Introduction to iPEPS Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam Overview: tensor networks in 1D and 2D 1D MPS 1D MERA Matrix-product state Multi-scale entanglement renormalization ansatz and more 1 2 3 4 5 6 7 8 ‣ 1D tree tensor network Underlying ansatz of the density-matrix renormalization ‣ correlator group (DMRG) method product states i i i i i i i i i i i i i i i i i i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ‣ ... 2D PEPS (TPS) 2D MERA and more projected entangled-pair state (tensor product state) ‣ Entangled- plaquette states ‣ 2D tree tensor network ‣ String-bond states ‣ ... Outline of the 2 lectures ‣ Part I: iPEPS ansatz ✦ Repetition: area law of the entanglement entropy ‣ Part II: Contraction of PEPS / iPEPS ✦ MPS-MPO approach, corner-transfer-matrix (CTM) method, Tensor Renormalization Group (TRG), Tensor network renormalization (TNR) ✦ Simple examples to get started: ➡ solving the 2D classical Ising model with the CTM method ➡ simple 2D quantum case (D=2, rotational symmetric) ‣ Interlude: Example application: the Shastry-Sutherland model ‣ Part III: Optimization ‣ Part IV: Computational cost & benchmarks ‣ Part V: iPEPS applications ‣ Outlook & summary PART I: iPEPS ansatz “Corner” of the Hilbert space Ground states (local H) ★ GS of local H’s are less entangled than a Hilbert random state in the Hilbert space ★ Area law of the entanglement entropy space Area law of the entanglement entropy . . . E . . . 1D 2D A E A E . . . . . . L L . . . . . . # relevant states Entanglement entropy S(A) = tr[⇥ log ⇥ ] = � log � A A i i � exp(S) � � ⇠ i � General (random) state Ground state (local Hamiltonian) d d 1 S(L) L (volume) S(L) L (area law) � ⇠ ⇠ Critical ground states: 1D S(L) = const � = const (all in 1D but not all in 2D) ⇥ exp(�L) 2D S(L) �L � 1D S(L) log(L) � ⇠ S(L) L log(L) 2D ⇠ MPS & PEPS 1D MPS Matrix-product state Bond dimension D 1 2 3 4 5 6 7 8 Physical indices (lattices sites) S. R. White, PRL 69, 2863 (1992) Fannes et al., CMP 144, 443 (1992) Östlund, Rommer, PRL 75, 3537 (1995) ✓ Reproduces area-law in 1D S(L) = const MPS & PEPS 1D MPS Matrix-product state Bond dimension D ➡ One bond can contribute 1 2 3 4 5 6 7 8 at most log(D) to the A E entanglement entropy L S(A) log(D) = const rank(⇢ ) D A ✓ Reproduces area-law in 1D S(L) = const MPS & PEPS 1D 2D MPS can we use an MPS? Matrix-product state Bond dimension D 1 2 3 4 5 6 7 8 L Physical indices (lattices sites) S. R. White, PRL 69, 2863 (1992) Fannes et al., CMP 144, 443 (1992) Östlund, Rommer, PRL 75, 3537 (1995) !!! Area-law in 2D !!! ✓ Reproduces area-law in 1D S(L) L � S(L) = const D exp(L) ⇠ MPS & PEPS 1D 2D PEPS (TPS) MPS projected entangled-pair state Matrix-product state (tensor product state) D Bond dimension D Bond dimension 1 2 3 4 5 6 7 8 Physical indices (lattices sites) S. R. White, PRL 69, 2863 (1992) Fannes et al., CMP 144, 443 (1992) Östlund, Rommer, PRL 75, 3537 (1995) F. Verstraete, J. I. Cirac, cond-mat/0407066 Nishino, Hieida, et al., Prog. Theor. Phys. 105 (2001). Nishio, Maeshima, Gendiar, Nishino, cond-mat/0401115 ✓ Reproduces area-law in 1D ✓ Reproduces area-law in 2D S(L) = const S(L) L �
Description: