ebook img

Phenology of the alfalfa weevil (Coleoptera: Curculionidae) in alfalfa grown for seed in southern Alberta PDF

10 Pages·1994·4.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phenology of the alfalfa weevil (Coleoptera: Curculionidae) in alfalfa grown for seed in southern Alberta

J.Entomol.Soc.Brit.Columbia91,December, 1994 9 Phenology ofthe alfalfa weevil (Coleoptera: Curculionidae) in alfalfa grown for seed in southern Alberta BURTOND. SCHABER,TIMOTHYJ. LYSYK and DEREKJ. LACTIN AGRICULTUREANDAGRI-FOODCANADARESEARCHCENTRE,P.O.BOX3000,MAIN LETHBRIDGE,ALBERTA,CANADATIJ4B1 ABSTRACT Analgorithmtoforecastoccurrenceoffourlife-stagecategoriesofthealfalfaweevil,Hypera postica(Gyllenhal),wasderivedfromdatacollectedinfieldsofseedalfalfa,Medicagosativa (L.)insouthernAlberta.Thealgorithmassumesalineardevelopmentalresponsetomeandaily temperaturesaboveathresholdof 10°C.Overwinteringadultswereactiveaftertheaccumula- tionof 100degree-daysabove 10°C(DDio),andwerescarceby250-300DDiq.Early larvae (instars 1 +2)werefoundbeginningat 120DDioandtheirnumberspeakedat200DDio-Late larvae (instars 3 + 4) werepresent beginning at 160 DDio and theirnumbers peaked at 350 DDio-Newgenerationadultsappearedafter500DDio-InsouthernAlberta,alfalfaseedpro- duction is frequently combined with honey production. This algorithm enables producers to forecasttheoccurrenceofthemostdamagingstageofalfalfaweevilswhichmayrequirecon- trol with insecticides; theadvancenoticeenables optimal timingoftreatmentandalsoallows apiariststominimizepesticidemortalitybymovingorconfiningtheirbees. Keywords:Thermalunits,degreedays,simulation,phenology INTRODUCTION Pest control measures are economically justifiable only iftheir benefits exceed their cost (Stem etal. 1959). Normally, cost is the sum ofpesticide purchase plus its application, and benefit is measured by reduced yield loss. However, other factors may enterthe cost:benefit equation;thisoccursinalfalfaproductioninsouthernAlberta,whereseedproducersfrequently obtain additional income by charging apiarists to place honeybees {Apis mellifera L. (Hy- menoptera: Apidae)) intheirfields.Thus,strategiestocontrolpestinsectsinalfalfaseedfields mustacknowledgethe susceptibilityofhoneybeestomanypesticides. Oneapproachtoreconcilingalfalfapestmanagementwithapicultureistogiveapiaristssuf- ficientwarningtocoverthehives,ortomovethem,beforepesticidesareapplied.Thisapproach requires amethod offorecasting the occurrence ofthe pestpopulation. This paperpresents a simple method ofdoing so, which is based on observed correlations between phenological eventsanddegree-dayaccumulations. In southernAlberta, the alfalfa weevil is a serious insectpest ofalfalfa, feeding on shoots, flowerbudsandfoliageduringprebloomtoearlybloom(Hamlinetal. 