Phosphors Phosphors Synthesis and Applications edited by Sanjay J. Dhoble B. Deva Prasad Raju Vijay Singh Published by Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988 Email: [email protected] Web: www.panstanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Phosphors: Synthesis and Applications All rights reserved. This book, or parts thereof, may not be reproduced in any form Copyright © 2018 by Pan Stanford Publishing Pte. Ltd. or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4774-49-9 (Hardcover) ISBN 978-042-9460-99-9 (eBook) Contents Preface 1. Hy drody namic Aspects on Sonoluminescence x1v Ho-Young Kwak 1.1 Introduction 1 1.2 Sonoluminescence from a Single Bubble 2 1.2.1 Hydrodynamics of a Single-Bubble Motion under Ultrasound 2 1.2.2 Numerical Integration of Equations for Single-Bubble Motion 6 1.2.2.1 SBSL in water 9 1.2.2.2 SBSL in sulfuric acid solutions 12 1.3 Radiation Mechanism for a Sonoluminescing Gas Bubble 14 1.3.1 Theory 14 1.3.2 Spectrum Measurements 20 1.3.3 Pulse Width Measurements 24 1.4 Multibubble Sonoluminescence 28 1.4.1 Introduction 28 1.4.2 Hydrodynamics for a Bubble Cluster 30 1.4.3 Applications 38 2. 1Pe.5r sisteCnto nLuclmuisnioenscse nce: Cerium-Doped Phosphors 4409 Suchinder K. Sharma 2.1 Introduction 49 2.2 Historical Perspective 50 2.3 Properties of Persistent Materials 53 2.4 The Modern Era 55 2.5 Mechanisms 57 2.6 Bioimaging 59 2.7 Localized Mechanism of Charge Recombination 62 2.8 Cerium-Doped Luminescent Materials 64 2.9 Influence of Symmetry and Coordination 65 2.10 Cerium-Doped Long Persistent Materials 66 vi Contents 2.11 Cerium-Doped White, Long Persistent Materials 70 3. 2St.1ru2c turCaol nancldu Lsuiomnisn aenscde Fnucetu Crhe aDraircetcetriiostnic s of 72 LiNa P O :xRE3+ Tricolor-Emitting Phosphors for 3–x 2 7 White-Light Emission 83 B. Deva Prasad Raju, N. John Sushma, and Vibha Chopra 3.1 Introduction 83 3.2 Synthesis of Phosphate-Based Phosphors 85 3.3 Characterization and Analysis of Phosphors 86 3.3.1 XRD Analysis 86 3.3.2 FTIR Analysis 89 3.3.3 Morphological Studies 91 3– 3.3.4 Photoluminescence Studies on 3+ Tb -Doped LiNa xP2O7 Phosphors 92 3– 3.3.5 Photoluminescence Studies on 3+ Eu -Doped LiNa xP2O7 Phosphors 95 3– 3.3.6 Photoluminescence Studies on 3+ Dy -Doped LiNa xP2O7 Phosphors 99 4. 3Re.4c ent ACdovnacnlucseiso inn Sulfate- and Sulfide-Based 103 Phosphors Used in Versatile Applications 109 Govind B. Nair and S. J. Dhoble 4.1 Introduction 110 4.2 Radiation Dosimetry Phosphors 111 4.2.1 Sulfates and Oxysulfates 112 4.2.2 Halosulfates 114 4.3 Phosphors for Lighting and Display Devices 115 4.3.1 Sulfates and Oxysulfates 115 4.3.2 Halosulfates 120 4.3.3 Sulfides and Oxysulfides 122 5. 4Lu.4m inesCcoennct lDuosiwonns-C onversion Materials as Spectral 124 Convertors for Photovoltaic Applications 131 Swati Bishnoi, Vinay Gupta, and D. Haranath 5.1 Introduction 132 5.2 Luminescent Materials (Phosphors) as Spectral Convertors 134 Contents vii 5.3 Down-Conversion Mechanisms 136 5.3.1 Quantum Cutting Using Host Lattice States 136 5.3.2 Quantum Cutting on Single Rare Earth Ions 138 5.3.3 Down-Conversion Using Rare Earth Ion Pairs 139 5.4 Down-Shifting 140 5.5 Down-Conversion Mechanisms for PV Applications 140 5.5.1 Down-Conversion in Si-Based PV Cells 141 5.5.2 Down-Conversion in Dye-Sensitized Solar Cells 143 5.5.3 Down-Conversion in Organic Solar Cells 147 5.5.3.1 Organic-inorganic hybrid solar cells 148 6. 5D.e6v elopCmoennctlu osfi oRnesd Light–Emitting Electroluminescent 151 Cell with a Eu(TTA) bipy Hybrid Organic Complex as an 3 Emissive Layer 161 N. Thejo Kalyani and S. J. Dhoble 6.1 Introduction 162 6.2 Organic Light-Emitting Diodes 163 6.3 OLED Configuration 164 b 6.4 Light-Emitting Mechanism 166 6.5 Rare Earth -Diketonates as an Emissive Layer 166 6.6 Experiment 168 6.6.1 Reagents and Solvents 168 6.6.2 Synthesis Procedure 168 6.6.3 Results and Discussion 171 6.7 Fabrication of Single-Layer OLEDs 172 V I 6.7.1 Characterization of an OLED Device 173 6.7.1.1 Voltage–current ( – ) B V characteristics 173 6.7.1.2 Brightness–voltage ( – ) characteristics 173 6.7.1.3 Electroluminescence 175 viii Contents 6.8 Techniques to Improve the Efficiency of an OLED 176 6.9 Traits of OLEDs 176 6.10 Impact of OLEDs on the Environment 178 6.11 Limitations 178 6.12 Applications of OLEDs 180 7. 6O.p1t3ic al CAonnaclylusissi oonf sR E3+ (RE = Eu3+, Tb3+, Sm3+, 180 and Dy3+):Ca Gd W O Phosphors 183 2 2 3 14 S. Sailaja, Vibha Chopra, S. J. Dhoble, and B. Sudhakar Reddy 7.1 Introduction 184 7.2 Experimental 186 7.2.1 Synthesis 186 7.2.2 Characterization 187 7.3 Results and Discussion 188 3+ 7.3.1 Eu :Ca2Gd2W3O14 Phosphors 188 7.3.1.1 X-ray diffraction patterns 188 7.3.1.2 SEM and EDAX analyses 189 7.3.1.3 FTIR analysis 189 7.3.1.4 Photoluminescence studies 191 7.3.1.5 Mechanoluminescence studies 193 3+ 7.3.2 Tb :Ca2Gd2W3O14 Phosphor 195 7.3.2.1 Structural, morphological, elemental, and FTIR 3+ studies of Sm : and 3+ Dy :Ca2Gd2W3O14 phosphors 195 7.3.2.2 Photoluminescence studies 198 3+ 3+ 7.3.3 Sm : and Dy :Ca2Gd2W3O14 Phosphors 202 7.3.3.1 Structural, morphological, elemental, and FTIR 3+ studies of Sm : and 3+ Dy :Ca2Gd2W3O14 phosphors 202 7.3.3.2 Photoluminescence studies 207 7.4 Conclusions 211 Contents ix 8. Eu3+-Based Orange-Red-Emitting Inorganic Color Convertors: An Overview 219 V. Sivakumar and S. Kasturi 8.1 Introduction 219 3+ 8.2 Signficance of Trivalent Europium (eu ) Ions 222 8.2.1 Importance of the Charge Transfer Band 224 8.3 Importance of M–o–Eu Angle on Energy Transfer 227 3+ 8.4 Eu Luminesence in Scheelite and Related Structures 229 3+ 8.4.1 CaMo4 and CdMo4:Eu (M = Mo/W) 230 8.4.2 Double Tungstate and Molybdates 3+ [AB(MO4)2]:Eu 235 3+ 8.4.3 Eu Luminescence in ALn(MO4)2 (A = Na, Li, Ag; Ln = Y, La, Gd; M = W, Mo) 237 3+ 8.4.4 Eu Luminescence in AgGd(MO4)2 (M = W, Mo) 238 8.4.5 White Light Generation in 3 LiGd(WO4)2:RE 246 8.4.6 M5RE(BO4)4 (M = Li, Na, K; RE = La, Eu, Y; B = W, Mo) 247 8.4.7 Li3.5Ln1.5(MoO4)4 (Ln = Y, Eu) 249 8.4.8 Molybdates M2Gd4(MoO4)7 (M = Li, Na) 249 8.4.9 Ca4GdNbMo4O20 with Powellite-Type Structure 251 3+ 8.4.10 R2Zr3(MoO4)9:Eu (R = La, Sm, Gd) 252 3+ 8.4.11 LaBWO6:Eu 253 8.4.12 Gd3B(W,Mx o)Ox9:Eu3+ 254 3+ 8.4.13 La3BW1− Mo O9:Eu 254 3+ 8.4.14 Y2MoO6:Eu 255 8.4.15 Lu2MoO6:Eu3+ x x 256 3+ 8.4.16 Eu Luminescence in Y6W Mo(1− )O12 257 8.5 Perovskite and Double-Perovskite 260 8.5.1 Spectral Properties of Double-Perovskites 261 3+ 8.5.2 Eu Luminescence in Perovskite Structure 263 8.5.3 NaREMgWO6 (RE = La, Gd, Y) 266