ebook img

Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at ... PDF

15 Pages·2016·1.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at ...

RESEARCHARTICLE Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at Northern Latitudes RomainScalone1,AndreasLemke2,EditaSˇtefanić3,Anna-KarinKolseth1,SandaRasˇić3, LarsAndersson1* 1 SwedishUniversityofAgriculturalSciences,DepartmentofCropProductionEcology,Uppsala,Sweden, 2 TechnischeUniversita¨tBerlin,DepartmentofEcology,PlantEcologyandEcosystemScience,Berlin, Germany,3 UniversityofJosipJurajStrossmayer,FacultyofAgriculture,Osijek,Croatia a11111 *[email protected] Abstract TheinvasiveweedAmbrosiaartemisiifolia(commonragweed)constitutesagreatthreatto publichealthandagricultureinlargeareasoftheglobe.Climatechange,characterizedby OPENACCESS highertemperaturesandprolongedvegetationperiods,couldincreasetheriskofestablish- Citation:ScaloneR,LemkeA,SˇtefanićE,Kolseth mentinnorthernEuropeinthefuture.However,asthespeciesisashort-dayplantthat A-K,RasˇićS,AnderssonL(2016)Phenological requireslongnightstoinducebloomformation,itmightstillfailtoproducematureseeds VariationinAmbrosiaartemisiifoliaL.Facilitates NearFutureEstablishmentatNorthernLatitudes. beforetheonsetofwinterinareasatnorthernlatitudescharacterizedbyshortsummer PLoSONE11(11):e0166510.doi:10.1371/journal. nights.Tosurveythegeneticvariationinfloweringtimeandstudytheeffectoflatitudinalori- pone.0166510 ginonthistrait,areciprocalcommongardenexperiment,includingelevenpopulationsofA. Editor:SylvainDelzon,INRA-Universityof artemisiifoliafromEuropeandNorthAmerica,wasconducted.Theexperimentwascon- Bordeaux,FRANCE ductedbothoutsidetherangelimitofthespecies,inSwedenandwithinitsinvadedrange, Received:August17,2015 inCroatia.Ourmainhypothesiswasthatthephotoperiodic-thermalrequirementsofA.arte- Accepted:October31,2016 misiifoliaconstituteabarrierforreproductionatnorthernlatitudesand,thus,haltsthenorth- ernrangeshiftdespiteexpectedclimatechange.Resultsrevealedthepresenceofanorth- Published:November15,2016 southgradientinfloweringtimeatbothgardensites,indicatingthatcertainEuropeanpopu- Copyright:©2016Scaloneetal.Thisisanopen lationsarepre-adaptedtophotoperiodicandthermalconditionsatlatitudesupto,atleast, accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which 60˚N.Thiswasconfirmedbyphenologicalrecordingsperformedinaregionclosetothe permitsunrestricteduse,distribution,and northernrangelimit,thenorthofGermany.Thus,weconcludethatthereexistsahighrisk reproductioninanymedium,providedtheoriginal forestablishmentandspreadofA.artemisiifoliainFennoScandinaviainthenearfuture. authorandsourcearecredited. Therangeshiftmightoccurindependentlyofclimatechange,butwouldbeacceleratedbyit. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Funding:TheworkwasfundedbySvenska ForskningsrådetFormas(http://www.formas.se), grantnumber217-2012-994.LAandAKreceived Introduction thefunding.Thefunderhadnoroleinstudy design,datacollectionandanalysis,decisionto Rangeshiftsofplantsareexpectedasaconsequenceofclimatechange,characterizedbyhigher publish,orpreparationofthemanuscript. temperatures,changesinprecipitationpatternsandprolongedvegetationperiods[1].Distri- butionbeyondthecurrentrangelimitmightoccurgraduallyastheclimatechangesandnew CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. areascomewithinthespeciesnichelimit[2].Severalattemptshavebeenmadetopredictthe PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 1/15 PhenologicalVariationinA.artemisiifolia rangeshiftofsoutherlyspeciestonorthernlatitudes[1,3,4],basedonassumptionsofachange inclimate.Thegeographicshiftofspeciesovertimeinresponsetocontemporaryclimate changehasbeenestimatedto1.69kmyear-1towardsnorthernlatitudes,andisingeneral sufficienttotracktemperaturechanges[5].Ithas,however,beenquestionedwhetherthiscon- clusionisvalidforlowlandterrestrialplants[6,7].ABritishstudy[8]revealednoclearfinger- printofclimatechangeonpolewardmovementofplants,andanexpectedlagindistribution attheleadingedgewassuggested.Alagphaseiscommonlyobservedininvasivespecies, whichmakesitdifficulttopredictthetimingofthedifferentprocessesrelatedtoinvasion[9]. Thelagphaseispoorlyunderstoodbutitmaybepartlyexplainedasthetimeneededforthe speciestoevolveandadapttothenewhabitat[10].Consequently,Whitney&Gabler[11]con- cludedthatevolutionarypotentialshouldbeincorporatedintheassessmentoftheinvasiveness ofaspecies,andmentionedshortgenerationtimeasoneoftenkeytraits.Onereasonforthis couldbearequirementforchangesinfloweringtimesincemanyplantspecies(i.e.short-day plants)requirelongnightsforinductionofflowering[12].Thus,fornorthernrangeexpansion tooccurinshort-dayspeciesanadaptationtonewphotoperiodic-thermalconditions(i.e.pho- toperiod,temperatureandtheirinteraction)isrequired,ashasbeenobservedintheshort-day grassMicrostegiumvinimeum[13].Severalstudieshavereportedearlierfloweringinpopula- tionssampledatthenorthernrangemarginscomparedtothesoutherlycounterparts[14–16]. Theinvasiveshort-dayplantAmbrosiaartemisiifoliaL.(commonragweed)isconsideredto beoneofthemostnoxiousplantsinEurope[17].Thisrankingisbasedbothonitsnegative effectsonpublichealthanditsreductiveimpactsontheyieldsofseveralmajorcrops.Thisdra- maticsituationhasledtointernationalcooperationamongscientiststocontrolthespeciesina sustainableway(COSTActionFA1203“SustainableManagementofA.artemisiifoliain Europe”[18]).HealthproblemscausedbyA.artemisiifoliaincludedermatitisandeczemaafter directskincontact[19],andrespiratoryproblemsandasthmaduetothereleaseofabundant quantitiesofhighlyallergenicpollengrains[3].Moreover,thelatefloweringtimeduetoits short-dayplanttraitextendstheperiodofhayfeverforallergysufferersuntillateautumn[20, 21].ThepollengrainproductionfromasingleA.artemisiifoliaplanthasbeenestimatedtosev- eralbillionperseason[22]anditsdispersalviawindtoseveralhundredkilometres[23,24].In additiontoimpactonhumanhealthA.artemisiifoliaisrecognizedasahighlycompetitive weed,withhighinfestationofrowcropssuchassunflowerandmaize,incroppingsystemsin Western,CentralandEasternEurope[25,26].InHungary,forexample,70%ofagricultural fieldsarereportedtobeinfested[21]. OriginatingfromNorthAmerica,withaknowndistributionfromlatitude31˚Nto52˚N, severalgenotypicstudieshaveshownthatthesuccessfulworldwideinvasionandrangeexpan- sionofA.artemisiifoliaistheresultofmultipleintroductionsfromdifferentregionsofthe nativerange[25,27–31].ItwasfirstspreadtoEuropeinthemiddleofthe19thcenturyandhas sincebeenrepeatedlyintroducedtoEurope.ThemainareaofinfestationisCentralEurope, butitisnowestablishedinlargepartsofthecontinent,withanorthernrangelimitsituated southoftheScandinaviancountriesandtheUK,andthesouthernrangelimitinmidItaly,the IberianPeninsulaandGreece[1,4](Fig1).Withclimatechange,thenorthernlimit,basedon environmentalfactors,ofcommonragweedrangeistheonemostlikelytobeextended. Thespecieshasbeenreportedtorequireaminimumnightlengthofeighthourstoinduce flowering[34].Nightlength,definedasthetimedifferencebetweensunsetandsunrise,never fallsbeloweighthoursinBudapest(latitude47˚30´N),butdoesnotexceedeighthoursuntil mid-AugustinStockholm(latitude59˚51´N)ormid-JulyinBerlin(latitude52˚31´N)[35]. PhotoperiodicconditionsinnorthernEuropemightthusdelaytheonsetoffloweringuntil autumn.Indeed,accordingtoArtportalen,theSwedishSpeciesInformationCentre[36],the earliestdayreportedforfloweringofA.artemisiifoliabetween2004and2013was21August PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 2/15 PhenologicalVariationinA.artemisiifolia Fig1.DistributionofAmbrosiaartemisiifoliainA)Europe(modifiedfromSmithetal.2013[32])and B)NorthAmerica(modifiedfromGentonetal.2005[33]).Starsmarkthelocationofpopulationssampled fortheexperiment,andarrowsindicatethelocationofthecommongardensitesinUppsalaandOsijek, respectively.Attribute,Europemap:Ssolbergj-https://commons.wikimedia.org/w/index.php?curid=4203715. Attribute,NorthAmericamap:AlanRockefeller-https://commons.wikimedia.org/wiki/File%3ANorth_ america_blank_range_map.png. doi:10.1371/journal.pone.0166510.g001 (daylength:15h4min./nightlength:8h56min.).Thisappearstobetoolatetoenablepro- ductionofviableseedsbeforeplantsarekilledbyfrost,whichcouldexplainwhythereare,to