RESEARCHARTICLE Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at Northern Latitudes RomainScalone1,AndreasLemke2,EditaSˇtefanić3,Anna-KarinKolseth1,SandaRasˇić3, LarsAndersson1* 1 SwedishUniversityofAgriculturalSciences,DepartmentofCropProductionEcology,Uppsala,Sweden, 2 TechnischeUniversita¨tBerlin,DepartmentofEcology,PlantEcologyandEcosystemScience,Berlin, Germany,3 UniversityofJosipJurajStrossmayer,FacultyofAgriculture,Osijek,Croatia a11111 *[email protected] Abstract TheinvasiveweedAmbrosiaartemisiifolia(commonragweed)constitutesagreatthreatto publichealthandagricultureinlargeareasoftheglobe.Climatechange,characterizedby OPENACCESS highertemperaturesandprolongedvegetationperiods,couldincreasetheriskofestablish- Citation:ScaloneR,LemkeA,SˇtefanićE,Kolseth mentinnorthernEuropeinthefuture.However,asthespeciesisashort-dayplantthat A-K,RasˇićS,AnderssonL(2016)Phenological requireslongnightstoinducebloomformation,itmightstillfailtoproducematureseeds VariationinAmbrosiaartemisiifoliaL.Facilitates NearFutureEstablishmentatNorthernLatitudes. beforetheonsetofwinterinareasatnorthernlatitudescharacterizedbyshortsummer PLoSONE11(11):e0166510.doi:10.1371/journal. nights.Tosurveythegeneticvariationinfloweringtimeandstudytheeffectoflatitudinalori- pone.0166510 ginonthistrait,areciprocalcommongardenexperiment,includingelevenpopulationsofA. Editor:SylvainDelzon,INRA-Universityof artemisiifoliafromEuropeandNorthAmerica,wasconducted.Theexperimentwascon- Bordeaux,FRANCE ductedbothoutsidetherangelimitofthespecies,inSwedenandwithinitsinvadedrange, Received:August17,2015 inCroatia.Ourmainhypothesiswasthatthephotoperiodic-thermalrequirementsofA.arte- Accepted:October31,2016 misiifoliaconstituteabarrierforreproductionatnorthernlatitudesand,thus,haltsthenorth- ernrangeshiftdespiteexpectedclimatechange.Resultsrevealedthepresenceofanorth- Published:November15,2016 southgradientinfloweringtimeatbothgardensites,indicatingthatcertainEuropeanpopu- Copyright:©2016Scaloneetal.Thisisanopen lationsarepre-adaptedtophotoperiodicandthermalconditionsatlatitudesupto,atleast, accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which 60˚N.Thiswasconfirmedbyphenologicalrecordingsperformedinaregionclosetothe permitsunrestricteduse,distribution,and northernrangelimit,thenorthofGermany.Thus,weconcludethatthereexistsahighrisk reproductioninanymedium,providedtheoriginal forestablishmentandspreadofA.artemisiifoliainFennoScandinaviainthenearfuture. authorandsourcearecredited. Therangeshiftmightoccurindependentlyofclimatechange,butwouldbeacceleratedbyit. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Funding:TheworkwasfundedbySvenska ForskningsrådetFormas(http://www.formas.se), grantnumber217-2012-994.LAandAKreceived Introduction thefunding.Thefunderhadnoroleinstudy design,datacollectionandanalysis,decisionto Rangeshiftsofplantsareexpectedasaconsequenceofclimatechange,characterizedbyhigher publish,orpreparationofthemanuscript. temperatures,changesinprecipitationpatternsandprolongedvegetationperiods[1].Distri- butionbeyondthecurrentrangelimitmightoccurgraduallyastheclimatechangesandnew CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. areascomewithinthespeciesnichelimit[2].Severalattemptshavebeenmadetopredictthe PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 1/15 PhenologicalVariationinA.artemisiifolia rangeshiftofsoutherlyspeciestonorthernlatitudes[1,3,4],basedonassumptionsofachange inclimate.Thegeographicshiftofspeciesovertimeinresponsetocontemporaryclimate changehasbeenestimatedto1.69kmyear-1towardsnorthernlatitudes,andisingeneral sufficienttotracktemperaturechanges[5].Ithas,however,beenquestionedwhetherthiscon- clusionisvalidforlowlandterrestrialplants[6,7].ABritishstudy[8]revealednoclearfinger- printofclimatechangeonpolewardmovementofplants,andanexpectedlagindistribution attheleadingedgewassuggested.Alagphaseiscommonlyobservedininvasivespecies, whichmakesitdifficulttopredictthetimingofthedifferentprocessesrelatedtoinvasion[9]. Thelagphaseispoorlyunderstoodbutitmaybepartlyexplainedasthetimeneededforthe speciestoevolveandadapttothenewhabitat[10].Consequently,Whitney&Gabler[11]con- cludedthatevolutionarypotentialshouldbeincorporatedintheassessmentoftheinvasiveness ofaspecies,andmentionedshortgenerationtimeasoneoftenkeytraits.Onereasonforthis couldbearequirementforchangesinfloweringtimesincemanyplantspecies(i.e.short-day plants)requirelongnightsforinductionofflowering[12].Thus,fornorthernrangeexpansion tooccurinshort-dayspeciesanadaptationtonewphotoperiodic-thermalconditions(i.e.pho- toperiod,temperatureandtheirinteraction)isrequired,ashasbeenobservedintheshort-day grassMicrostegiumvinimeum[13].Severalstudieshavereportedearlierfloweringinpopula- tionssampledatthenorthernrangemarginscomparedtothesoutherlycounterparts[14–16]. Theinvasiveshort-dayplantAmbrosiaartemisiifoliaL.(commonragweed)isconsideredto beoneofthemostnoxiousplantsinEurope[17].Thisrankingisbasedbothonitsnegative effectsonpublichealthanditsreductiveimpactsontheyieldsofseveralmajorcrops.Thisdra- maticsituationhasledtointernationalcooperationamongscientiststocontrolthespeciesina sustainableway(COSTActionFA1203“SustainableManagementofA.artemisiifoliain Europe”[18]).HealthproblemscausedbyA.artemisiifoliaincludedermatitisandeczemaafter directskincontact[19],andrespiratoryproblemsandasthmaduetothereleaseofabundant quantitiesofhighlyallergenicpollengrains[3].Moreover,thelatefloweringtimeduetoits short-dayplanttraitextendstheperiodofhayfeverforallergysufferersuntillateautumn[20, 21].ThepollengrainproductionfromasingleA.artemisiifoliaplanthasbeenestimatedtosev- eralbillionperseason[22]anditsdispersalviawindtoseveralhundredkilometres[23,24].In additiontoimpactonhumanhealthA.artemisiifoliaisrecognizedasahighlycompetitive weed,withhighinfestationofrowcropssuchassunflowerandmaize,incroppingsystemsin Western,CentralandEasternEurope[25,26].InHungary,forexample,70%ofagricultural fieldsarereportedtobeinfested[21]. OriginatingfromNorthAmerica,withaknowndistributionfromlatitude31˚Nto52˚N, severalgenotypicstudieshaveshownthatthesuccessfulworldwideinvasionandrangeexpan- sionofA.artemisiifoliaistheresultofmultipleintroductionsfromdifferentregionsofthe nativerange[25,27–31].ItwasfirstspreadtoEuropeinthemiddleofthe19thcenturyandhas sincebeenrepeatedlyintroducedtoEurope.ThemainareaofinfestationisCentralEurope, butitisnowestablishedinlargepartsofthecontinent,withanorthernrangelimitsituated southoftheScandinaviancountriesandtheUK,andthesouthernrangelimitinmidItaly,the IberianPeninsulaandGreece[1,4](Fig1).Withclimatechange,thenorthernlimit,basedon environmentalfactors,ofcommonragweedrangeistheonemostlikelytobeextended. Thespecieshasbeenreportedtorequireaminimumnightlengthofeighthourstoinduce flowering[34].Nightlength,definedasthetimedifferencebetweensunsetandsunrise,never fallsbeloweighthoursinBudapest(latitude47˚30´N),butdoesnotexceedeighthoursuntil mid-AugustinStockholm(latitude59˚51´N)ormid-JulyinBerlin(latitude52˚31´N)[35]. PhotoperiodicconditionsinnorthernEuropemightthusdelaytheonsetoffloweringuntil autumn.Indeed,accordingtoArtportalen,theSwedishSpeciesInformationCentre[36],the earliestdayreportedforfloweringofA.artemisiifoliabetween2004and2013was21August PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 2/15 PhenologicalVariationinA.artemisiifolia Fig1.DistributionofAmbrosiaartemisiifoliainA)Europe(modifiedfromSmithetal.2013[32])and B)NorthAmerica(modifiedfromGentonetal.2005[33]).Starsmarkthelocationofpopulationssampled fortheexperiment,andarrowsindicatethelocationofthecommongardensitesinUppsalaandOsijek, respectively.Attribute,Europemap:Ssolbergj-https://commons.wikimedia.org/w/index.php?curid=4203715. Attribute,NorthAmericamap:AlanRockefeller-https://commons.wikimedia.org/wiki/File%3ANorth_ america_blank_range_map.png. doi:10.1371/journal.pone.0166510.g001 (daylength:15h4min./nightlength:8h56min.).Thisappearstobetoolatetoenablepro- ductionofviableseedsbeforeplantsarekilledbyfrost,whichcouldexplainwhythereare,to