1949). Ifnotcontrolled itcan severelyreduce seedyield. Adultalfalfaweevils spendthe winterinprotectedlocadons inalfalfafieldsorinlitternearby.Overwinteredadultsbecomeactiveaboutthetimethefirstalf- alfashootsappearinthespring.Theyfeedforafewdays,mate,andbeginoviposidng.Peakegg densityusuallyoccursinlateMayorearlyJune,buteggscanbefoundduringmostofthesum- mer. Ratesofpre-imaginaldevelopmentaretemperature-dependent.Eggincubationtakes4to21 days.Larvaedevelopthroughthefourinstars inabout3 to 4weeks. Instars 1 and 2 (early lar- vae)feedwithinthetightly-curleddevelopingleavesandbuds;instars3and4(latelarvae)feed onexpandedleaves. Feedingdamageismostobviousinmid- tolate-June,concurrentwithpeakdensitiesoflate larvae. Defoliation ismost severe toward the terminals. This type offeedingresults inloss of foliage, flowerbuds, and nutrients, with consequentdelays in plantgrowth anddevelopment. Quantityandqualityoftheseedyieldmaybereduced. Late larvae inflict the greatestdamage, so agricultural lossescanbe expected to start accu- mulatingattheonsetofthislifestage(Dennisetal 1986).Consequently,thetimingofcontrol tacticsforthe alfalfaweevil shouldbeoptimized, basedonanunderstanding ofphysiological 10 J.Entomol.Soc.Brit.Columbia91,December,1994 Figure 1. Observed and predicted proportion ofalfalfa weevil in relation to DDiq. a) Over- wintering adults (life stage= 1): oandsolidline. New generationadults(life stage=4)A and dottedline;b)firstandsecondinstars(earlylarvae;lifestage=2);c)thirdandfourthinstars(late larvae; lifestage=3).LinesarepredictionsmadeusingEquations 1-3 intext. J.Entomol.Soc.Brit.Columbia91,December, 1994 11 and behavioral processes (Harcourt 1981; Whitford and Quisenberry 1990), to target this life stage.Thisoptimizationrequiresinformationontheseasonalabundanceandtimeofoccurrence ofthe immature stages ofthe alfalfa weevil through acombination ofpopulation monitoring andphenologicalmodels(SchaberandRichards 1979). InsouthernAlberta,chemical insecticidesaretheprimary methodofalfalfaweevilcontrol. Efficientuseofinsecticidesrequiresthatapplicationsshouldbetimedtotargetthefirstlatelar- vae,i.e. aftertheyhavemovedtoexposedpositionsontheleaves,butbefore theyhavecaused much damage. This timing requirement establishes a potential conflict between pest control andhoneyproduction. Areliablemethodofforecastingtheoccurrenceoflatelarvaecouldre- solvethisconflict. This study was conducted todevelop atechnique that would predictthe appearance oflate instaralfalfa weevil larvae in seed alfalfafields, using southern Alberta field data. This tech- nique wouldenablebettertimingofinsecticide applicationsinrelationtoinsectdevelopment, andallow seedproducersandapiaristsmoreleadtimetoprotectpollinators. Thetemperature-dependence ofinsectdevelopmentdictates thatdevelopmental modelsbe basedonthermal-unitaccumulation. Simple methods formodellingphenology based on field dataareavailable,andcanbeusedtodeveloprealisticmodelsintheabsenceofdetaileddataon insectdevelopmentprocesses (Hudesand Shoemaker 1988; Kemp and Onsager 1986; Kemp etah 1986;Lysyk 1989).Degree-dayaccumulationhasbeenusedtopredictpeakhatchandsub- sequentactivity ofalfalfaweevil inforage alfalfain southern Ontario (Harcourt 1981). How- ever,Tauberetal. (1988)havesuggestedthatthephenologyofaninsectspeciescanvaryamong geographicregionsduetoadaptadonofthermalbiologytolocalclimaticconditions,soanother objectivewastocomparephenologyofthealfalfaweevilpopulationsinsouthernOntarioand southernAlberta. METHODS Algorithmdevelopment Thealgorithmwasdevelopedusingphenologydataobtainedfromfourresearchplotsatthe AgricultureandAgri-FoodCanadaResearchCentre(AACRC)atLethbridge,Alberta.Alfalfa weevil abundance was determinedby taking five sweeps perplotwith a 38-cm net (Johansen etal. 1979). Each plot was sampled every one to three days from 3 June to 12 August 1985; 12 May to 8 August 1987; 3 June to 20 July 1988; 3 June to 4 July 1989, and was sampled weeklyfrom4Juneto23July 1990.Dailymaximumandminimumtemperatures(°C)wereob- tainedfromtheAACRCmeteorological station. Alfalfaweevilphenology wasmodeledbycorrelatingphenologicaleventswithdegree-day accumulationsusingadevelopmental threshold of 10°C.Thisthreshold wasusedbecause, al- thoughalfalfaweevileggshatchat8°C,theresultinglarvaedonotsurviveevenifsubsequently exposedtoahighertemperature(GuppyandMukerji, 1974).Accumulateddegree-daysabove 10°C (DDio) from 1 January were calculated for each year by sine-wave integration (Allen 1976).AccumulatedDDiooneachdatewasroundedtothenearest 10,andsamplesfromthe4 plotsweregroupedaccordingtotheseroundedvalues.Theproportionofalfalfaweevilswhich wereadults,earlylarvaeandlatelarvaewerecalculatedforallsuchgroupedsamples,andthese proportions were related to the rounded DD|o accumulations by non-linear regression (Proc NLIN,SAS Institute 1989) asoutlinedbelow. Toprovideastandardizedestimateofwhentheweevilsandlarvaeweremostabundant,and toestablish correlations between phenological events and DDio accumulations, theirrelative abundance was calculated foreach plot oneach day in each growing seasonby summing the numberofweevils collected anddividingby the greatestnumbercollected inone day forthat plotinthatyear.Theserelativeabundancesweregroupedacrossplotsandyearsbytherounded degree-dayvalues.ThecorrelationsbetweenrelativeabundanceandDDioaccumulationswere usedtodevelopanalgorithmtopredicttheappearanceofthedifferentlife stages. Alfalfaweevil phenology wasdivided intofourstages (i): overwintered adults (i = 1), i.e.. . 12 J.Entomol.Soc.Brit.Columbia91,December, 1994 Figure2. Proportionofalfalfaweevilina)lifestage2orgreater,b)lifestage3orgreater,and c) life stage 4. Solid lines are model predictions using equation 2 and parameters estimates giveninTable 1 . . J.Entomol.Soc.Brit.Columbia91,December, 1994 13 thosepresentbeforethelarvalpeakat350DDio;earlylarvae(i=2);latelarvae(i=3);andnew generationadults(i=4), i.e,thoseoccurringafterthelarvalpeakat350DDio- The algorithm was developed as outlined below (Hudes and Shoemaker 1988). For each roundedDDiovalue,thefollowingcalculationsweremade: F2={r\2+03+n^)/Sn F3=(n3+114)/Sn F4=114/^11 where ni(i=2-4) isthe numberofweevils in life stage i,Sn is thetotal numberofweevils, and Fiistheproportionofinsectsinlifestageiorlater.Notethatbecauseallinsectsareinalifestage equalorgreaterthantheoverwinteredadultstage,Fj = 1 ThetimetrendsineachFjweremodelledusingequation 1 F.=[\-e-^i''i]bi (1) Non-linearregression was used to obtain estimates ofthe parameters (aj,bj; i =2 - 4). The variabletjisascaledestimateofthermaltimecalculatedforeachlife stageas: ~ ' (2) ^^max(/)-^^min(0 In equation 2, DDj^j^ci) DDmax(i) represent the approximate value ofDDio for the be- ginningandendoflifestagei,obtainedby inspectionofthedata. Thefunctionsdescribingtime-changein werethenusedtopredicttheproportionofinsects \ ineachlifestage(p,): = l-F2, ' Pi P2=F2-F3, (3) =F3-F4, P3 P4=F4- - Algorithmvalidation Independently-obtaineddatawereusedtovalidatethealgorithm.Thesewerecollectedfrom plots in Brooks, Rosemary and Rolling Hills, Alberta (ca. 130 km N.E. ofLethbridge) by WestAg, Inc., a pest management scouting company. These plots were sampled weekly for up to 13 weeks in 1984-1988, starting the last week ofMay and continuing through August. Samplesinaspecificplotineachyearweretakenatapproximatelythesametimeofdaytomin- imizeanyeffectsofinsectdiurnalcycleonsamplingefficiency(JohansenetaL 1979).Thedata consistedofweeklymeannumbersofadultsandofearlyandlatelarvae.Thenumbersoffields sampled were 48, 40, 42, 48 and 42 for 1984 through 1988. Sample counts were tabulated weekly. Daily maximum and minimum temperatures were obtained for each year from the Alberta Special Crops and Horticultural Research Center in Brooks, Alberta, and the DDio accumulationfromJanuary 1 werecalculatedbysine-waveintegration(Allen 1976).TheDDio accumuladon inthemiddle ofeach week wasmatched with the weekly insectdata. The aver- ageproportionofweevilsintheadult,earlylarval,andlatelarvalstageswascalculatedforeach weekandcomparedgraphicallytothealgorithmpredictions. • 14 J.Entomol.Soc.Brit.Columbia91,December, 1994 1.0 0.8 0.6: 0.4^ 0) -«— 03 0.2 0) O) 0 o I '''' I' '' 'I 200 400 600 800 1000 DD 10 Figure3. Proportionofalfalfaweevilincommercialseedalfalfafields.Symbolsareobserved mean proportion ± 1 standard error, and lines are predictions made using Equations 1-3. a) adults, solid line is overwintered generation (life stage = 1) anddotted line is new generation (lifestage=4);b)firstandsecondinstars(earlylarvae;lifestage=2);c)thirdandfourthinstars (latelarvae; lifestage=3). J.Entomol.Soc.Brit.Columbia91,December, 1994 15 RESULTS Seasonalphenologyofalfalfaweevil Adult weevils were first found at about 100 DDio (Fig. la) and at that time were the only stagecollected.Theproportionofadultweevilsdeclinedfromabout250DDloandtheyhadbe- come scarceby350DDio-Earlylarvaeappearedatabout 120DDio(Fig. lb),reachedamax- imumatabout200DDio,andthendeclinedslowly.Latelarvaeappearedatca. 160DDio(Fig. Ic),peaked near450DDio, andthendeclined. New generationadultweevilsbegantoappear after400DDio,andincreasedsteadily tonearly 100% ofthepopulationby900DDio- Algorithmoutput Figure 1a-cillustratesthegoodagreeementbetweenthealgorithmoutputandtheLethbridge data.EstimatesoftheregressionparametersarelistedinTable 1.Coefficientsofdetermination (r2) were0.97,0.84, and 0.74forlife stages2, 3 and 4respectively. Model predictionsofpro- portionsofinsectsinlife stage iorgreaterareoverlaidwithobservations inFig. 2a-c Algorithmvalidation Observedandpredictedvaluesoftheproportionofweevilsineachlifestageforthetestdata are shown inFig. 3 a-c. Thepredictedproportionsofweevils in the adultlife stages (1 and 4) seem reasonable (Fig. 3a). For early larvae, the algorithm predicted the timing ofthe peak population (Fig. 3b), and in general captured the seasonal population trends, but overall un- derestimatedtheproportionofweevilsinthislife stage.Forlate larvae (Fig. 3c) the algorithm predicted the start ofthe stage and captured the essence ofthe seasonal trends, but tended to overestimatetheproportionofinsects inthisstage. DISCUSSION Thephenologyweobserveddifferedfromthatrecorded inOntario(Harcourt 1981). InOn- tario, most of the feeding damage occurred between 260 and 335 Degree-days base 9°C, whereasinthis study, thedamagingstageextendedbeyond500DDio. Thesedifferencesmay reflectadaptationofthe insecttoadifferentcroppingpattern, i.e. seed alfalfavsforagealfalfa, ortoadifferentclimate. Harcourt's(1981)modeldoes notseem toapplytothe Albertapopu- lationofalfalfaweevil. T^ble1 Estimatedparametersforcomponentequationsofthealgorithmsimulatingalfalfaweevilpopulationphenology. Equation(1f Equation(2)^" LifeStage(i) a b r2 DDmin DDmax 2 18.15 11.01 0.97 120 400 3 4.84 1.00 0.84 160 800 4 5.05 29.81 0.74 200 900 a Nonlinearregressionsofthetemporalchangeinproportionsofobservedinsectsinlifestage(i),using F.=[\-Q-"i''i]hi b Scaledestimatesofthermaltimeforlifestage(i),calculatedas: ^^max{f)-'^^min(0 Detailsaregiveninthetext. 16 J.Entomol.Soc.Brit.Columbia91,December, 1994 Although qualitatively similar, there is some discrepancy between the predictions and the validation data. Several factors can affect the accuracy and reliability ofthe algorithm. First, separating alfalfaweevil larvae intolife stages is somewhatsubjective, particularly whendif- ferentiatingbetweensecondandthirdinstars,andvariationamongobserverscanaffecttheac- curacyofsamplingforpestinsectpopulations(ShufranandRaney 1989). Anotherpossible source ofthediscrepanciesresults from thedifferingways inwhich sam- pleswerehandled.ThealfalfaweevilsandlarvaecapturedinthesweepnetatLethbridgewere placedinpaperbagsandstoredat-40°Cuntilcounted,whereasinthevalidationdatatheywere counted inthe field immediately aftercapture. These differences inmethod,coupledwith the subjectiveassignmenttostages,couldaffecttheperformanceofalgorithm. Anotherpossibilityisthattheuseofdegree-daysmaynotbestricdyapplicablebecauseitdis- regards both the nonlinearity of the developmental rate function (e.g. Lactin and Holliday 1993), and the ability ofinsects to control body temperature behaviourally (Huey and King- solver 1989), and can notaccountforthe effects oftransientunfavourableconditions (Lactin 1992). Finally, insecticideswereused inthe commercial fields surveyedbyWestAg, Inc.,anddif- ferentialmortalityamongthelifestagesmayacountforthebiasbetweenalgorithmpredictions and fielddata. Early larvae feedmostly withinthe flowerbuds and are largely protectedfrom contactinsecticides, whereaslatelarvaefeedonexpandedfoliageandare not(Johansenetal. 1979). These differences inexposureriskcouldbias thepopulation structure ofthevalidafion fields,comparedtothatpredictedbythealgorithm, whichwasbasedonobservationsfromin- secticide-freefields. CONCLUSION Thispaperoutlinesthedevelopmentofanalgorithm topredicttheoccurrenceofdamaging stagesofthealfalfaweevil. Althoughthere isaconsistentbias intheestimateofproportionof these stagesinthepopulation,thealgorithmestimatesthe timingofstagesquitewell,andcan provide sufficientadvance warningtooptimize the timing ofinsecticide application, andthus allowapiariststoremoveorconfinetheirbees. ACKNOWLEDGMENTS TheauthorsthankG.G.DorchakandD.Gregoryfortheirassistancethroughouttheproject, and to R. A. Butts and J. R. Byers forcriUcal reviews ofthe manuscript. This is contribution #3879232oftheLethbridgeResearchCentre. REFERENCES Allen,J.C. 1976.Amodifiedsinewavemethodforcalculatingdegree-days.Environ.Entomol.5:388-396. Dennis,B.,W.P.Kemp,andR.C.Beckwith. 1986.Stochasticmodelofinsectphenology:estimationandtesting.En- viron.Entomol. 15:540-546. Guppy,J.C.andM.K.Mukerji. 1974.EffectsoftemperaUireondevelopmentrateoftheimmaturestagesofthealfalfa weevil,Hyperapostica(Coleoptera:Curculionidae).Can.Entomol. 106:93-100. Hamlin,J.C,F.V.Lieberman,R.W.Bunn,W.C.McDuffie,R.C.Newton,andL.J.Jones. 1949.Fieldstudiesonthe alfalfaweevilanditsenvironment.U.S.D.A.Tech.Bull.975. Harcourt,D.G.1981.Athermalsummationmodelforpredictingseasonaloccurrenceofthealfalfaweevil,Hyperapos- tica(Coleoptera:Curculionidae),insouthernOntario.Can.Entomol. 113:601-605. Harcourt,D.G.,J.C.Guppy,andM.R.Binns. 1977.TheanalysisofintragenerationchangeineastemOntariopopu- lationsofthealfalfaweevil,Hyperapostica(Coleoptera:Curculionidae).Can.Entomol. 109:1521-1534. Hudes,E.S.,andC.A.Shoemaker. 1988.Inferentialmethodformodellinginsectphenologyanditsapplicationtothe sprucebudworm(Lepidoptera:Tortricidae).Environ.Entomol. 17:97-108. Huey,R.B.andJ.G.Kingsolver. 1989.Evolutionofthermalsensitivityofectothermperformance.TrendsinEcology andEvolution4: 131-135. Johansen,C,C.Baird,R.Bitner,G.Fisher,J.Undurraga,andR.Lauderdale. 1979.Alfalfaseedinsectpestmanage- ment.WREP12.CooperativeExtension,Washington,WashingtonStateUniversity,Pullman,WA. Kemp,W.P.,andJ.A.Onsager. 1986.Rangelandgrasshoppers(Orthoptera:Acrididae),modellingphenologyofnat- uralpopulationsofsixspecies.Environ.Entomol. 15:924-930. . J.Entomol.Soc.Brit.Columbia91,December, 1994 17 Kemp,W.P.,B.Dennis,andR.C.Beckwith. 1986.Stochasticphenologymodelforthewesternsprucebudworm(Lep- idoptera:Tortricidae).Environ.Entomol. 15:547-554. Lactin, D.J. 1992.Thermal biology ofthe Colorado potatobeetle {Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)),withapplicationtopestmanagementdecisionmaking.Ph.D.thesis,UniversityofManitoba,337 pp. Lactin,D.J.andNJ.Holliday. 1992.Constant-temperaturedevelopmentalratesofpre-imaginalColoradopotatobee- tles{Leptinotarsadecemlineata(Say),Coleoptera:Chrysomelidae)fromManitobaandBritishColumbia.Proc.En- tomol.Soc.Manitoba48:1-13. Lysyk,T.J. 1989.Stochasticmodelofeastemsprucebudworm(Lepidoptera:Tortricidae)phenologyonwhitespruce andbalsamfir.J.Econ.Entomol.82:1161-1168. SASInstituteInc. 1989.SASUsersGuide,Statistics.SASInst.Inc.,Cary,NC. Schaber,B.D.,andK.W.Richards. 1979.IntegratedpestmanagementonalfalfagrownforseedinsouthernAlberta. ForageNotes.24:17-19. Shufran,K.A.,andH.G.Raney. 1989.Influenceofinter-observervariationoninsectscoutingobservationsandman- agementdecisions.J.Econ.Entomol.82:180-185. Stem,V.M.,R.F.Smith,R.VanDenBosch,andK.S.Hagen. 1959.Theintegratedcontrolconcept.Hilgardia29:81- 101. Tauber,C.A.,M.J.Tauber,B.Gollands,R.J.Wright,andJ.J.Obrycki. 1988.Preimaginaldevelopmentandrepro- ductiveresponsestotemperatureintwopopulationsofColoradoPotatoBeetle(Coleoptera:Chrysomelidae).Ann. Entomol.Soc.Amer.81:755-763. Whitford,E,andS.S.Quisenberry. 1990.Populationdynamicsandseasonalbiologyofthealfalfaweevil(Coleoptera: Curculionidae)onalfalfainLouisiana.Environ.Entomol. 19:1443-1451 I

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.