ourknowledge,noconfirmedestablishedpopulationsinSweden.Sincethephotoperiodisa stablefactor,unaffectedbyclimatechange[12],itmightserveasabarrieragainstestablish- mentofA.artemisiifoliainthenorthofEuropedespiteimprovedclimaticconditions.There are,however,twofactors,whichmightoverrulethepreventativeeffectofashortsummerpho- toperiod.First,theremayexistpopulationsatthenorthernrangemarginofA.artemisiifolia, whicharepre-adaptedtonorthernphotoperiodic-thermalconditions.Thesepopulations couldgraduallyexpandtheirrangelimit,aidedbyon-goingchangesinclimate.Secondly,the commercialtradeinbirdseedinfestedwithseedsofA.artemisiifoliaisthemainsourceof introductioninScandinavia,whichmakesprivategardensandmunicipalsoildepositscom- moncasualhabitats.ContinuousintroductionofA.artemisiifoliaseedsinScandinaviamight contributetotheprocessofselectionofearly-floweringindividuals,whichwouldsubsequently enabletheestablishmentofviablepopulations.Althoughgeneflowmaycounteractlocaladap- tation,multipleintroductionshavebeenshowntoenhanceinvasivesuccessbyintroducing novelallelesandincreasinggeneticvariation[37].Whenaspecieshassimilarecologicaland climaticnichesinbothinvasiveanddomesticpopulations,invasionstypicallyfailwithoutpre- adaptationandtherateofmigrationofsuitableallelesalongtheselectivegradientbecomes crucialforadaptation[38].Underthesecircumstancesseedsofpre-adaptedgenotypeshitch- hikingwithcontaminatedbirdseedcanalsobeimportant.Allscenariosareinlinewithcon- clusionsbyClements&DiTommaso[39]whoarguedthatevolutionofinvasiveweedsmight increasetherangeshiftmorethanforecastedandfasterthantheprocessofclimatechange. ForthetwoscenariosofrangeshifttoberealisticforA.artemisiifolia,thephotoperiodic-ther- malrequirementsforfloweringshouldcontaingeneticvariation.Recentworkusingcommon gardenexperimentsandgenomictoolshasconfirmedadifferentiationoflife-historytraits betweennativeandintroducedpopulations[40].Thehighlydiversegenepoolpresentin EuropehaspromotedarapidevolutionandadaptationofA.artemisiifoliatodifferentenvi- ronments,e.g.field,roadside,river-sideandwasteland[41].Inaddition,thepresenceofa north-southgradientinfloweringtimewithinintroducedEuropeanpopulationsfromlatitude 54˚Nto44˚Nwasrecentlyshowninacommongardenexperimentlocatedwithinthe invadedarea[16]. PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 3/15 PhenologicalVariationinA.artemisiifolia TheaimofthisstudywastoexplorevariationinphenologywithinA.artemisiifoliapopula- tionsofdifferentoriginsandtestwhetherthereexistsalatitudinalclineinfloweringtime. Commongardenexperimentshavealongtraditioninevolutionaryecology,andarewell suitedforstudyingthegeneticdifferentiationamonggenotypes.Growingdifferentgenotypes ofaspeciesinacommonenvironmentmakesitpossibletoattributephenotypicvariationto eithergeneticorenvironmentalfactors[42].Areciprocalcommongardenexperimentwas conductedatonesiteinthemiddleoftheinvadedarea(Osijek,Croatia;latitude45˚N),andat onesitebeyondtherangelimit(Uppsala,Sweden;latitude59˚N).Theexperimentwascomple- mentedwithphenologicalobservationsatseveralfieldsitesofpopulationslocatedinthe northernpartoftheinvadedrange(Germany;latitude51–52˚N).Wehypothesizedthati) thereexistsanorth-southgradientinfloweringtimeamongpopulations,withplantsfrom northernpopulationsfloweringearlier,andii)thegradientshowsthesamepatternatboth sites,butismoredistinctatthenorthernsiteduetonon-optimalphotoperiodic-thermalcon- ditionsbeyondtherangelimit.Theabsenceofanorth-southgradientwouldindicatethat thereisnolocaladaptationtophotoperiodic-thermalconditions,butratherthatthevariation infloweringtimeisbasedonphenotypicplasticity. MaterialsandMethods Commongardenexperiment AtotalofelevenpopulationsofAmbrosiaartemisiifoliawerecultivatedinareciprocalcom- mongardenexperiment,withonegardensitelocatedbeyondtherangelimit,atahighlatitude (Uppsala,Sweden:N59˚48´55”,E17˚38´47”)andtheotherwithintheinvadedEuropean range(Osijek,Croatia:N45˚31´16”,E18˚40´54”).Commongardenexperimentswerecon- ductedonlandownedbytheSwedishUniversityofAgriculturalSciencesandUniversityof theJosipJurajStrossmayer,respectively,andpermissionsfortheexperimentsweregrantedby theuniversities.SeedsofA.artemisiifoliawerecollectedin2010and2011fromnineintro- ducedpopulationsinfiveEuropeancountriesandtwonativepopulationsfromNorthAmerica (Fig1,Table1).Nospecialpermissionwasneededforseedcollectionandfieldstudiessince theydidnotinvolveendangeredorprotectedspecies.Theelevenpopulationswereselectedto representthelatitudinalvariationfromlatitude38˚Ntolatitude51˚N.Seedsfromatleastten individualplantswerecollectedperpopulation.Apopulationwasdefinedasasetof Table1. DetailsoftheoriginofAmbrosiaartemisiifoliapopulationsgrowninareciprocalcommongardenexperiment. Population Country Latitude,Longitude Yearofcollection Habitat Seedcontributor Drebkau Germany N51˚38´21",E14˚11´50" 2011 fallowfield U.Starfinger Martonva´sa´r Hungary N47˚20´37",E18˚50´31" 2011 field P.Bonis Baracska Hungary N47˚18´03",E18˚45´51" 2011 field P.Bonis Pluvet France N47˚11´18",E05˚15´01" 2011 maizefield B.Chauvel Kaposva´r Hungary N46˚22´12",E17˚51´17" 2011 maizefield G.Kazinczi Besate Italy N45˚18´25",E08˚58´21" 2011 roadedge M.Bonini StClothilde Canada N45˚10´03",E73˚40´50" 2011 fieldedge D.Benoit Bassens France N44˚54´04",E00˚31´58" 2010 wasteland B.Laitung Pribinic Bosnia&Herzegovina N44˚35´59",E17˚49´40" 2011 wasteland B.Vuckovic-Kelevic Dions France N43˚56´03",E04˚18´22" 2010 wasteland B.Laitung Lexington USA N38˚01´00",E84˚33´10" 2010 oldpasture C.&J.Baskin TenindividualsfromeachpopulationweregrowninUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek,Croatia(N45˚31´16”,E18˚40´54”). Latitudeandlongituderefertoseedsamplingsite,andhabitatreferstovegetationtypeatseedsamplingsite. doi:10.1371/journal.pone.0166510.t001 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 4/15 PhenologicalVariationinA.artemisiifolia individualsgrowinginonefieldwithatleast7.5kmbetweensampledfields.Seedweightwas calculatedasthemeanweightof5x50seeds.Pretreatmentofseedsandhandlingofseedlings wereconductedaccordingtothesameexperimentalprotocolinbothSwedenandCroatia,as follows.Atotalofca.100seedsperpopulationwereplacedonmoistpaperinPetridishesat 5˚Cforstratification.Subsequently,thePetridisheswereplacedinagrowthchamberwitha temperatureregimeof15˚Catnight(nolight)for8hoursand27˚Catday(lightintensity: 50μmolm-2s-1)for16hourstoinduceseedgermination.Whenaround50seedlingsperpop- ulationhadbeenproduced,seedlingswereplantedinplastictrayswithindividualwells(5cm diameter,6cmdepth).Eachtraywasassignedtoaspecificpopulation,andthesoilusedtofill thetrayswasidenticaltothatusedforthegardenphase.Soilswithsimilarcompositionwere usedatbothsites(fertilizedpeatsubstrate;HasselforsGardenS-jordinUppsalaandKlasmann TS1inOsijek).Thepositionofthetrayswasrandomizedonceaday.Theseedlingswere growninaclosedgreenhouse(20˚C)untilthefour-leafstage,whichoccurredca.3weeksafter germination.Subsequently,tenfour-leafseedlingsofeachoftheelevenpopulations,assimilar insizeaspossible,wereselectedandtransplantedinpots(5.5L,topØ19.5cm,height25.5cm; Soparco,Conde´-sur-Huisne,France)filledwith5Lsoil.Thepotswereplacedoutdoorsinthe gardeninacompletelyrandomizeddesignwith1mbetweeneachpot.Theplantswere wateredthroughouttheexperimentalperiodtoavoiddroughtandfertilizedthreetimeswith intotal0.1418gNperpot,correspondingto50kgNha-1.Thecommongardenexperimentin Uppsalastartedwiththetransplantationofseedlingsoutdoorson15Juneandendedon16 October,shortlybeforethefirstfrost.InSweden,A.artemisiifoliaplantshavebeenobserved alreadyinMay[36]andthesettingsofthegerminationforthecommongardenexperiment (endofMay)werechosenbasedontheseobservations.Hence,earlyfloweringbytheGerman populationattheUppsalasiteismorelikelytobeaconsequenceoflocaladaptationrather thanwrongtimingofthegardenexperiment.TheexperimentatOsijekstartedon16Juneand finishedon11September,whenallpopulationshadproducedbothmaleandfemaleflowers. Allplantswerevisuallyinspectedatleasttwiceaweektorecordthedifferentphenological stages:i)firstmaleflower(i.e.thefirstemergenceofanthersoutsideonesinglemaleflower, usuallylocatedintheterminalmaleinflorescence),andii)firstfemaleflower(i.e.appearance ofpistilsoutsideonesinglefemaleflower).Afterthefirstreleaseofpollengrainsfromanindi- vidualplant,maleinflorescencesoftheplantsatthegardensiteatUppsalawerecutcontinu- ouslyuntiltheendoftheexperiment.Thisprecautionaryprocedurewastakenfortwomain reasons:i)topreventcontaminationoftheairbyhighlyallergenicpollenandii)toprevent possibleseedproductionandputativesoilcontaminationofthegarden.Attheendofthesum- merseason,theplantheightcorrespondingtothedistancebetweenthetopandthebaseofthe plantwasmeasured. Fieldstudy Todetermineitsabilitytoflowerandtoproducematureseedsinthenorthernpartofthe invadedEuropeanrange,atotalof17sitesinvadedbyA.artemisiifoliawereobservedduring thegrowingseason2010.SiteswerelocatedinandaroundtwonorthernGermanlocalities; Drebkau(N51˚39´19”,E14˚13´25”)andBerlin(N52˚30´59”,E13˚23´09”).Theformer localitywaschosenbecausethepopulationisknowntobewellestablishedanddistributedin thearea,whiletheBerlinsitesareprobablyinfestedwithpopulationsintroducedatdifferent occasions.Duetoweedmanagementmeasuresduringthegrowingseasonthenumberofsites wasrestricted,especiallyaroundBerlinwhereonlyfourfieldandroadsidesiteswerevisited, withaminimumdistanceof19kmbetweensites.Toaccountforpossibledifferencesinselec- tionpressureinthedifferenthabitats,duetoe.g.timeofharvestorcontrolmeasures,sixfield PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 5/15 PhenologicalVariationinA.artemisiifolia sitesandfiveroadsidesites,respectively,wereselectedatDrebkau,withaminimumdistance of0.5kmbetweensites.Thenumberofplantspersitevariedinmostcasesbetween70and600 plants,butwithtwoextremesof3000and15000plants.Theselattertwositesweretransect- likestretchedpatches(50mx1mand20mx2m,respectively,andthenumberofplants therewasestimatedbycountingindividualsperm2andcalculatingforthearea.Everyweek, 200plantswererandomlyselectedateachofthesetwositesfordeterminationofthephenolog- icalstage.Atallsitesthephenologicalstagesofindividualplantswererecordedweeklyfrom theendofJuneuntilmid-October.Fivesuccessivestagesofthedevelopmentofthemaleinflo- rescencewerepre-defined,recordedandestimatedatsitelevel:stage0=absenceofmale floweratthesite,stage1=budsarevisible,stage2=maleflowers(startofpollenproduction), stage3=80%ofindividualsatthesitehavematuremaleflowers(releasingpollen),stage 4=maleinflorescencesdying.Fourstagesofthedevelopmentofthefemaleflowerwerepre- defined:stage5=absenceoffemaleflowers,stage6=femaleflowers(appearanceofstyles), stage7=80%oftheindividualshaveopenfemaleflowers(visiblestyles),stage8=80%ofthe individualshavepollinatedfemaleflowers(swollenovaries),whilethreestagesofthefruit developmentwerecharacterized:stage9=80%oftheindividualshavematuringfemaleflow- ers(ovariesatfinalseedsize),stage10=80%oftheindividualshaveseedswithcolorchanging fromgreentodarkbrown,stage11=matureseedsdispersing.Hence,thelaststageofthe femaleflowerdevelopmentcorrespondstothestagebeforethestartofseedmaturationinthe caseofasuccessfulpollination.Thelengthoftwoimportantphenologicalstageswerequanti- fied:the“pollenproduction”stage(numberofweeksbetweenstage2andstage4ofthedevel- opmentofmaleflowers),andthe“totalreproduction”stage(numberofweeksbetweenstage1 ofthedevelopmentofmaleflowerandstage11ofthefruitdevelopment)(Table2). Table2. Timingandlengthofphenologyinfield. Phenologicalstage Locality HabitatatDrebkau Drebkau Berlin S P Field Roadside S P Mean±SE n Mean±SE n Mean±SE n Mean±SE n 1.Firstbud 186.4±1.6 13 200.2±1.8 4 60.5 0.0048 189.2±2.8 6 185.2±1.7 5 24.5 0.3335 Pollenproduction 2.Start 204.7±1.5 13 224.8±5.2 4 61.0 0.0037 206.7±3.0 6 202.0±0.0 5 22.5 0.1588 4.End 249.4±1.6 13 276.7±9.3 3 44.0 0.0101 247.5±1.6 6 251.0±3.8 5 33.0 0.6138 Femaleflowers 6.Start 192.3±2.0 13 231.8±3.4 4 62.0 0.0030 196.2±3.3 6 188.0±3.8 5 23.0 0.2133 7.End 210.1±2.7 13 251.0±4.9 4 62.0 0.0030 210.2±3.3 6 213.2±5.7 5 31.5 0.8500 Fruitdevelopment 8.Start 207.4±2.8 13 244.0±6.4 4 62.0 0.0036 210.2±3.3 6 209.0±4.9 5 29.0 0.9256 11.End 282.8±2.7 11 310.5±3.5 2 25.0 0.0320 277.6±3.4 5 286.0±4.9 4 25.5 0.1904 Lengthofstages Pollenproduction 45.2±2.2 13 56.0±8.1 3 35.5 0.1800 40.8±2.2 6 49±3.8 5 27.0 0.0993 Totalreproduction 97.4±3.5 11 108.5±3.5 2 20.5 0.2245 89.6±3.4 5 101.5±6.1 4 26.0 0.1688 DifferencesintimingandlengthofthephenologicalstagesofA.artemisiifoliaplantsrecordedattwoGermanlocalities(DrebkauandBerlin),andseparately fortwohabitatsinDrebkau(fieldsandroadsides).ThetimingofthephenologicalstagesisgivenasJuliandays,whilethelengthofthephenologicalstages arepresentedasthenumberofdaysbetweenthetwostagesdefiningit.Thenumberforeachphenologicalstagecorrespondstothenumbergiveninthe textforthedifferentstagesofmaleandfemaleflowering.“n”denotesthenumberofsites.ValuesofS(teststatisticassociatedwiththesmallersample)and P(probability)werecalculatedusingtheWilcoxonranksumtest. doi:10.1371/journal.pone.0166510.t002 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 6/15 PhenologicalVariationinA.artemisiifolia Statistics Inter-populationvariationsofmaleandfemalefloweringtimeandplantheightwereanalyzed bymeansofanalysisofcovariance,ANCOVA,usingprocGLMinthestatisticalsoftwareSAS 9.3(SASInstituteInc.Cary,NC)withgardensiteasfixedfactor,originandtheinteractionas randomfactors.Sincebirdseed,whichisthemainvectorforentranceofAmbrosiaseedsto Sweden,maybeimportedfromNorthAmerica,itwasconsideredimportanttoincludethese populationsintheanalyses.ThenumberofJuliandaysbetweenthestartofthegardenexperi- mentandthedatesoffirstmaleorfemalefloweringwerecalculatedasmeanforeachpopula- tionateachgardensite.Whenanalyzingthestartofflowering,finalplantheightwasincluded inthemodeltotestforcovariation,andwhenanalyzingfinalplantheight,seedweightwas includedinthemodeltotestforcovariation.Forplantheight,thepartitioningofthevariation betweengardensites(environment)andamongthedifferentoriginsoftheAmbrosiapopula- tionswithinsite(genetic)wascalculatedusingprocGLM. ToexplorepossibledifferencesinthefieldobservationsbetweenthetwoGermanlocalities, andbetweenthedifferenthabitats(6sitesdefinedasfieldand5asroadside)withinthelocality ofDrebkau,thenon-parametricWilcoxonsumranktestwasused.Thenon-parametrictest wasusedsincemostvariablestested(firstbudappearance,endofmaleflowering,andstart andendoffemalefloweringandfruitdevelopment)didnotfollowanormaldistribution.The Juliandaysfora)appearanceofbuds,b)startandendofmaleflowering,c)startoffemale floweringandsuccessfulpollination(appearanceofswollenovaries)andd)startandendof seedmaturationateachsitewasregistered.Inaddition,thedifferenceinlengthoftheperiod ofpollenproductionandthetotalreproductionperiod,calculatedasthedifferencebetween theJuliandaysrecordedfortwophenologicalstages,wasanalyzed. Results Commongardenexperiment Theresultsrevealedaclearnorth-southgradientforfloweringtimeofA.artemisiifolia(Figs2 and3).Significantdifferencesinthetimerequiredtotriggerthemalefloweringandthefemale floweringwereobservedbetweenpopulationswithinbothgardensandalsobetweenthegar- dens,eveniftherewerefewerpopulationsproducingfemaleflowersinUppsalathaninOsijek (Table3,Figs2and3,S1Appendix).PlantsgrowninUppsalaneededsignificantlymoretime toproducethefirstmaleandfemaleflowerthanplantsfromthesamepopulationsgrownin Osijek(Figs2and3).Finalplantheightdidnothaveasignificanteffectoneitherfirstmaleor femaleflower,hencethevariablewasexcludedintheANCOVAandonlysignificanteffects werestatedinthefinalmodel.Early-floweringandlate-floweringpopulationswereidentified ascorrespondingtothepopulationsfromtheextremenorthernandsouthernlatitudesofour sampling(North:Germany51.4˚N;South:USA-Kt38.0˚N).InOsijek(Croatia)alltheindivid- uals,grownundergoodphoto-thermicconditions(accordingtoDeenandcolleagues[34]), producedmaleandfemaleflowersbeforetheendofthecommongardenexperiment.Incon- trast,atthesitebeyondtherangelimit(Uppsala,Sweden),50%oftheindividualplantsfrom themostsouthernpopulationofoursampling(Lexington,Kentucky)failedtoproducemale flowersbeforeonsetoftheSwedishfrost.Intotal,approximatelyonefifthoftheplantsgrown inUppsala,representingfourpopulationsfromthesouthernpartoftheinvadedEuropean range(southernFrance,Italy,Bosnia&Herzegovina)andthetwoAmericanpopulations,did notproducefemaleflowers(S1Appendix). PlantsofdifferentpopulationsgrowninOsijekwereingeneralsignificantlytaller(differ- ence27.6cm,SE±3.4)thanplantsofthesamepopulationsgrowninUppsala(Table3,Fig4). PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 7/15 PhenologicalVariationinA.artemisiifolia Fig2.FirstmalefloweringofelevenAmbrosiaartemisiifoliapopulationsinareciprocalcommon gardenexperiment.GardenswerelocatedinUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek, Croatia(N45˚31´16”,E18˚40´54”).Meannumberofdaysfromstartofcommongardenexperimentuntil firstmaleflowerappearanceofeachpopulation.Latitudesrefertositesfromwhichseedswerecollected(for detailsofpopulationsandexactlatitudeinformationseeTable1). doi:10.1371/journal.pone.0166510.g002 Theeffectoftheoriginofthepopulationwasnotsignificantandrepresentedonly14%ofthe varianceofthefinalplantheight(geneticeffect“G”)whilethedifferencebetweenthetwogar- densitesexplained75%.Seedweightdidnothaveasignificanteffectonfinalplantheight, hencethevariablewasexcludedintheANCOVAandonlysignificanteffectswerestatedin thefinalmodel. Fig3.FirstfemalefloweringofelevenAmbrosiaartemisiifoliapopulationsinareciprocalcommon gardenexperiment.GardenswerelocatedinUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek, Croatia(N45˚31´16”,E18˚40´54”).Meannumberofdaysfromstartofcommongardenexperimentuntil firstfemaleflowerappearanceofeachpopulation.Latitudesrefertositesfromwhichseedswerecollected (fordetailsofpopulationsandexactlatitudeinformationseeTable1).Onepopulation(Lexington)inUppsala didnotproduceanyfemaleflowers. doi:10.1371/journal.pone.0166510.g003 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 8/15 PhenologicalVariationinA.artemisiifolia Table3. Analysisofcovarianceoflatitudeandcommongardenlocationonfloweringtimeandplantheight. Sourceofvariation Maleflower Femaleflowera Plantheight Fb P Fb P Fb P Commongarden 637.50 <0.0001 275.64 <0.0001 33.0 <0.0001 Latitude 101.20 <0.0001 65.16 <0.0001 CG*Latitude 23.16 0.0001 11.04 0.0040 Ambrosiaartemisiifoliaplantsfrom11populationsweregrowninreciprocalcommongardenexperimentsinUppsala,SwedenandinOsijek,Croatia.Inthe analysisofcovariancefirstmaleflower,firstfemaleflowerandfinalplantheightweredependentvariableswithoriginallatitudeofsampledpopulationsas theindependentcontinuousvariableandcommongardensiteastheindependentcategoricalvariable. aTheLexingtonpopulationsfailedtoproducefemaleflowerswhengrowninUppsala. bDegreesoffreedomfortheresidualis18,17and18formaleandfemaleflowerandplantheight,respectively. doi:10.1371/journal.pone.0166510.t003 Fieldstudy OneoftheGermanpopulationslocatedinthenorthernpartoftheinvadedEuropeanrange (Drebkau)wasalsousedinthecommongardenexperiment.Phenologicalrecordsfromsev- eralsitesconfirmeditsearly-floweringinfieldconditions(middleofJuly;Table2).Datesof theonsetandendingofallphenologicalstagesstudiedoccurredsignificantlyearlieratthesites in/aroundDrebkau(51˚39”N)thanatthesitesin/aroundBerlin(52˚30”N).However,nosig- nificantdifferencewasobservedforthelengthofthe“pollenproduction”stageandofthe “totalreproduction”stage(Table2)betweenthesetwoseparateGermanlocalities.Nosignifi- canttemporaldifferencewasfoundamongsiteslocatedinfieldsandsitessituatedalongroads withintheDrebkaulocalityforthestartofthereproductivestage,thestartandtheendofmale andfemaleflowering,orthestartandtheendofthefruitdevelopment(Table2). Fig4.PlantheightofelevenAmbrosiaartemisiifoliapopulationsinareciprocalcommongarden experiment.GardenswerelocatedinUppsala,Sweden(N59˚48´55”,E17˚38´47”)andinOsijek,Croatia (N45˚31´16”,E18˚40´54”).Latitudesrefertositesfromwhichseedswerecollected(fordetailsof populationsandexactlatitudeinformationseeTable1). doi:10.1371/journal.pone.0166510.g004 PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 9/15 PhenologicalVariationinA.artemisiifolia Discussion Photoperiodicresponsehasbeenproposedasoneofthemostimportantfactorslimitingthe Europeandistributionofinvasiveplants[12].Attemptstopredictthenorthwardrangeshiftof A.artemisiifoliahaveledtotheconclusionthattheextensionoftherangelimitistoalarge extentconstrainedbythephotoperiodrequirementforinductionofflowering(e.g.[1,4,43]). However,ourresultsindicatethatthephotoperiodic-thermalrequirementisatraitwitha largepotentialforlocaladaptation.Indeed,theresultsofthecommongardenexperiment showedthatA.artemisiifoliacanformmaleandfemaleflowersupto,atleast,latitude59˚N, withaclearnorth-southgradientinfloweringtime.Thelargedifferencesobservedinthecom- mongardenexperimentmakeitpossibletodifferentiateearlyandlatefloweringpopulations and,thus,toestimatethepotentialthreatofcommonragweedpopulationstoFennoScandina- vianpublichealthandagriculture(Figs2and3). ThepopulationrepresentingthelargestpotentialforestablishmentinFennoScandinavia,if introduced,isthemostearly-floweringpopulation,originatingfromGermany.Incontrast, thepopulationfromthesouthernpartofthenativerange(Kentucky,USA)constitutesanegli- gibleriskforinvasionatnorthEuropeanlatitudes.TheGermanpopulationisobviouslywell adaptedtophotoperiodic-thermalconditionsatlatitude51˚N,andourcommongardenexper- imentindicatesthatitisalreadypre-adaptedforreproductioninnorthernEuropeuptoat leastlatitude59˚N.Thus,thenichelimitoftheGermanpopulationseemstobebeyondits presentrangelimit. IthasbeenshownthatthelargeecologicalamplitudeofA.artemisiifolia,togetherwith unoccupiedniches,isafactorbehindsuccessfulinvasioninFrance[22].However,ifaspecies hassimilarecologicalandclimaticnichesininvasiveandnativepopulations,ithasbeenseen thatinvasionstypicallyfailwithoutpre-adaptation.Undersuchcircumstances,therateof migrationofsuitableallelesalongtheselectivegradientbecomescrucialforadaptation[38]. Further,rangeexpansionofaspeciesisnotonlydependentonsuitableintraspecificecological variation,availablenichespaceandpre-adaptedalleles,butalsoonsuccessfulestablishmentof locallyadaptedalleles.Thelatterisinturninfluencedbygeneflow,selectionpressuresand mutationrates[38].InFennoScandinavia,theselectionpressureonreproductionisrather strong,asonlyindividualswithseedssetbeforethefirstfrostwillcontributetonextgeneration. Suchselectionmightcounteractswampingofthelocallyadaptedgenepoolbypollenfromcen- tralareasofthedistributionrange[38].SeveralpopulationgeneticstudiesindicatethatA.arte- misiifoliainEuropehasahighgeneflow[27–29]andpollenfromthecentraldistribution rangehasbeenfoundinSweden[44,45].Inaddition,seedsaredispersedbyimportationofA. artemisiifoliainfectedbirdseed.Hence,fromthisperspective,thefutureestablishmentofviable populationsofA.artemisiifoliainFennoScandinaviaisarealisticscenariowithstrongselection pressureandtheprerequisitesformigrationofpre-adaptedalleles.Thisconclusionissup- portedbyresultsfromtheGermanfieldstudy.Despitelocaladaptationatbothlocalities,flow- eringoccurredsignificantlyearlierinDrebkauthaninBerlin,whichindicatesthatA. artemisiifoliahasbeenintroducedinnorthernGermanyonseveraloccasions. Toavoidexposingpeopleintheareatoallergenicpollen,individualmaleflowerheadswere cutatthefirstsignofpollendistributionattheSwedishcommongardensite,andthusitwas notpossibletorecordthedateofseedsetting.TheearlyfloweringoftheGermanpopulation atthenorthernsiteis,however,aclearindicationthatthispopulationispre-adaptedtoset seedsbeforefrostatnorthernlatitudes.Also,thedatesofmaleandfemalefloweringrecorded atthenortherncommongardensitecoincidedwellwithfieldobservationsoftheDrebkau populations.ThefieldobservationsatbothGermanlocalities(DrebkauandBerlin)indicate thataperiodof10–12weeksafteronsetoffemalefloweringisneededforseedstomature PLOSONE|DOI:10.1371/journal.pone.0166510 November15,2016 10/15

Description:
2 Technische Universität Berlin, Department of Ecology, Plant Ecology and Ecosystem Science, Berlin, Abstract. The invasive weed Ambrosia artemisiifolia (common ragweed) constitutes a great threat to cluded that evolutionary potential should be incorporated in the assessment of the invasiveness.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.