ourknowledge,noconfirmedestablishedpopulationsinSweden.Sincethephotoperiodisa stablefactor,unaffectedbyclimatechange[12],itmightserveasabarrieragainstestablish- mentofA.artemisiifoliainthenorthofEuropedespiteimprovedclimaticconditions.There are,however,twofactors,whichmightoverrulethepreventativeeffectofashortsummerpho- toperiod.First,theremayexistpopulationsatthenorthernrangemarginofA.artemisiifolia, whicharepre-adaptedtonorthernphotoperiodic-thermalconditions.Thesepopulations couldgraduallyexpandtheirrangelimit,aidedbyon-goingchangesinclimate.Secondly,the commercialtradeinbirdseedinfestedwithseedsofA.artemisiifoliaisthemainsourceof introductioninScandinavia,whichmakesprivategardensandmunicipalsoildepositscom- moncasualhabitats.ContinuousintroductionofA.artemisiifoliaseedsinScandinaviamight contributetotheprocessofselectionofearly-floweringindividuals,whichwouldsubsequently enabletheestablishmentofviablepopulations.Althoughgeneflowmaycounteractlocaladap- tation,multipleintroductionshavebeenshowntoenhanceinvasivesuccessbyintroducing novelallelesandincreasinggeneticvariation[37].Whenaspecieshassimilarecologicaland climaticnichesinbothinvasiveanddomesticpopulations,invasionstypicallyfailwithoutpre- adaptationandtherateofmigrationofsuitableallelesalongtheselectivegradientbecomes crucialforadaptation[38].Underthesecircumstancesseedsofpre-adaptedgenotypeshitch- hikingwithcontaminatedbirdseedcanalsobeimportant.Allscenariosareinlinewithcon- clusionsbyClements&DiTommaso[39]whoarguedthatevolutionofinvasiveweedsmight increasetherangeshiftmorethanforecastedandfasterthantheprocessofclimatechange. ForthetwoscenariosofrangeshifttoberealisticforA.artemisiifolia,thephotoperiodic-ther- malrequirementsforfloweringshouldcontaingeneticvariation.Recentworkusingcommon gardenexperimentsandgenomictoolshasconfirmedadifferentiationoflife-historytraits betweennativeandintroducedpopulations[40].Thehighlydiversegenepoolpresentin EuropehaspromotedarapidevolutionandadaptationofA.artemisiifoliatodifferentenvi- ronments,e.g.field,roadside,river-sideandwasteland[41].Inaddition,thepresenceofa north-southgradientinfloweringtimewithinintroducedEuropeanpopulationsfromlatitude 54˚Nto44˚Nwasrecentlyshowninacommongardenexperimentlocatedwithinthe invadedarea[16]. PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 3/15 PhenologicalVariationinA.artemisiifolia TheaimofthisstudywastoexplorevariationinphenologywithinA.artemisiifoliapopula- tionsofdifferentoriginsandtestwhetherthereexistsalatitudinalclineinfloweringtime. Commongardenexperimentshavealongtraditioninevolutionaryecology,andarewell suitedforstudyingthegeneticdifferentiationamonggenotypes.Growingdifferentgenotypes ofaspeciesinacommonenvironmentmakesitpossibletoattributephenotypicvariationto eithergeneticorenvironmentalfactors[42].Areciprocalcommongardenexperimentwas conductedatonesiteinthemiddleoftheinvadedarea(Osijek,Croatia;latitude45˚N),andat onesitebeyondtherangelimit(Uppsala,Sweden;latitude59˚N).Theexperimentwascomple- mentedwithphenologicalobservationsatseveralfieldsitesofpopulationslocatedinthe northernpartoftheinvadedrange(Germany;latitude51–52˚N).Wehypothesizedthati) thereexistsanorth-southgradientinfloweringtimeamongpopulations,withplantsfrom northernpopulationsfloweringearlier,andii)thegradientshowsthesamepatternatboth sites,butismoredistinctatthenorthernsiteduetonon-optimalphotoperiodic-thermalcon- ditionsbeyondtherangelimit.Theabsenceofanorth-southgradientwouldindicatethat thereisnolocaladaptationtophotoperiodic-thermalconditions,butratherthatthevariation infloweringtimeisbasedonphenotypicplasticity. MaterialsandMethods Commongardenexperiment AtotalofelevenpopulationsofAmbrosiaartemisiifoliawerecultivatedinareciprocalcom- mongardenexperiment,withonegardensitelocatedbeyondtherangelimit,atahighlatitude (Uppsala,Sweden:N59˚48´55”,E17˚38´47”)andtheotherwithintheinvadedEuropean range(Osijek,Croatia:N45˚31´16”,E18˚40´54”).Commongardenexperimentswerecon- ductedonlandownedbytheSwedishUniversityofAgriculturalSciencesandUniversityof theJosipJurajStrossmayer,respectively,andpermissionsfortheexperimentsweregrantedby theuniversities.SeedsofA.artemisiifoliawerecollectedin2010and2011fromnineintro- ducedpopulationsinfiveEuropeancountriesandtwonativepopulationsfromNorthAmerica (Fig1,Table1).Nospecialpermissionwasneededforseedcollectionandfieldstudiessince theydidnotinvolveendangeredorprotectedspecies.Theelevenpopulationswereselectedto representthelatitudinalvariationfromlatitude38˚Ntolatitude51˚N.Seedsfromatleastten individualplantswerecollectedperpopulation.Apopulationwasdefinedasasetof Table1. DetailsoftheoriginofAmbrosiaartemisiifoliapopulationsgrowninareciprocalcommongardenexperiment. Population Country Latitude,Longitude Yearofcollection Habitat Seedcontributor Drebkau Germany N51˚38´21",E14˚11´50" 2011 fallowfield U.Starfinger Martonva´sa´r Hungary N47˚20´37",E18˚50´31" 2011 field P.Bonis Baracska Hungary N47˚18´03",E18˚45´51" 2011 field P.Bonis Pluvet France N47˚11´18",E05˚15´01" 2011 maizefield B.Chauvel Kaposva´r Hungary N46˚22´12",E17˚51´17" 2011 maizefield G.Kazinczi Besate Italy N45˚18´25",E08˚58´21" 2011 roadedge M.Bonini StClothilde Canada N45˚10´03",E73˚40´50" 2011 fieldedge D.Benoit Bassens France N44˚54´04",E00˚31´58" 2010 wasteland B.Laitung Pribinic Bosnia&Herzegovina N44˚35´59",E17˚49´40" 2011 wasteland B.Vuckovic-Kelevic Dions France N43˚56´03",E04˚18´22" 2010 wasteland B.Laitung Lexington USA N38˚01´00",E84˚33´10" 2010 oldpasture C.&J.Baskin TenindividualsfromeachpopulationweregrowninUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek,Croatia(N45˚31´16”,E18˚40´54”). Latitudeandlongituderefertoseedsamplingsite,andhabitatreferstovegetationtypeatseedsamplingsite. doi:10.1371/journal.pone.0166510.t001 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 4/15 PhenologicalVariationinA.artemisiifolia individualsgrowinginonefieldwithatleast7.5kmbetweensampledfields.Seedweightwas calculatedasthemeanweightof5x50seeds.Pretreatmentofseedsandhandlingofseedlings wereconductedaccordingtothesameexperimentalprotocolinbothSwedenandCroatia,as follows.Atotalofca.100seedsperpopulationwereplacedonmoistpaperinPetridishesat 5˚Cforstratification.Subsequently,thePetridisheswereplacedinagrowthchamberwitha temperatureregimeof15˚Catnight(nolight)for8hoursand27˚Catday(lightintensity: 50μmolm-2s-1)for16hourstoinduceseedgermination.Whenaround50seedlingsperpop- ulationhadbeenproduced,seedlingswereplantedinplastictrayswithindividualwells(5cm diameter,6cmdepth).Eachtraywasassignedtoaspecificpopulation,andthesoilusedtofill thetrayswasidenticaltothatusedforthegardenphase.Soilswithsimilarcompositionwere usedatbothsites(fertilizedpeatsubstrate;HasselforsGardenS-jordinUppsalaandKlasmann TS1inOsijek).Thepositionofthetrayswasrandomizedonceaday.Theseedlingswere growninaclosedgreenhouse(20˚C)untilthefour-leafstage,whichoccurredca.3weeksafter germination.Subsequently,tenfour-leafseedlingsofeachoftheelevenpopulations,assimilar insizeaspossible,wereselectedandtransplantedinpots(5.5L,topØ19.5cm,height25.5cm; Soparco,Conde´-sur-Huisne,France)filledwith5Lsoil.Thepotswereplacedoutdoorsinthe gardeninacompletelyrandomizeddesignwith1mbetweeneachpot.Theplantswere wateredthroughouttheexperimentalperiodtoavoiddroughtandfertilizedthreetimeswith intotal0.1418gNperpot,correspondingto50kgNha-1.Thecommongardenexperimentin Uppsalastartedwiththetransplantationofseedlingsoutdoorson15Juneandendedon16 October,shortlybeforethefirstfrost.InSweden,A.artemisiifoliaplantshavebeenobserved alreadyinMay[36]andthesettingsofthegerminationforthecommongardenexperiment (endofMay)werechosenbasedontheseobservations.Hence,earlyfloweringbytheGerman populationattheUppsalasiteismorelikelytobeaconsequenceoflocaladaptationrather thanwrongtimingofthegardenexperiment.TheexperimentatOsijekstartedon16Juneand finishedon11September,whenallpopulationshadproducedbothmaleandfemaleflowers. Allplantswerevisuallyinspectedatleasttwiceaweektorecordthedifferentphenological