Philosophy of Mathematics Textbooks in Mathematics Series editors: Al Boggess, Kenneth H. Rosen Functional Linear Algebra Hannah Robbins Introduction to Financial Mathematics With Computer Applications Donald R. Chambers, Qin Lu Linear Algebra An Inquiry-based Approach Jeff Suzuki The Geometry of Special Relativity Tevian Dray Mathematical Modeling in the Age of the Pandemic William P. Fox Games, Gambling, and Probability An Introduction to Mathematics David G. Taylor Linear Algebra and Its Applications with R Ruriko Yoshida Maple™ Projects of Differential Equations Robert P. Gilbert, George C. Hsiao, Robert J. Ronkese Practical Linear Algebra A Geometry Toolbox, Fourth Edition Gerald Farin, Dianne Hansford An Introduction to Analysis, Third Edition James R. Kirkwood Student Solutions Manual for Gallian’s Contemporary Abstract Algebra, Tenth Edition Joseph A. Gallian Elementary Number Theory Gove Effinger, Gary L. Mullen Philosophy of Mathematics Classic and Contemporary Studies Ahmet Çevik https://www.routledge.com/Textbooks-in-Mathematics/book-series/CANDHTEX- BOOMTH Philosophy of Mathematics Classic and Contemporary Studies Ahmet Çevik First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Ahmet Çevik CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 9781032121284 (hbk) ISBN: 9781032022680 (pbk) ISBN: 9781003223191 (ebk) DOI: 10.1201/9781003223191 Typeset in CMR by KnowledgeWorks Global Ltd. Contents Preface ix 1 Introduction 1 2 Mathematical Preliminaries 11 2.1 Summary of Propositional and Predicate Logic . . . . . . . . 11 2.1.1 Propositional logic . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Predicate logic . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Methods of Proof . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Direct proof . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Proof by contrapositive . . . . . . . . . . . . . . . . . 20 2.2.3 Proof by contradiction . . . . . . . . . . . . . . . . . . 21 2.2.4 Proof by induction . . . . . . . . . . . . . . . . . . . . 23 2.2.5 Proof fallacies. . . . . . . . . . . . . . . . . . . . . . . 26 * 2.3 Basic Mathematical Notions . . . . . . . . . . . . . . . . . . 27 2.3.1 Axioms of ZFC set theory . . . . . . . . . . . . . . . . 28 2.3.2 Ordinal and cardinal numbers . . . . . . . . . . . . . . 36 3 Platonism 45 3.1 Theory of Forms . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Plato’s Epistemological Philosophy . . . . . . . . . . . . . . 47 3.3 Aristotelian Realism . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Intuitionism 57 4.1 Kant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Brouwer and Constructivism . . . . . . . . . . . . . . . . . . 66 5 Logicism 81 5.1 Frege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 Russell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 Carnap and Logical Positivism . . . . . . . . . . . . . . . . . 89 6 Formalism 95 6.1 Term vs. Game Formalism . . . . . . . . . . . . . . . . . . . 96 6.2 Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 G¨odel’s Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 105 v vi Contents * 7 Go¨del’s Incompleteness Theorem and Computability 109 7.1 Arithmetisation of Syntax . . . . . . . . . . . . . . . . . . . 110 7.2 Primitive Recursive Functions . . . . . . . . . . . . . . . . . 112 7.3 Diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.4 Second Incompleteness Theorem . . . . . . . . . . . . . . . . 117 7.5 Speculations on G¨odel’s Theorems . . . . . . . . . . . . . . . 118 7.6 “Real” Mathematics vs. “Ideal” Mathematics . . . . . . . . . 120 7.7 Reasons Behind Incompleteness . . . . . . . . . . . . . . . . 122 7.7.1 Entscheidungsproblem . . . . . . . . . . . . . . . . . . 123 7.7.2 Irreducible information . . . . . . . . . . . . . . . . . 125 8 The Church-Turing Thesis 131 8.1 Minds and Machines . . . . . . . . . . . . . . . . . . . . . . . 131 8.2 Effective Computability . . . . . . . . . . . . . . . . . . . . . 133 8.3 The New Pythagoreanism . . . . . . . . . . . . . . . . . . . . 136 9 Infinity 141 9.1 Infinity in Ancient Greece . . . . . . . . . . . . . . . . . . . . 141 9.2 Middle Ages, the Renaissance, and the Age of Enlightenment 146 * 9.3 Cantor’s Set Theory . . . . . . . . . . . . . . . . . . . . . . . 152 * 10 Supertasks 159 10.1 Transfinite Computability and Continuity . . . . . . . . . . . 159 10.2 Infinite Time Turing Machines . . . . . . . . . . . . . . . . . 161 10.3 Physical Realisations . . . . . . . . . . . . . . . . . . . . . . 166 * 11 Models, Completeness, and Skolem’s Paradox 171 11.1 G¨odel’s Completeness Theorem . . . . . . . . . . . . . . . . . 176 11.2 Lo¨wenheim-Skolem Theorem . . . . . . . . . . . . . . . . . . 180 12 Axiom of Choice 185 12.1 Applications of the Axiom of Choice . . . . . . . . . . . . . . 186 12.1.1 Russell’s Example . . . . . . . . . . . . . . . . . . . . 186 12.1.2 K¨onig’s lemma . . . . . . . . . . . . . . . . . . . . . . 188 12.2 Which statements are obvious? . . . . . . . . . . . . . . . . . 189 12.2.1 Countable unions . . . . . . . . . . . . . . . . . . . . . 190 12.2.2 Countable pairs of “identical” objects . . . . . . . . . 191 12.3 Determining the Naturality or Otherwise . . . . . . . . . . . 193 * 12.3.1 Axiom of determinacy . . . . . . . . . . . . . . . . . . 200 12.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 203 13 Naturalism 205 13.1 G¨odel’s Realism . . . . . . . . . . . . . . . . . . . . . . . . . 205 13.2 Quine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 13.3 Maddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.3.1 The naturalist second philosopher . . . . . . . . . . . 217 Contents vii 14 Structuralism 223 14.1 Characteristic Properties . . . . . . . . . . . . . . . . . . . . 223 14.2 Identification Problem . . . . . . . . . . . . . . . . . . . . . . 228 14.3 Eliminative Structuralism . . . . . . . . . . . . . . . . . . . . 232 15 Yablo’s Paradox 239 15.1 Self-reference and Impredicative Definitions . . . . . . . . . . 239 15.2 What is Yablo’s Paradox? . . . . . . . . . . . . . . . . . . . . 241 * 15.3 Priest’s Inclosure Schema and ω-inconsistency . . . . . . . . 242 16 Mathematical Pluralism 247 16.1 Plurality of Models . . . . . . . . . . . . . . . . . . . . . . . 250 16.2 Multiverse Conception of Sets . . . . . . . . . . . . . . . . . 255 16.3 Liberating the Mathematical Ontology or Blurring the Mathematical Truth? . . . . . . . . . . . . . . . . . . . . . . 262 * 17 Does Mathematics Need More Axioms? 265 17.1 Status of the Continuum Hypothesis . . . . . . . . . . . . . . 265 17.1.1 Axiom of Constructibility . . . . . . . . . . . . . . . . 269 17.2 Inner Model Programme . . . . . . . . . . . . . . . . . . . . 277 17.3 Hyperuniverse Programme . . . . . . . . . . . . . . . . . . . 281 18 Mathematical Nominalism 287 18.1 Problems of Realism . . . . . . . . . . . . . . . . . . . . . . . 288 18.2 Field’s Fictionalism . . . . . . . . . . . . . . . . . . . . . . . 289 18.3 Is Mathematics a “Subject with No Object”? . . . . . . . . . 298 18.4 Deflating Nominalism . . . . . . . . . . . . . . . . . . . . . . 302 Bibliography 305 Index 327 Preface Philosophy of mathematics is an exciting subject studied by a small number of philosophers today and even less by mathematicians. It is strongly related to logic and foundations of mathematics. The Golden Age of the foundations ofmathematicsbeganwiththefoundationalcrisis,whichisusuallyconsidered to be the period between the late 19th century and mid-20th century. Unfor- tunately, the foundations and philosophy of mathematics is not receiving the attention it deservesby the mathematical community. I wrote this book with thehopeofbringingbackthisintriguingsubjecttotheattentionofmathemat- ical community to rekindle an interest in philosophical subjects surrounding the foundations ofmathematics andintroduce variousphilosophicalpositions ranging from the classic views to more contemporary ones, including those which are more mathematical oriented. Ideally, as an outcome, I am hoping toengageallphilosophicallyminded mathematiciansinphilosophicaldebates and foundationaldiscussions.Another purpose in writing this book is to con- tributetothephilosophicalliteraturefromtheperspectiveofamathematician andencouragelike-mindedscholarstomakesimilarcontributions.Ihopethat this book motivates mathematicians to argue about the foundations by get- tinginvolvedinthetrendingphilosophicaldiscussionsandtocollaboratewith philosophers, as this was happening in the Golden Age of the foundations of mathematics. Intended Audience Thisbookisprimarilyforupperdivisionundergraduateandgraduatestu- dents in mathematics or philosophy.Students in theoreticalcomputer science canalsobenefitfromthismaterial.Ishouldemphasise,however,thatitispar- ticularlyaimedforphilosophicallymindedmathematiciansduetotheselected content and the presentation style. I would like to encourage young mathe- maticians into thinking about the philosophical issues behind fundamental concepts in mathematics and about different views one can have regarding mathematical objects and mathematical knowledge. It is important to know howanadoptedphilosophicalview maydramaticallyaffectthe mathematical practice.Soacourseinphilosophyofmathematicsmayhelpthereaderrealise how the methodology for mathematical practice changes in accordance with thesupportedview.Italsoprovidesthephilosophicalbackgroundofmanyba- sic notions used in mathematics, such as the concepts of set, number, space, proof, computation, and so on. Philosophers, ipso facto, question all kinds of philosophical problems about mathematics more often than mathematicians ix