanSurfaceRunoff Somephosphorus accumulates onurbansurfaces and is washedoffto surfacewaters byprecipitation to sewage canals or other drainage routes. Sewage treatment plants are assumed to remove P from urban surface runoff at the same rate as they remove P from domestic sewered wastewater (see section 3.1.1). Monthly TP loadings in urban surface runoff are calculated by multiplying an event mean concentration (EMC [mg/L])timesthemonthlyurbansurfacerunoffR (mm/month): TP us Ld ½tTP=month(cid:3)¼R (cid:4)EMC (cid:4)A (cid:4)10(cid:1)3(cid:4)F (cid:4)ð1(cid:1)TrÞ (4) usrTP us TP cell built A (km2)andF (0–1)arethecellareaandbuilt-upfraction,respectively.Inthisstudy,R isfromthe cell built us WaterGAP3calculationspresentedinSchellekensetal.,(2017).ForEMC weusearepresentativevalueof TP 0.2mg/LbasedonGöbeletal.(2007).Becausethisvalueisformotorways,itislikelyaconservativenumber forallbuilt-upfractions. 3.1.5. InorganicFertilizerintheAgriculturalSector OurcalculationsalsotakeintoaccountthefractionofPcontainedininorganicfertilizerwhichisnottakenup byplantsbutiswashedinsteadintothesurfacewatersystem(inthispaperweuse“inorganicfertilizer”to mean manufactured fertilizer). We estimate this loading by multiplying the applied inorganic fertilizer F (tTP/year)timesthetermsinbracketsthataccountforthelossofPbyleachinganderosion. inorg,TP ! L R LdifTP½tTP=month(cid:3)¼Finorg;TP(cid:4) 1þðRmacatx=aÞ(cid:1)bþSl(cid:4)c(cid:4)Rmaecatn (cid:4)1=12 (5) L (0,1)isthemaximalleachablefractionofTPinappliedinorganicfertilizerTP(dissolvedfraction).R / max act R representsacorrectionfactorthatincludestheannualvariationofsurfacerunoff(R [mm/year]is mean act thesurfacerunoffinayear;R [mm/year]isthemeanannualsurfacerunoff1980–2000).R andR mean act mean FINKETAL. 621 Global Biogeochemical Cycles 10.1002/2017GB005858 arecalculatedbytheWaterGAP3hydrologymodelandcorrespondtotheWaterGAP3estimatesinaglobal waterresourcesreanalysis(Schellekensetal.,2017).a(mm)andb(–)definetheshapeoftheresponseof dissolved TP loadings on runoff changes. Their values as well as the value for L were taken from max Harrisonetal.(2005)(a=850mm,b=2,L =0.04).Slisthegriddedsoilloss(tha(cid:1)1year(cid:1)1)thatwaspre- max dictedbytheFAOprojectLADA(Landdegradationassessment)(Nachtergaeleetal.,2011)withtheUniversal SoilLossequation(Wischmeier&Smith,1978).c(hayear/t)isanempiricalcoefficientthatdefinestherela- tionshipbetweentheamountofTPininorganicfertilizer,TPthatisfixedtosoilparticles,andtheamount oferodedsoil(cwascalibratedtoc=3·10(cid:1)6hayear/t). WaterGAP3calculatesTPloadingsfromfertilizerapplicationfortheunsealedareaingridcellswithcropland asdominantlandusetype.Hereby,itusescountry-specificF for21differentcroptypesaccordingto inorg,TP FAO data (FAO, 2003). These FAO data approximately represent the time period 1995 to 1999. However, between 1990 and 2010, the global application of phosphate in inorganic fertilizer increased by about 13%(IFA,2014). Hence, dataoftheInternationalFertilizer Association(IFA)wereusedto derivecountry- specificcorrectionfactorsforthecrop-specificfertilizerapplicationrelativetotheperiod1995–1999.These relativechangesareaveragesfor5-yearintervals,thatis,1990–1994,1995–1999,2000–2004,and2005–2010. 3.1.6. Agriculture—LivestockWastes Phosphorus in livestock wastes is partly used as an organic fertilizer and is partly unused and remains in pastures.Eitherwayitispartlyabsorbedbyplantsandwhatisnotabsorbedislargelywashedoffintosurface waters.WorldQualcalculateslivestockTPproductionineachcell(F )astheproductofananimal-specific org,TP TPexcretionrateex andthenumberofanimalsls: i,TP i X12 Forg;TP½tTP=year(cid:3)¼ lsiexi;TP (6) i¼1 The index i represents 12 animal types: dairy cattle, nondairy cattle, pigs, sheep, goats, buffaloes, camels, horses, chicken, turkey, ducks, and geese. Animal type and density data were taken from the Water Use model of the WaterGAP3 modeling framework. The excretion rate for each specific animal type ex i (thead(cid:1)1year(cid:1)1)iscomputedusingtheapproachofPotteretal.