stages:i)firstmaleflower(i.e.thefirstemergenceofanthersoutsideonesinglemaleflower, usuallylocatedintheterminalmaleinflorescence),andii)firstfemaleflower(i.e.appearance ofpistilsoutsideonesinglefemaleflower).Afterthefirstreleaseofpollengrainsfromanindi- vidualplant,maleinflorescencesoftheplantsatthegardensiteatUppsalawerecutcontinu- ouslyuntiltheendoftheexperiment.Thisprecautionaryprocedurewastakenfortwomain reasons:i)topreventcontaminationoftheairbyhighlyallergenicpollenandii)toprevent possibleseedproductionandputativesoilcontaminationofthegarden.Attheendofthesum- merseason,theplantheightcorrespondingtothedistancebetweenthetopandthebaseofthe plantwasmeasured. Fieldstudy Todetermineitsabilitytoflowerandtoproducematureseedsinthenorthernpartofthe invadedEuropeanrange,atotalof17sitesinvadedbyA.artemisiifoliawereobservedduring thegrowingseason2010.SiteswerelocatedinandaroundtwonorthernGermanlocalities; Drebkau(N51˚39´19”,E14˚13´25”)andBerlin(N52˚30´59”,E13˚23´09”).Theformer localitywaschosenbecausethepopulationisknowntobewellestablishedanddistributedin thearea,whiletheBerlinsitesareprobablyinfestedwithpopulationsintroducedatdifferent occasions.Duetoweedmanagementmeasuresduringthegrowingseasonthenumberofsites wasrestricted,especiallyaroundBerlinwhereonlyfourfieldandroadsidesiteswerevisited, withaminimumdistanceof19kmbetweensites.Toaccountforpossibledifferencesinselec- tionpressureinthedifferenthabitats,duetoe.g.timeofharvestorcontrolmeasures,sixfield PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 5/15 PhenologicalVariationinA.artemisiifolia sitesandfiveroadsidesites,respectively,wereselectedatDrebkau,withaminimumdistance of0.5kmbetweensites.Thenumberofplantspersitevariedinmostcasesbetween70and600 plants,butwithtwoextremesof3000and15000plants.Theselattertwositesweretransect- likestretchedpatches(50mx1mand20mx2m,respectively,andthenumberofplants therewasestimatedbycountingindividualsperm2andcalculatingforthearea.Everyweek, 200plantswererandomlyselectedateachofthesetwositesfordeterminationofthephenolog- icalstage.Atallsitesthephenologicalstagesofindividualplantswererecordedweeklyfrom theendofJuneuntilmid-October.Fivesuccessivestagesofthedevelopmentofthemaleinflo- rescencewerepre-defined,recordedandestimatedatsitelevel:stage0=absenceofmale floweratthesite,stage1=budsarevisible,stage2=maleflowers(startofpollenproduction), stage3=80%ofindividualsatthesitehavematuremaleflowers(releasingpollen),stage 4=maleinflorescencesdying.Fourstagesofthedevelopmentofthefemaleflowerwerepre- defined:stage5=absenceoffemaleflowers,stage6=femaleflowers(appearanceofstyles), stage7=80%oftheindividualshaveopenfemaleflowers(visiblestyles),stage8=80%ofthe individualshavepollinatedfemaleflowers(swollenovaries),whilethreestagesofthefruit developmentwerecharacterized:stage9=80%oftheindividualshavematuringfemaleflow- ers(ovariesatfinalseedsize),stage10=80%oftheindividualshaveseedswithcolorchanging fromgreentodarkbrown,stage11=matureseedsdispersing.Hence,thelaststageofthe femaleflowerdevelopmentcorrespondstothestagebeforethestartofseedmaturationinthe caseofasuccessfulpollination.Thelengthoftwoimportantphenologicalstageswerequanti- fied:the“pollenproduction”stage(numberofweeksbetweenstage2andstage4ofthedevel- opmentofmaleflowers),andthe“totalreproduction”stage(numberofweeksbetweenstage1 ofthedevelopmentofmaleflowerandstage11ofthefruitdevelopment)(Table2). Table2. Timingandlengthofphenologyinfield. Phenologicalstage Locality HabitatatDrebkau Drebkau Berlin S P Field Roadside S P Mean±SE n Mean±SE n Mean±SE n Mean±SE n 1.Firstbud 186.4±1.6 13 200.2±1.8 4 60.5 0.0048 189.2±2.8 6 185.2±1.7 5 24.5 0.3335 Pollenproduction 2.Start 204.7±1.5 13 224.8±5.2 4 61.0 0.0037 206.7±3.0 6 202.0±0.0 5 22.5 0.1588 4.End 249.4±1.6 13 276.7±9.3 3 44.0 0.0101 247.5±1.6 6 251.0±3.8 5 33.0 0.6138 Femaleflowers 6.Start 192.3±2.0 13 231.8±3.4 4 62.0 0.0030 196.2±3.3 6 188.0±3.8 5 23.0 0.2133 7.End 210.1±2.7 13 251.0±4.9 4 62.0 0.0030 210.2±3.3 6 213.2±5.7 5 31.5 0.8500 Fruitdevelopment 8.Start 207.4±2.8 13 244.0±6.4 4 62.0 0.0036 210.2±3.3 6 209.0±4.9 5 29.0 0.9256 11.End 282.8±2.7 11 310.5±3.5 2 25.0 0.0320 277.6±3.4 5 286.0±4.9 4 25.5 0.1904 Lengthofstages Pollenproduction 45.2±2.2 13 56.0±8.1 3 35.5 0.1800 40.8±2.2 6 49±3.8 5 27.0 0.0993 Totalreproduction 97.4±3.5 11 108.5±3.5 2 20.5 0.2245 89.6±3.4 5 101.5±6.1 4 26.0 0.1688 DifferencesintimingandlengthofthephenologicalstagesofA.artemisiifoliaplantsrecordedattwoGermanlocalities(DrebkauandBerlin),andseparately fortwohabitatsinDrebkau(fieldsandroadsides).ThetimingofthephenologicalstagesisgivenasJuliandays,whilethelengthofthephenologicalstages arepresentedasthenumberofdaysbetweenthetwostagesdefiningit.Thenumberforeachphenologicalstagecorrespondstothenumbergiveninthe textforthedifferentstagesofmaleandfemaleflowering.“n”denotesthenumberofsites.ValuesofS(teststatisticassociatedwiththesmallersample)and P(probability)werecalculatedusingtheWilcoxonranksumtest. doi:10.1371/journal.pone.0166510.t002 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 6/15 PhenologicalVariationinA.artemisiifolia Statistics Inter-populationvariationsofmaleandfemalefloweringtimeandplantheightwereanalyzed bymeansofanalysisofcovariance,ANCOVA,usingprocGLMinthestatisticalsoftwareSAS 9.3(SASInstituteInc.Cary,NC)withgardensiteasfixedfactor,originandtheinteractionas randomfactors.Sincebirdseed,whichisthemainvectorforentranceofAmbrosiaseedsto Sweden,maybeimportedfromNorthAmerica,itwasconsideredimportanttoincludethese populationsintheanalyses.ThenumberofJuliandaysbetweenthestartofthegardenexperi- mentandthedatesoffirstmaleorfemalefloweringwerecalculatedasmeanforeachpopula- tionateachgardensite.Whenanalyzingthestartofflowering,finalplantheightwasincluded inthemodeltotestforcovariation,andwhenanalyzingfinalplantheight,seedweightwas includedinthemodeltotestforcovariation.Forplantheight,thepartitioningofthevariation betweengardensites(environment)andamongthedifferentoriginsoftheAmbrosiapopula- tionswithinsite(genetic)wascalculatedusingprocGLM. ToexplorepossibledifferencesinthefieldobservationsbetweenthetwoGermanlocalities, andbetweenthedifferenthabitats(6sitesdefinedasfieldand5asroadside)withinthelocality ofDrebkau,thenon-parametricWilcoxonsumranktestwasused.Thenon-parametrictest wasusedsincemostvariablestested(firstbudappearance,endofmaleflowering,andstart andendoffemalefloweringandfruitdevelopment)didnotfollowanormaldistribution.The Juliandaysfora)appearanceofbuds,b)startandendofmaleflowering,c)startoffemale floweringandsuccessfulpollination(appearanceofswollenovaries)andd)startandendof seedmaturationateachsitewasregistered.Inaddition,thedifferenceinlengthoftheperiod ofpollenproductionandthetotalreproductionperiod,calculatedasthedifferencebetween theJuliandaysrecordedfortwophenologicalstages,wasanalyzed. Results Commongardenexperiment Theresultsrevealedaclearnorth-southgradientforfloweringtimeofA.artemisiifolia(Figs2 and3).Significantdifferencesinthetimerequiredtotriggerthemalefloweringandthefemale floweringwereobservedbetweenpopulationswithinbothgardensandalsobetweenthegar- dens,eveniftherewerefewerpopulationsproducingfemaleflowersinUppsalathaninOsijek (Table3,Figs2and3,S1Appendix).PlantsgrowninUppsalaneededsignificantlymoretime toproducethefirstmaleandfemaleflowerthanplantsfromthesamepopulationsgrownin Osijek(Figs2and3).Finalplantheightdidnothaveasignificanteffectoneitherfirstmaleor femaleflower,hencethevariablewasexcludedintheANCOVAandonlysignificanteffects werestatedinthefinalmodel.Early-floweringandlate-floweringpopulationswereidentified ascorrespondingtothepopulationsfromtheextremenorthernandsouthernlatitudesofour sampling(North:Germany51.4˚N;South:USA-Kt38.0˚N).InOsijek(Croatia)alltheindivid- uals,grownundergoodphoto-thermicconditions(accordingtoDeenandcolleagues[34]), producedmaleandfemaleflowersbeforetheendofthecommongardenexperiment.Incon- trast,atthesitebeyondtherangelimit(Uppsala,Sweden),50%oftheindividualplantsfrom