(2010): (cid:2) (cid:3) exi thead(cid:1)1year(cid:1)1 ¼mTP;ilci (7) inwhichm (thead(cid:1)1year(cid:1)1)istheamountofTPinthemanureofaparticulartypeofanimal(takenfrom TP,i ASAE,2003,andthereforeOrganisationforEconomicCo-operationandDevelopmentdata).Theparameter lc (0–1)isanimalspecificandaccountsforregionaldifferencesinanimalnutrition.Theseregionaldifferences i are taken into account by taking the ratio of regional and Organisation for Economic Co-operation and Developmentequivalentlivestockunits.ValuesoflcarederivedfromFAO(2003)data. SimilartoLd (equation(5)),WorldQualassumesthatthefractionF ofwastesiswashedouttothe ifTP org,TP surfacewatersystemasafunctionofrunoff: ! L R Ldorg;TP½tTP=month(cid:3)¼Forg;TP(cid:4) 1þðRmacatx=aÞ(cid:1)bþSl(cid:4)c(cid:4)Rmaecatn (cid:4)1=12 (8) Again,thefirstandsecondtermswithinbracketsrepresentleachinganderosionofTP,respectively. 3.1.7. BackgroundLoadings WorldQualconsiderstwobackgroundsourcesofTP.ThefirstisatmosphericPdepositionF (tTP/year), atm,TP whichwasderivedfromtheglobaldistributionofdepositionfluxesforTPinMahowaldetal.(2008).This depositionoriginatesfrombothnaturalsourcessuchasPcontainedinsoilstransportedbywindandanthro- pogenicsourcessuchasPcontainedinairpollutionemissions.Basedonthesedata,WorldQualestimatesthe fractionofatmosphericdepositionthatiswashedouttothesurfacewaterasanempiricalfunctionofrunoff: ! L R Ldatm;TP½tTP=month(cid:3)¼Fatm;TP(cid:4) 1þðRmacatx=aÞ(cid:1)bþSl(cid:4)c(cid:4)Rmaecatn (cid:4)1=12 (9) TheparametersL ,a,b,andcarethesameasforequations(5)and(8). max FINKETAL. 622 Global Biogeochemical Cycles 10.1002/2017GB005858 Table2 ThesecondbackgroundsourceischemicalweatheringofTP(Ld cw,TP, ListofReferencesUsedforModelTesting [tTP/year]).ThisinvolvesthetransportofPfromsoilsandrock annual Numberof in the catchment via runoff. Data for this source were taken from Reference Riverandlakebasins datapoints Hartmannetal.(2014)andadjustedtomonthlyloadingsusing TPloadingdata R MeybeckandRagu(1995) Largeriverdischarges 15 LdcwTP½tTP=month(cid:3)¼Ldcw;TP;annualR ac(cid:4)t12 (10) intotheocean mean OECD(2015) KymijokiRiver 1 whereR (mm/year)istheannualrunoff,andR (mm/year)the act mean PedrozoandBonetto(1989) ParanaRiver 1 meanannualrunoffoftheperiod1980–2000.Runoffvaluesaretaken SkogenandSoiland(2001) RiversintotheNorthSea 3 fromthehydrologicalmodeloftheWaterGAP3modelingframework. LurryandDunn(1997) MississippiRiverbasin 1 3.1.8. TPRetentionintheSurfaceWaterSystem Stalnackeetal.(1999) RiversintotheBalticSea 3 deWit(2000) ElbeandRhinebasins 3 Retention in surface water systems that are within the watersheds LfW(2002) MoselRiver 1 drainingtofocallakesisdefinedbyHejzlaretal.(2009)as“thefraction TeodoruandWehrli(2005) Danubeatinflow 3 of external N or P loading that is retained within the water bodies, toBlackSeaandIron eitherinabsolutevaluesorrelativetotheinput.”InWorldQual,reten- GateReservoir tionofTPiscalculatedonthecatchmentscalebasedontheapproach SaundersandLewis(1988) ApureRiver 1 ChineseAcademyof YangtzeRiver 1 ofBehrendtandOpitz(1999): Science,Instituteof L 1 Oceanology(2011) rTP ¼ (11) Skoulikidisetal.(1998) Greecerivers 6 LsumTP 1þaHLb Ludwigetal.(2009) Riversintothe 19 HereL istheTPloadingatacatchment’soutflowpoint,whichin Mediterraneanand rTP BlackSeas thisstudyisequivalenttoitslakeinflowlocation.HL(m/year)isthe Holopainenand LakeLadoga 1 hydraulicload,definedastheratioofannualrunoffinthecatchment Letanskaya(1999) (m3/year)toitswatersurfacearea(m2)(Hejzlaretal.,2009).Annual Bilaletdinetal.(2011) LakeOnega 1 runoffistakenfromthehydrologymodelofWaterGAP3andsurface ILEC(2015) Lakesoftheworld 11 area from Alcamo et al. (2003). The values for the empirical para- Scherenetal.(2000) LakeVictoria 1 ZimmerandBendoricchio LagunadeBay 1 metersa=13.2andb=(cid:1)0.93aretakenfromHejzlaretal.(2009). (2001) Johengenetal.(1994) LakesMichiganandOntario 2 3.2. ReliabilityoftheLoadingEstimates DolanandMcGunagle(2005) LakeErie 1 LWSB(2006) LakeWinnipeg 1 Thereliability oftheTPmodel canbetestedbycomparingcalcula- IGKB(2000) LakeConstance 1 tionstomeasurementsin92lakeandrivercatchments(notequiva- Pascheetal.(2012) LakesKivuandMalawi 2 lent to the 100 largest lakes), as well as the percentage share of Matzingeretal.(2007) LakeOhrid 1 eachTPsource(Table2andFigure3a).Forstudieswithmultiyeartime Wangetal.(2014) LakeTaihu 1 deAndaetal.(2001) LakeChapala 1 seriesdata(e.g.,1990–2000forLakeVictoriaasreportedinScheren SalasandMartino(1991) SouthAmericanlakes 3 etal.,2000)weonlyusethelong-termannualaverageofthesedata, EuropeanEnvironment LargeEuropeanlakes 3 ratherthanseparatemeasurementsfromindividualyears.Therefer- Agency(2005) encesinTable2covertheavailableliteratureonTPloadingsinthe BUWAL(1994) Swisslakes 3 basinsoflargelakesandriversaccordingtotheauthors’knowledge. Total 92 Dataonsectoralcontributiona Aninitialfindingofthiscomparisonwithliteraturevaluesisthatthe EuropeanEnvironment Europeanriversandlakes 10 rangeofmodelandliteraturevaluesissimilar(Figure3a).Forindivi- Agency(2005) dual basins, the nearest agreement is for the Danube basin (calcu- WhiteandHammond(2011) Thames 1 LfW(2002) MoselRiver 1 lated versus measured, 30 versus 31 kg km(cid:1)2 year(cid:1)1, respectively) ILEC(2015) Lakesoftheworld 9 and the farthest for Lake Taihu basin (calculated versus measured, Scherenetal.(2000) LakeVictoria 1 384versus65kgkm(cid:1)2year(cid:1)1,respectively).TheR2ofmodelversus LWSB(2006) LakeWinnipeg 1 measurementsis0.53,whichistypicalofothermodelsinthelitera- IGKB(2000) LakeConstance 1 Total 24 ture(e.g.,theNEWS(GlobalNutrientExportfromWatersheds)model: R2=0.55;Harrisonetal.,2005).Themeanabsolutedeviationofmodel Note.TP=totalphosphorus;OECD=OrganisationforEconomicCo-operation and Development; ILEC = International Lake Environment Committee versus measurements is 39%. On average, model estimates are Foundation;LWSB=LakeWinnipegStewardshipBoard;LfW=Landesamtfür 5kgkm(cid:1)2year(cid:1)1higherthanmeasurements. Wasserwirtschaft; IGKB = Internationale Gewässerschutzkommission für den Bodensee;BUWAL= BundesamtfürUmwelt. Asafurthertestofthemodel,weexaminetheconsistencybetween aThereferencesdonotprovidethefractionofcontributionofeachsectorforall WorldQual and other model estimates by comparing our TP source lakesandrivers.Thus,eachsubplotinFigures3b–3ddoesnotcontain24data apportionment calculations with those of other models (Table 2). pointsintotal. For this comparison we harmonize data from the different models FINKETAL. 623 Global Biogeochemical Cycles 10.1002/2017GB005858 Figure3.TestingoftotalWorldQualtotalphosphorus(TP)calculations.Theloadingsin(a)aregivenperunitcatchmentarea.Diagrams(b)to(d)showmodeled sectoralcontributionsversusdataofothersourceapportionmentstudies. intothreecategories:domestic+industrysector,agriculturesector,andbackgroundloadings(Figures3b–3d). Wefindthatthereisagoodagreementbetweentheaveragevaluesofthemodelversusliteraturevalues (Table3),suggestingthatWorldQualgivescentralestimatesofPloadingswithrespecttotheensembleof available studies. There is a lower level of agreement when WorldQual is compared one-on-one with individual studies Table3 (Figures 3b–3d). The model agrees with literature estimates ComparisonofEstimates(WaterGAP3andOtherStudies)forAveragePercentage moderately well for the domestic + industry sector and less so for ShareofTPSources the agriculture sector and background loadings, because Averagepercentageshare Averagepercentageshare background loadings are controlled by complex factors that are Source calculatedinthispaper(%) ofotherstudies(%) difficulttocapturewithinaglobalmodels.Theagreementbetween Domestic + 33.2 37.5 models for the domestic + industry sector suggests a similarity in industry methodologyorinputdataforthedifferentmodels. Agriculture 38.7 35.6 Background 23.0 19.4 DiscrepanciesbetweenWorldQualandmeasurementsorothermodel Note. WaterGAP3 = Water—Global Assessment and Prognosis; TP = total estimatesmaybeduetovariousreasons.First,theobservationaland phosphorus. inputdatacontainerrorsanduncertainties.Second,simplifiedmodel FINKETAL. 624 Global Biogeochemical Cycles 10.1002/2017GB005858 assumptionsareatypicalsourceoferrorinallmodels.Ingeneral,webelievethatthesimplifiedrepresenta- tionofPprocessesinWorldQualisappropriateforglobalanalysis,wherethetemporalandspatialresolution iscoarseandwherethekeyobjectiveistoobtainaconsistentglobaloverviewofmanydifferentlakes.Itis lessappropriateforsimulatinglocal,specificconditions,forexample,theimpactofparticularaquaculture facilitiesonoverallPloadingtolargelakes. 4. Results Toaddresstheresearchquestionspresentedatthebeginningofthispaper,wenowanalyzeandcompare theTPinputtoinvestigated100largelakes(section4.1),aswellastheirmainsources(section4.2),andtrends (section4.3).WepresentresultsforbothTPyieldspercatchmentareaandloadingsperlakearea.Themetric “yield”illustratestheintensityofPproducedinthecatchmentandisthereforeusefulforinvestigatingstra- tegiestoreducetheseloadings.Themetric“loadingperlakearea”canbeusedasinputtosimplifiedassess- ments of eutrophication potential of lakes, for example, along the lines of Vollenweider (1976). Here we presentmeanannualyieldsofthecatchmentsandtheloadingsperlakeareafortwoperiods,1990–1994 and 2005–2010,that arebased onthesequentially modeled monthlyloadings fortheperiod1990–2010. The 5-year averaging period takes into account the temporal irregularity of inorganic fertilizer data (IFA, 2014).SinceagricultureisamajorsourceofTPloading,thesedataplayacrucialroleinmodelcalculations. Estimatesoffertilizerusearebasedoncountry-specificfertilizerbalances(production,consumption,produc- tion,export,andimport)whichdonotnecessarilyreflecttheactualuseoffertilizerinaparticularyear.The problemisthatcountriesfrequentlyimportfertilizerandstorelargequantitiesofitfromyeartoyear.Inorder tosmoothoutthiseffect,weuse5-yearaverageddata.Anotherreasonforusing5-yearaveragingperiodsis tosmoothouttheeffectofyear-to-yearhydrologicvariations. 4.1. GlobalDistributionofTPLoadings Fortheworld’s100largestlakes,asdefinedinthispaper,themedianlakecatchmentTPyield(Figure4a)was 5 kg TP km(cid:1)2 year(cid:1)1 during the period 2005–2010, which represents current conditions. The frequency distribution of TP yields has a positive skewness of 4.1, indicating a bias toward smaller loadings. Catchment yields are most frequently in the pollution class ranging from 0 to 1 kg TP km(cid:1)2 year(cid:1)1. Qinghai Lake catchment in China has the largest TP yield (516 kg TP km(cid:1)2 year(cid:1)1), and the Canadian LakesDubawnt,Martre,andNueltininCanadahavethelowestTPyield(<0.01kgTPkm(cid:1)2year(cid:1)1.Other largelakesinthesecountriesalsotendtobeeitherveryhighorverylow,respectively,inaccordancewith thedensity of population and economicactivity and level of environmental protection. Despite thelarge loadings to Chinese lakes, the Asian average is not as high as Latin America because of the numerous Siberianlakeswithsmallloadings. ThemedianofLatinAmericavalueis abovetheglobalaverage(70kg TP km(cid:1)2 year(cid:1)1). In particular, the Lake Titicaca catchment stands out with yields of about 115 kg TP km(cid:1)2year(cid:1)1.Africanlakecatchments(4kgTPkm(cid:1)2year(cid:1)1)arebelowthemedian,andEuropeanlakecatch- ments(median:5kgTPkm(cid:1)2year(cid:1)1)areclosetothemedianofalllakecatchmentsexamined. ThedistributionofTPloadingsperlakeareaissimilartothatofcatchmentTPyields.Althoughspatialpat- ternsaresimilar(Figures4aand4b),loadingsperlakeareatendtobe2ormoreordersofmagnitudelarger becauselakeareaismuchsmallerthanlakecatchmentarea.AnomaliesareEuropeandNorthAmericawhere loadingsperlakeareaareonlyafactorof5and9,respectively,largerthanloadingspercatchmentarea.This isbecauseEuropeanandNorthAmericanlakeshaveasmalleraverageratioofcatchmenttolakesurface. Becauseofthis,TPloadingsperlakeareatoAfricanlakesaremorethan4timeshigherthantoEuropean lakes,althoughtheyhaveapproximatelythesamecatchmentTPyields(Table4). IntheNorthernHemisphere,TPloadingstolakestendtodecreasewithlatitude,roughlyinaccordancewith populationdensity(Figure5a).Nevertheless,lakeswithhighloadingscanbeobservedatalllatitudes.Below 30°NthereisnoapparentcorrelationbetweenTPloadingsandlatitudeorpopulationdensity(Figure5a). Apartfromalatitudinalvariation,TPloadingsalsovarygreatlybetweendevelopinganddevelopedcountries (fordefinitionof“developing”and“developed”seeUNEP,2017).Outofthe100largelakesexaminedinthis paper,66arelocatedindevelopingcountries,andtheircatchmentshaveanaverageTPyieldofabout11.1kg TPkm(cid:1)2year(cid:1)1.TheremaininglakesareindevelopedcountriesandhaveacatchmentTPyieldofabout 0.7kgTPkm(cid:1)2year(cid:1)1. FINKETAL. 625 Global Biogeochemical Cycles 10.1002/2017GB005858 Figure4.Totalphosphorusloadingstothe100largestlakesintheworldwithrespecttocatchmentsize,fortheperiod2005–2010:(a)loadingsperunitcatchment areaand(b)loadingsperunitlakesurfacearea. 4.2. TheSourcesofPLoading The sources of TP loadings to thelarge lakes investigated, in order of importance, are inorganic fertilizer, background loadings (weathering and atmospheric deposition), domestic sewered wastewater, livestock wastes,andothersources(wastewaterfrommanufacturing,domesticunseweredfromscatteredsettlements [septic tanks, pit latrines, and others], and open defecation). However, the relative importance of these sourcesvariesbetweenlakesandcontinentsasnotedinthefollowingparagraphs. Inorganicfertilizeraccountsforabout47%ofthetotalTPloadingstoalllargelakessurveyedandmorethan 50%in44outof100largelakes.Itaccountsfor88%ofTPloadingstolargelakesinAsia(Figure6c),ranging from<0.1%calculatedfortheremoteSiberianlakesTaymyrandVilyuyskoyetomorethan99%forthelakes HulunandNa-Mu(China)andHovsGolLake(Mongolia).Inorganicfertilizerisalsothemostimportantsource in Latin America (76%) with the exception of the Brokopondo Reservoir in Surinam, where only a small amountofinorganicfertilizerisapplied.Inorganicfertilizeraccountsfor45%ofTPloadingsinAfricanlake FINKETAL. 626

Description:
Soil loss. All diffuse sources. Nachtergaele et al. (2011). 5 arc min . the FAO project LADA (Land degradation assessment) (Nachtergaele et al., 2011) deposition originates from both natural sources such as P contained in soils
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.