themostsouthernpopulationofoursampling(Lexington,Kentucky)failedtoproducemale flowersbeforeonsetoftheSwedishfrost.Intotal,approximatelyonefifthoftheplantsgrown inUppsala,representingfourpopulationsfromthesouthernpartoftheinvadedEuropean range(southernFrance,Italy,Bosnia&Herzegovina)andthetwoAmericanpopulations,did notproducefemaleflowers(S1Appendix). PlantsofdifferentpopulationsgrowninOsijekwereingeneralsignificantlytaller(differ- ence27.6cm,SE±3.4)thanplantsofthesamepopulationsgrowninUppsala(Table3,Fig4). PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 7/15 PhenologicalVariationinA.artemisiifolia Fig2.FirstmalefloweringofelevenAmbrosiaartemisiifoliapopulationsinareciprocalcommon gardenexperiment.GardenswerelocatedinUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek, Croatia(N45˚31´16”,E18˚40´54”).Meannumberofdaysfromstartofcommongardenexperimentuntil firstmaleflowerappearanceofeachpopulation.Latitudesrefertositesfromwhichseedswerecollected(for detailsofpopulationsandexactlatitudeinformationseeTable1). doi:10.1371/journal.pone.0166510.g002 Theeffectoftheoriginofthepopulationwasnotsignificantandrepresentedonly14%ofthe varianceofthefinalplantheight(geneticeffect“G”)whilethedifferencebetweenthetwogar- densitesexplained75%.Seedweightdidnothaveasignificanteffectonfinalplantheight, hencethevariablewasexcludedintheANCOVAandonlysignificanteffectswerestatedin thefinalmodel. Fig3.FirstfemalefloweringofelevenAmbrosiaartemisiifoliapopulationsinareciprocalcommon gardenexperiment.GardenswerelocatedinUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek, Croatia(N45˚31´16”,E18˚40´54”).Meannumberofdaysfromstartofcommongardenexperimentuntil firstfemaleflowerappearanceofeachpopulation.Latitudesrefertositesfromwhichseedswerecollected (fordetailsofpopulationsandexactlatitudeinformationseeTable1).Onepopulation(Lexington)inUppsala didnotproduceanyfemaleflowers. doi:10.1371/journal.pone.0166510.g003 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 8/15 PhenologicalVariationinA.artemisiifolia Table3. Analysisofcovarianceoflatitudeandcommongardenlocationonfloweringtimeandplantheight. Sourceofvariation Maleflower Femaleflowera Plantheight Fb P Fb P Fb P Commongarden 637.50 <0.0001 275.64 <0.0001 33.0 <0.0001 Latitude 101.20 <0.0001 65.16 <0.0001 CG*Latitude 23.16 0.0001 11.04 0.0040 Ambrosiaartemisiifoliaplantsfrom11populationsweregrowninreciprocalcommongardenexperimentsinUppsala,SwedenandinOsijek,Croatia.Inthe analysisofcovariancefirstmaleflower,firstfemaleflowerandfinalplantheightweredependentvariableswithoriginallatitudeofsampledpopulationsas theindependentcontinuousvariableandcommongardensiteastheindependentcategoricalvariable. aTheLexingtonpopulationsfailedtoproducefemaleflowerswhengrowninUppsala. bDegreesoffreedomfortheresidualis18,17and18formaleandfemaleflowerandplantheight,respectively. doi:10.1371/journal.pone.0166510.t003 Fieldstudy OneoftheGermanpopulationslocatedinthenorthernpartoftheinvadedEuropeanrange (Drebkau)wasalsousedinthecommongardenexperiment.Phenologicalrecordsfromsev- eralsitesconfirmeditsearly-floweringinfieldconditions(middleofJuly;Table2).Datesof theonsetandendingofallphenologicalstagesstudiedoccurredsignificantlyearlieratthesites in/aroundDrebkau(51˚39”N)thanatthesitesin/aroundBerlin(52˚30”N).However,nosig- nificantdifferencewasobservedforthelengthofthe“pollenproduction”stageandofthe “totalreproduction”stage(Table2)betweenthesetwoseparateGermanlocalities.Nosignifi- canttemporaldifferencewasfoundamongsiteslocatedinfieldsandsitessituatedalongroads withintheDrebkaulocalityforthestartofthereproductivestage,thestartandtheendofmale andfemaleflowering,orthestartandtheendofthefruitdevelopment(Table2). Fig4.PlantheightofelevenAmbrosiaartemisiifoliapopulationsinareciprocalcommongarden experiment.GardenswerelocatedinUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek,Croatia (N45˚31´16”,E18˚40´54”).Latitudesrefertositesfromwhichseedswerecollected(fordetailsof populationsandexactlatitudeinformationseeTable1). doi:10.1371/journal.pone.0166510.g004 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 9/15 PhenologicalVariationinA.artemisiifolia Discussion Photoperiodicresponsehasbeenproposedasoneofthemostimportantfactorslimitingthe Europeandistributionofinvasiveplants[12].Attemptstopredictthenorthwardrangeshiftof A.artemisiifoliahaveledtotheconclusionthattheextensionoftherangelimitistoalarge extentconstrainedbythephotoperiodrequirementforinductionofflowering(e.g.[1,4,43]). However,ourresultsindicatethatthephotoperiodic-thermalrequirementisatraitwitha largepotentialforlocaladaptation.Indeed,theresultsofthecommongardenexperiment showedthatA.artemisiifoliacanformmaleandfemaleflowersupto,atleast,latitude59˚N, withaclearnorth-southgradientinfloweringtime.Thelargedifferencesobservedinthecom- mongardenexperimentmakeitpossibletodifferentiateearlyandlatefloweringpopulations and,thus,toestimatethepotentialthreatofcommonragweedpopulationstoFennoScandina- vianpublichealthandagriculture(Figs2and3). ThepopulationrepresentingthelargestpotentialforestablishmentinFennoScandinavia,if introduced,isthemostearly-floweringpopulation,originatingfromGermany.Incontrast, thepopulationfromthesouthernpartofthenativerange(Kentucky,USA)constitutesanegli- gibleriskforinvasionatnorthEuropeanlatitudes.TheGermanpopulationisobviouslywell adaptedtophotoperiodic-thermalconditionsatlatitude51˚N,andourcommongardenexper- imentindicatesthatitisalreadypre-adaptedforreproductioninnorthernEuropeuptoat leastlatitude59˚N.Thus,thenichelimitoftheGermanpopulationseemstobebeyondits presentrangelimit. IthasbeenshownthatthelargeecologicalamplitudeofA.artemisiifolia,togetherwith unoccupiedniches,isafactorbehindsuccessfulinvasioninFrance[22].However,ifaspecies hassimilarecologicalandclimaticnichesininvasiveandnativepopulations,ithasbeenseen thatinvasionstypicallyfailwithoutpre-adaptation.Undersuchcircumstances,therateof migrationofsuitableallelesalongtheselectivegradientbecomescrucialforadaptation[38]. Further,rangeexpansionofaspeciesisnotonlydependentonsuitableintraspecificecological variation,availablenichespaceandpre-adaptedalleles,butalsoonsuccessfulestablishmentof locallyadaptedalleles.Thelatterisinturninfluencedbygeneflow,selectionpressuresand mutationrates[38].InFennoScandinavia,theselectionpressureonreproductionisrather strong,asonlyindividualswithseedssetbeforethefirstfrostwillcontributetonextgeneration. Suchselectionmightcounteractswampingofthelocallyadaptedgenepoolbypollenfromcen- tralareasofthedistributionrange[38].SeveralpopulationgeneticstudiesindicatethatA.arte- misiifoliainEuropehasahighgeneflow[27–29]andpollenfromthecentraldistribution rangehasbeenfoundinSweden[44,45].Inaddition,seedsaredispersedbyimportationofA. artemisiifoliainfectedbirdseed.Hence,fromthisperspective,thefutureestablishmentofviable populationsofA.artemisiifoliainFennoScandinaviaisarealisticscenariowithstrongselection pressureandtheprerequisitesformigrationofpre-adaptedalleles.Thisconclusionissup- portedbyresultsfromtheGermanfieldstudy.Despitelocaladaptationatbothlocalities,flow- eringoccurredsignificantlyearlierinDrebkauthaninBerlin,whichindicatesthatA. artemisiifoliahasbeenintroducedinnorthernGermanyonseveraloccasions. Toavoidexposingpeopleintheareatoallergenicpollen,individualmaleflowerheadswere cutatthefirstsignofpollendistributionattheSwedishcommongardensite,andthusitwas notpossibletorecordthedateofseedsetting.TheearlyfloweringoftheGermanpopulation atthenorthernsiteis,however,aclearindicationthatthispopulationispre-adaptedtoset seedsbeforefrostatnorthernlatitudes.Also,thedatesofmaleandfemalefloweringrecorded atthenortherncommongardensitecoincidedwellwithfieldobservationsoftheDrebkau populations.ThefieldobservationsatbothGermanlocalities(DrebkauandBerlin)indicate thataperiodof10–12weeksafteronsetoffemalefloweringisneededforseedstomature PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 10/15
Description: