International Journal o f Molecular Sciences Review Phenolic Compounds in the Potato and Its Byproducts: An Overview HazalAkyol1,YleniaRiciputi2,EsraCapanoglu1,MariaFiorenzaCaboni2,3,* andVitoVerardo4,5 1 DepartmentofFoodEngineering,FacultyofChemicalandMetallurgicalEngineering, IstanbulTechnicalUniversity,Ayazag˘aCampus,Maslak,Istanbul34469,Turkey; [email protected](H.A.);[email protected](E.C.) 2 DepartmentofAgro-FoodSciencesandTechnologies,AlmaMaterStudiorum—UniversityofBologna, PiazzaGoidanich60,Cesena(FC)I-47521,Italy;[email protected] 3 Inter-DepartmentalCentreforAgri-FoodIndustrialResearch(CIRIAgroalimentare),UniversityofBologna, PiazzaGoidanich60,Cesena(FC)I-47521,Italy 4 DepartmentofChemistryandPhysics(AnalyticalChemistryArea)UniversityofAlmería, CarreteradeSacramentos/nAlmeríaE-04120,Spain;[email protected] 5 ResearchCentreforAgriculturalandFoodBiotechnology(BITAL), AgrifoodCampusofInternationalExcellence,ceiA3,UniversityofAlmería, CarreteradeSacramentos/nAlmeríaE-04120,Spain * Correspondence:[email protected];Tel.:+39-0547-338-117 AcademicEditor:AnaMariaGómezCaravaca Received:28April2016;Accepted:24May2016;Published:27May2016 Abstract: Thepotato(SolanumtuberosumL.)isatuberthatislargelyusedforfoodandisasource ofdifferentbioactivecompoundssuchasstarch,dietaryfiber,aminoacids,minerals,vitamins,and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compoundsexhibitedhealth-promotingeffectsinhumans. However,theuseofthepotatointhefood industrysubmitsthisvegetabletodifferentprocessesthatcanalterthephenoliccontent. Moreover, manyofthesecompoundswithhighbioactivityarelocatedinthepotato’sskin,andsoareeliminated aswaste. Inthisreviewthemostrecentarticlesdealingwithphenoliccompoundsinthepotatoand potatobyproducts,alongwiththeeffectsofharvesting,post-harvest,andtechnologicalprocesses, havebeenreviewed. Briefly,thephenoliccomposition,mainextraction,anddeterminationmethods have been described. In addition, the “alternative” food uses and healthy properties of potato phenoliccompoundshavebeenaddressed. Keywords: Solanumtuberosum;potato;phenoliccompounds;healtheffects 1. Introduction Thepotato(Solanumtuberosum)wasknownoutsidetheAndesfourcenturiesagoandhasturned intoanecessarycomponentofmuchoftheworld’scuisine. Followingrice,wheat,andmaize,itis thefourthlargestfoodcropintheworldandisveryimportantforhumanconsumption[1]. Itwas estimatedthatthetotalworldpotatoproductionwas368milliontonsin2013;ofthat,112milliontons wereproducedintheEuropeanUnion[2]. Thisstaplecropcontainsessentialaminoacids,vitamins,andminerals,andisthusreportedto playasignificantroleinhumannutrition[3]. Manyvarietiesofpotatoesoffernutritionalquantitiesof ascorbicacid(upto42mg/100g),potassium(upto693.8mg/100g),dietaryfiber(upto3.3%),and otherhealthybioactivecomponents,withlesseramountsofprotein(0.85%–4.2%)[4]. Inparticular, “resistant starch,” the dietary fiber that escapes digestion and absorption in the small intestine, is Int.J.Mol.Sci.2016,17,835;doi:10.3390/ijms17060835 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2016,17, 835 2of19 fermentedbymicroorganismsinthelargebowel[5]. Moreover,inastudyithasbeenfoundthatboiled potatoesshowedthehighestSI(satietyindex)scoreoutof38foodsgroupedintosixfoodclasses(fruit, bakeryproducts,snackfoods,carbohydrate-richfoods,protein-richfoods,andbreakfastcereals)[6]. Inadditiontothat,thepotatoisanidealsourceofantioxidantsforthehumandiet[7]. Despitethe growinginterest,littleinformationhasbeenreportedabouttheimportantphytochemicalspresentin thiswidelyconsumedvegetableanditsprocessingbyproducts[8]. Theworldwideutilizationofpotatoesismovingfromfreshtoprocessedpotatoproductssuch asmashedandcannedpotatoes, fries, chips, andreadymeals[9,10]. Thisindustrialprocessingof potatoescreateshugeamountsofpeelasabyproductandthisgeneratesdisposal, sanitation, and environmentalproblemslikeallotherindustrialwaste. Also,becauseoflegalrestrictions,thedisposal ofthiswasteposesachallenge[11,12].However,potatopeelsareagreatsourceofphenoliccompounds becausealmost50%ofphenolicsarelocatedinthepeelandadjoiningtissues[8,13]. Ontheotherhand,thereisgreatinterestintheutilizationofnaturalantioxidantsasfunctional ingredients in food formulation because they guarantee the cell constituents’ protection against oxidativedamageandlimittheriskofdegenerativediseaseslinkedtooxidativestress[14,15]. For thesereasons,theuseofthesebyproductsfortheproductionoffoodingredientswithhighnutritional valueincreasedand,consequently,theirrecoverymaybeeconomicallyattractive[11,16]. Ifaglobalhealthgoalistoexpandtheamountsofphytonutrientsconsumedinthediet,avaluable approachcouldbetoimprovethenutritionalcontentofthephytochemicalsinthemostconsumed crops, and/orusethebioactivecompoundsthatarecontainedinvegetablewaste[17]. Theuseof potato peel is underscored as a source of natural antioxidants by many previous studies [9,18,19]. Consequently,thesebioactivecompoundscanbeaddedinfunctionalfoodorcanbeusedtogenerate nutraceuticalsbyvirtueoftheirpotentialhealthbenefits. 2. PhenolicCompoundsinPotatoes Phenoliccompoundsaresecondarymetabolitesproducedinplantsthathaveacommonstructure basedonanaromaticringwithoneormorehydroxylsubstituents[20–22]. Thesecompoundscan bedividedaccordingtotheirchemicalstructureintoflavonoids,phenolicacids,tannins,stilbenes, coumarins,andlignans[23,24]. Theirpresenceaffectsthesensoryqualitiesofplant-derivedprocessed foods,includingtaste,color,andtexture[25–27]. Potatoesaregoodsourcesofphenoliccompounds,withtotalphenoliccontenthigherthanother widespreadfruitsandvegetableslikecarrots,onions,ortomatoesbecauseoftheirhighconsumption rates[28]. Thegermplasmofthepotatoshowsastrikingvarietyintermsofthephenoliccompounds profileandcontent[29]. Thephenoliccompoundsarepresentinthepotatopeelandflesh;however, thepeelisreportedtohavethehighestamounts[30]. Phenoliccompoundspresentinpotatoesare phenolicacidsandflavonoidsincludingflavonols,flavanols,andanthocyanins[3]. 2.1. PhenolicAcids Thepredominantphenolicacidsinplantsaresubstitutedderivativesofhydroxybenzoicacidsand hydroxycinnamicacids. Caffeic,p-coumaric,andferulicacidsarethemostcommonhydroxycinnamic acidsandfrequentlyoccurinfoodsasesterswithquinicacidorsugars[31]; hydroxybenzoicacid derivativesaremainlypresentinfoodsintheglucosideforms,andp-hydroxybenzoic,vanillic,and protocatechuicacidsarethemostcommonforms[31–35]. Phenolic acids are the most abundant phenolic compounds in potatoes [9,36–38]. Among all these phenolic acids, chlorogenic acid, which is the ester of caffeic acid and quinic acid, has been considerablydescribedinpotatoes[12,13,18,39,40]. Itconstitutes90%ofthephenoliccompoundsin potatopeels[37,41]andexistsintheformofthreemainisomers,chlorogenicacid(5-O-caffeoylquinic acid),neochlorogenicacid(3-O-caffeoylquinicacid),andcryptochlorogenicacid(4-O-caffeoylquinic acid)[42]. Also,caffeicacidisquantifiedat25–72mg/100ginpotatoesbymanyresearchers[13,43–45]. Int.J.Mol.Sci.2016,17, 835 3of19 Otherphenolicacidssuchasferulicacid,gallicacid,andp-coumaricacidhavealsobeenquantified in potatoes, ranging from 0 to 5 mg/100 g dry weight [8,9,36,46]; also, syringic acid, vanillic acid, sinapicacid,andsalicylicacidarepresentinsmallquantities[3,9,31,38]. 2.2. Flavonoids Flavonoidsrepresentthemostcommongroupofplantphenoliccompoundsandtheirpresence influencestheflavorandcoloroffruitsandvegetables. Thesixsignificantsubclassesofflavonoidsare theflavones,flavonols,flavanones,flavan-3-ols,anthocyanidins,andisoflavones. Occasionallythey canbefoundasaglyconesbutmostflavonoidsareattachedtosugars(glycosides)[29]. Inpotatoes,oneofthemostabundantflavonoidsiscatechin,rangingbetween0and204mg/100g dryweight[36,47–50]. Flavonolslikequercetinandkaempferolrutinosearealsopresentinpotato tubers[3,7,42,51,52]. Someauthorshavealsoreportedthepresenceofrutin[3,7,42,53]. Flavonoidsweremorethan30mgper100gfreshweightinwhitefleshedpotatoesandthislevel isnearlydoubledinredandpurplefleshedpotatoesasaresultofanthocyanins[54]. Thecolorofred andpurplepotatoesisderivedfromanthocyanins[55]. Anthocyaninsareasub-classofpigmented flavonoids. Themostcommonanthocyanidins(thedeglycosylatedformsofanthocyanins)present inpotatoesaremalvidin,petunidin,delphinidin,andpeonidininpurpletubersandpelargonidinin redones[48,56]. Inadditiontothisanthocyanin,aglycones,cyanidin,andpetaninarealsofoundin potatoes[51,57]. Thelevelsofphenoliccompoundsinpotatoescanvarygreatly[29]dependingonthecolorand varietyofthepotatocultivars[43].Table1reviewstherangeofindividualphenoliccompoundcontents reportedintheliterature. Table1.Concentrationlevelsofthemainphenoliccompoundsinpotatoes. PhenolicClasses PhenolicCompounds Range(mg/100gDryExtract) References 27.6 [43] 100.0–220.0 [53] 17.4–1274.6 [51] 47.0–283.0 [49] chlorogenicacid 17.3–1468.1 [36] 21.0–40.0 [58] 60.0–292.0 [17] 0.2–2193.0 [3] 0.1–0.2 [53] 5.0–50.0 [49] caffeicacid 1.1–172.4 [36] 2.0–6.9 [58] 0–41.6 [3] 0–9.2 [49] coumaricacid Phenolicacids 0–1.6 [36] protocatechuicacid 0–7.6 [36] vanillicacid 0–22.4 [36] 0.6–9.0 [49] ferulicacid 0–3.9 [36] 0–1.4 [3] 16.0–27.0 [53] 3.1–163.3 [36] cryptochlorogenicacid 8.0–59.0 [17] 0.1–168.3 [3] 2.9–9.9 [53] 49.2–91.2 [36] neochlorogenicacid 0.5–1.5 [58] 3.0–11.0 [17] 0.1–87.6 [3] Int.J.Mol.Sci.2016,17, 835 4of19 Table1.Cont. PhenolicClasses PhenolicCompounds Range(mg/100gDryExtract) References gallicacid 0–1.0 [36] Phenolicacids p-hydroxybenzoicacid 0–7.8 [36] 0.5–2.6 [53] rutin 0.6–1.3 [17] Flavonols 0–12.2 [3] kaempferolrutinose 0.5–1.7 [17] quercetin-3-o-glu-rut 2.5 [53] 43.0–204.0 [49] Flavan-3-ols catechin 0–1.5 [36] 0–1.4 [3] 1.4–163.3 [51] 87.0 [59] Anthocyanidins anthocyanins 953.8–1630.3 [60] 21.0–109.0 [56] PhenolicClasses PhenolicCompounds Range(mg/100gFreshProduct) References 1.4–12.1 [39] 0.9–27.0 [31] chlorogenicacid 0.4–34.0 [41] 0.4–30.1 [61] 8.7–28.6 [38] 0–1.2 [41] caffeicacid 0.6–10.2 [61] 5.2–12.2 [38] coumaricacid 0.8–6.5 [38] 0.2–0.5 [31] Phenolicacids protocatechuicacid 6.1–10.3 [62] 1.9–2.0 [38] vanillicacid 0.6 [31] 0.1 [31] ferulicacid 0–0.1 [61] 1.5–4.9 [38] 0.2–0.5 [31] syringicacid 0.9–1.7 [38] p-coumaricacid 0.2–3.0 [31] 0.3–0.9 [31] sinapicacid 0–0.4 [61] gallicacid 0.5–0.6 [38] 3. EffectofHarvesting,Post-Harvest,andTechnologicalProcessesonPhenolicContent The amount of phenolic compounds and their stability are dependent on several factors such as agrotechnical processes, climatic conditions, ripeness during harvest, and post-harvest manipulations[63],aswellasgenotype,storageconditionsafterharvest,andprocessingandcooking methods[24,48,64–68]. Manypolyphenols,particularlyphenolicacids,aredirectlyimplicatedinthe responseofplantstodifferenttypesofstressessuchasthermalstress,bioticstress,andinjuries,and intheirtolerancetoexposuretoUVraysandozone[44]. Thesephytochemicalsshowantimicrobial propertiesbyraisingconcentrationsafterpathogeninfectionandcontributetohealingbylignification ofdamagedzones[69]. Thesebioticandabioticfactorscanaffectpotatoesandmaycauseaseriouseconomicproblem in countries where potatoes are cultivated over large areas [1]. In the last decade, the effect of environmental conditions such as location on the phenolic content of potatoes has been widely Int.J.Mol.Sci.2016,17, 835 5of19 studied [50,60,70,71]. During tuber development, environmental conditions may influence the phenylpropanoidpathwayandthepolyphenoliccompositioninpotatotubers[60]. Higherchlorogenic acid levels were found in warm locations with regular periods of drought, in comparison with high-altitudelocationsthatarebeneficialforpotatocultivation. Organicallygrownpotatoesreported significantly higher levels of chlorogenic acids compared to conventional treatments [72]. On the otherhand,thesestudiesdemonstratedthatthegenotypeofapotatohasmoreeffectonthephenolic contentthanthelocation[50,70]. Navarreetal.[52]determinedthephenolicandantioxidantcapacity ofdifferentpotatogenotypes. Although wild species or primitive germplasm reported the highest phenolic content, commercial/industrial cultivars are preferred because they have the agronomic characteristics to beeconomicallypracticalandcouldeasilyandmorecommonlybeplanted. Moreover,itisknownthat themostnoteworthyphenolicgenotypeswerecolored-fleshpotatoes;however,consumerchoiceisfor white-fleshpotatoes,sotheyarethemostproduced. Thisencouragesnewharvestand/orpost-harvest treatmentsinordertoimprovethephenoliccontent. Forimprovingthephenoliccontentofpotatoes,someimplementationswereusedbeforeand some after harvesting. Ngadze et al. [44] reported that calcium contributes to increase caffeic and chlorogenicacidinpotatoes. Furthermore,calciumsoilamendmentalsoimprovedtheconcentration ofpolyphenoloxidase(PPO)andperoxidase(POD)enzymes,whichareinvolvedinthephenolicsand totalsolublephenolsmetabolism. SeveralauthorsdefinedtheroleofCa2+ inphenolicmetabolism; Castañeda & Pérez [73] found that foliar application of 10 mM of CaCl increased phenylalanine 2 activity and resulted in the accumulation of phenols [44]. Other authors used a curing treatment (10daysat16˝C)immediatelyafterharvest,obtainingahighphenoliccontentandPPOactivityin potatoflesh;moreover,theyenhancedthefresh-cutcolorandthesensoryqualitiesaftercutting[69]. Afterharvest,storageconditionsalsoplayanimportantroleinphenoliccontents. WhileSingh& Saldaña[38]indicatedthatphenoliccompoundsmaydegradeduringstorageconditions,manyother studiesreportedthatcoldstorage(„4˝C)ofpotatoescausedanincreaseinthephenoliccontentorkept itconstant[40,61,68]. However,asdescribedbyAndreetal.[74],highstoragetemperatures(10˝C) decreasedthephenoliccontentsorhadnoeffect. Ontheotherhand,Külenetal.[40]demonstrated thatstoragetimeisalsoveryimportantforphenoliccompounds. Theyfoundthatthetotalphenolic content(TPC)ofpotatoeswashighatharvest,declinedaftertwomonthsofcoldstorage,increased afterfourmonthsofcoldstorage,andfinallyincreasedtoalmostharvestlevelaftersevenmonthsof coldstorage. TheresultsofBlessingtonetal.[47]wereinaccordancewiththeirdata,showingthatTPC decreasedslightlyafterfourmonthsofcoldstorageinthe‘RussetBurbank‘varietyduringcoldstorage. Furtherdetailedstudiesarerequiredtoclarifytheeffectsofcoldstorageonindividualpotatoclones. Inadditiontotheharvestandpost-harvestcondition,cookingprocessesshouldbeconsidered aswell. Thechemical,physical,andenzymemodificationsthatwereproducedduringcookingwill changetheantioxidantcapacityanddigestibilityofpotatoes,whichlaterinfluencesthebioavailability of phytochemicals to the postprandial glycemic response of the human body [75]. In a study of Mulinaccietal.[76],thecontentsofphenolicacids,glycoalkaloids,andanthocyaninsaremeasuredin freshandalsoinprocessed(boilingandmicrowavecooking)potatoesfromthreecultivars(Vitelotte Noire,HighlandBurgundyRedwithpigmentedflesh,andKennebecwithwhitepulp). Differentfrom theliteraturedata,itisindicatedthattheheatingtreatmentdidnotcauseanychangesinphenolic acidscontentexceptforasmalldecreaseinanthocyanins. Also,Perlaetal.[54]studiedsomepotato cookingmethodssuchasboiling,baking,andmicrowavingonphenoliccompoundsinfivecultivars withdifferentskinandfleshcolorsaftersixmonthsofstorage. Thelevelofphenoliccompoundswas reducedbythethreecookingmethodsbutboilingminimizedtheselosses. Briefly,thecultivar,stageofmaturityofthetuber,cookingtemperatureandtime,andpresenceof waterormoistureduringcookingallstronglyaffectthelossofphenoliccompoundsinpotatoes. Int.J.Mol.Sci.2016,17, 835 6of19 4. ExtractionandDeterminationMethodsforPhenolicsinPotato During the extraction of antioxidant compounds from plant materials, the selection of the appropriateextractionconditionsrepresentsacrucialpoint[18]. Duringtheextraction,thedistribution ofphenoliccompoundsinextractionsolventsshouldbemadetoreachtheappropriatedistribution coefficient[75].Toextractphenoliccompoundsfrompotatoes,themostcommonmethodissolid–liquid extraction [18,27,76]. Commonly, the extraction solvents used for potato phenolics are methanol, ethanol,andaqueousalcoholmixtures[46,77–79]. However,thesetechniquesrequirealongextraction timeandresultinlowyields[38]. Therefore,othermodernextractionandisolationtechniqueshave beenappliedasalternativetechniquesforpotatophenolicextraction. Ultrasound-assistedextraction (UAE),microwave-assistedextraction(MAE),andpressurizedliquidextraction(PLE)areafewof thesemoderntechniques[45,62,80–82](Table2). Table2. Overviewoftheextractionsystemsandanalyticalmethodsusedforphenoliccompounds determinationinpotatoes. Analytical ExtractionSystem PotatoCultivar PhenolicCompoundsDescribed References Technique Chlorogenicacid,caffeicacid, HPLC-DAD ‘Kufrichandromukhi’ [43] gallicacid 9italiancultivars(‘Agata‘, ‘Primura‘,‘Arinda‘,‘Merit‘, HPLCUV-Vis Chlorogenicacid [39] ‘Marabel‘,‘Jelli‘,‘Frinka‘, ‘Sponta‘,‘Agria‘) Neochlorogenicacid,chlorogenic acid,caffeicacid, ‘RangerRusset’ quercetin-3-o-glu-rut,rutin, HPLC-MS [53] ‘NorkotahRusset’ kaempferol-3-o-rutinoside, cryptochlorogenicacid, quinicacid Chlorogenicacid,neochlorogenic HPLC-DAD, acid,cryptochlorogenicacid, HPLC-MS, 23NativeAndeancultivars caffeicacid,protocatechuicacid, [51] HPLC-FLD vanillicacid,ferulicacid,petanin, rutin,kaempferol-3-o-rutinoside Solid-liquid extraction 320specialty Chlorogenicacid,caffeicacid, HPLC-DAD [40] potatogenotypes gallicacid,catechin Chlorogenicacid,ferulicacid, Notcited ‘RussetBurbank’ vanillicacid,caffeicacid, [83] benzoicacid Chlorogenicacid,caffeicacid, ‘Jasim’,‘Atlantic’,‘Jawan’, HPLC-MS ferulicacid,p-coumaricacid, [41] ‘Superior’,‘Jopung’ trans-cinnamicacid ‘Nicola’,‘SieglindeF’, Chlorogenicacid,caffeicacid, HPLC-DAD [49] ‘Isci4052’,‘Isci67’ ferulicacid,catechin Gallicacid,caffeicacid, HPLC Notcited(Indiancultivar) chlorogenicacid, [84] protocatechuicacid Neochlorogenicacid, cryptochlorogenicacid, 13native HPLC-DAD chlorogenicacid, [60] Andeangenotypes kaempferol-3-o-rutinoside, quercetin HPLC:HighPerformanceLiquidChromatography;UPLC:UltraPerformanceLiquidChromatography;DAD: DiodeArrayDetector;UV:Ultravioletdetector;MS:massspectrometer. Int.J.Mol.Sci.2016,17, 835 7of19 Table2.Cont. Analytical ExtractionSystem PotatoCultivar PhenolicCompoundsDescribed References Technique Gallicacid,neochlorogenicacid, protocatechuicacid,catechin, cryptochlorogenicacid, HPLC ‘Karlena’ [36] chlorogenicacid,vanillicacid, caffeicacid,ferulicacid, p-coumaricacid ‘Siecle’,‘PurpleMajesty’, HPLCUV-Vis ‘Dakotapearl’,‘FL1533’, Chlorogenicacid,caffeicacid [13] ‘Vivaldi’,‘Yukongold’ ‘Goldrosh’,‘Nordonna’, ‘DakotaPearl’,‘Norkotah’, Chlorogenicacid,caffeicacid, HPLC-DAD, ‘RedNordland’,‘Sangre’, gallicacid,ferulicacid,catechin, [46] HPLC-MS ‘Viking’,‘Dark p-coumaricacid,o-coumaricacid RedNordland’ Chlorogenicacid,caffeicacid, HPLC-DAD 8cultivars epicatechin,p-coumaricacid, [47] vanillicacid,quercetin Protocatechuicacid,gentisicacid, gallicacid,chlorogenicacid, HPLC-DAD ‘Sava’,‘Bintje’ [19] salicylicacid,caffeicacid,ferulic acid,p-coumaricacid Chlorogenicacid,neochlorogenic ‘Bintje’,‘Piccolo’, HPLC-DAD-MS acid,cryptochlorogenicacid, [17] ‘PurpleMajesty’ kaempferolrutinose,rutin Chlorogenicacid,caffeicacid, HPLC-DAD/ 16cultivars 3-o-caffeoylquinicacid, [77] APCI-MS 1-o-caffeoylquinicacid Solid-liquid extraction 5-o-caffeoylquinicacid, 4-o-caffeoylquinicacid, HPLC-DAD-MS 13Italiancultivars [66] 3-o-caffeoylquinicacid,ferulic acid,anthocyanins ‘PurpleMajesty’,‘Yukon Chlorogenicacid,caffeicacid, UPLC-MS [61] gold’,‘Atlantic’ ferulicacid,sinapicacid Chlorogenicacid,rutin, HPLC-DAD-MS 50cultivars [52] kaempferol-3-rutinose Chlorogenicacid,neochlorogenic acid,cryptochlorogenicacid, ‘Vitelotte’,‘Luminella’, caffeicacid,ferulicacid, UPLC-DAD [3] ‘Charlotte’,‘Bintje’ p-coumaricacid,syringicacid, vanillicacid,catechin,rutin, kaempferol-3-o-rutinoside Gallicacid,protocatechuicacid, gentisicacid,chlorogenicacid, HPLC-DAD ‘Sava’ vanillicacid,syringicacid,caffeic [9] acid,salicylicacid,p-coumaric acid,ferulicacid Chlorogenicacid,neochlorogenic acid,cryptochlorogenicacid, coumaricacid,genistin, HPLC-DAD Notcited [85] quercetin-3-β-D-galactoside, naringin,naringenin,luteolin, genistein,kaempferol,flavan-3-ol chlorogenicacid,quinicacid, UPLC-MS Notcited [86] caffeicacid,methylcaffeate HPLC:HighPerformanceLiquidChromatography;UPLC:UltraPerformanceLiquidChromatography;DAD: DiodeArrayDetector;UV:Ultravioletdetector;MS:massspectrometer. Int.J.Mol.Sci.2016,17, 835 8of19 Table2.Cont. Analytical ExtractionSystem PotatoCultivar PhenolicCompoundsDescribed References Technique Chlorogenicacid,neochlorogenic HPLC-DAD-MS 15Colombiancultivars acid,cryptochlorogenicacid, [76] caffeicacid Chlorogenicacid,ferulicacid, Solid-liquid HPLCUV ‘Agria’ gallicacid [18] extraction Chlorogenicacid,caffeicacid, ferulicacid,coumaricacid, ‘Valfi’,‘BlaueElise’,‘Bore HPLCUV cryptochlorogenicacid, [27] Valley’,‘BlueCango’ neochlorogenicacid,p-coumaric acid Chlorogenicacid,caffeicacid, ‘Nicola’,‘Timo’,‘Siikli’, HPLC-DAD ferulicacid,sinapicacid,vanillic [31] ‘Rosamund’,‘VanGogh’ acid,syringicacid Protocatechuicacid,chlorogenic HPLC-DAD ‘Agria’ acid,neochlorogenicacid, [62] cryptochlorogenicacid Chlorogenicacid, HPLC-DAD 20potatocultivars petunidin-3-glucosidechloride, [81] pelargonidin-3-glucopyranoside ‘Purple’,‘Innovator’, Chlorogenicacid,caffeicacid, HPLC-MS [8] ‘Russet’,‘Yellow’ p-coumaricacid,ferulicacid Chlorogenicacid,caffeicacid, Ultrasound-assisted HPLC-DAD ‘Penta’,‘Marcy’ gallicacid,p-coumaricacid, [15] extraction ferulicacid Chlorogenicacid,caffeic, 4-hydroxybenzoic,p-coumaric, HPLC-DAD ‘Diamond’ [87] andtrans-o-hydroxycinnamic acids Chlorogenicacid,caffeicacid, HPLC-DAD-MS ‘BlueBell’,‘Melody’ quinicacid,ferulicacid, [88] cryptochlorogenicacid,rutin Chlorogenicacid,caffeicacid, HPLC-MS ‘Russet’ [42] neochlorogenicacid RP-HPLC Chlorogenicacid,caffeicacid, ‘BP1’ [44] UV-DAD ferulicacid Gallicacid,protocatechuicacid, HPLC-DAD ‘Netherlands#7’ [69] chlorogenicacid Chlorogenicacid,caffeicacid, gallicacid,protocatechuicacid, HPLC-UV ‘Red’ [38] syringicacid,ferulicacid, coumaricacid Microwave-assisted extraction Chlorogenicacid,caffeicacid, neochlorogenicacid, HPLC-DAD ‘Calwhite’ [82] cryptochlorogenicacid,ferulic acid,p-coumaricacid Pressurizedliquid HPLC-DAD ‘LadyClaire’ Caffeicacid [45] extraction(PLE)+ solid-liquid HPLC-UV ‘Red’ Gallic,chlorogenicand [80] extraction syringicacid HPLC:HighPerformanceLiquidChromatography;UPLC:UltraPerformanceLiquidChromatography;DAD: DiodeArrayDetector;UV:Ultravioletdetector;MS:massspectrometer. Sonicationorultrasound-assistedextraction(UAE)isasimpleandefficientgreentechnologyfor theextractionofphenoliccompoundsthatcouldbeusedasanalternativetoconventionalshaking andwarmingsteps. Sonicationpermitsagreaterpenetrationofthesolventintothesamplematrix, Int.J.Mol.Sci.2016,17, 835 9of19 increasingthecontactsurfaceareabetweenthesolidandliquidphase;asaresult,thesolutequickly diffusesfromthesolidphaseintothesolvent,improvingtheextractionyield[55,89]. Also,UAEcan providethepossibilityforimprovedextractionofheat-sensitivebioactivesandfoodcomponentsat lowerprocessingtemperatures[90]. Theuseofmicrowave-assisted(MAE)extractionforfoodbioactiveshasincreasedsignificantlyin recentyears[82,91–93]. InMAE,thedirecteffectofmicrowavesonmoleculesbyionicconductionand dipolerotationpermitsanincreaseoftemperature,andbecauseofthatahighrecoveryofbioactive compounds[94]. MAEisafast,selective,andenergy-savingmethodandrequiresloweramountsof solventswhencomparedtoconventionalheatingmethods[82,95]. The pressurized liquid extraction (PLE) of phenolics has also been recommended as a green extractiontechniqueforantioxidantsinpotatopeel[38,45]. Thistechnologyuseshighpressuresto maintainwaterattemperaturesbetween100and374˝C;however,itrequirescomplexandhigh-cost equipment in large-scale industrial extractions [82]. Nevertheless, the use of high temperatures improvedthemasstransferandextractionrates,thusPLEgenerallyrequiresshorterextractiontimes andalowerconsumptionoforganicsolventsthanconventionaltechniques[45,96]. Afterextraction,eventhoughtheanalysisofphenoliccompoundsisverychallengingduetothe extensivediversityandreactivityofthesecompounds,novelseparationanddetectionmethods,suchas hyphenatedtechniquesofhigh-performanceliquidchromatography(HPLC)withmassspectrometry (MS),ultraviolet-visiblelight(UV-Vis),ornuclearmagneticresonance(NMR)spectroscopycanbe usedsuccessfully[87,97]. Forthedeterminationoftotalphenoliccompoundsinthepotatotuberand peel,themostcommonlyusedmethodistheFolin-Ciocalteumethod[70,74,98]. Ontheotherhand, amongallthesemethodsHPLCisthemostfrequentlyusedfortheidentificationofindividualphenolic compoundspresentinthepotato[13,18,31,38,80]. Thisanalyticaltechniqueacquiresahighdegreeof versatilitynotfoundinotherchromatographicsystemsandallowsforseparatingawidevarietyof chemicalmixtures[52]. 5. UseofPotatoPeelExtractasanAntioxidant Inthelastdecade,therehasbeenincreasingattentiongiventonewsourcesofnaturalantioxidant phytochemicalsasaresultoftheirpotentialhealthbenefits,inadditiontotheirfunctionalproperties intraditionallycommercializedproductssuchaspreservingcolorandflavorandhenceimproving shelflife[99–101]. Lipidoxidationisoneofthemostimportantcausesoffoodqualitydeterioration;itgenerates offodorsandoffflavors,decreasesshelflife,alterstextureandcolor,anddecreasesthenutritional valueoffood[102]. Countlessmethodshavebeenintroducedtocontroltherateandextentoflipid oxidationinfoods,buttheadditionofantioxidantsisoneofthemosteffective. Antioxidantshave becomeacrucialgroupoffoodadditivesduetotheirabilitytoextendtheshelflifeoffoodswithout anyadverseeffectontheirsensoryornutritionalqualities[32]. Generallysyntheticantioxidantssuch asbutylatedhydroxytoluene(BHT)andbutylatedhydroxyanisole(BHA)areusedtocontroloxidation, but these synthetic antioxidants are known to have carcinogenic and toxic effects on humans [16]. Therefore,theimportanceofreplacingsyntheticantioxidantswithnaturalingredientshasincreased significantly[19]. Ontheotherhand,byproductsoffoodprocessingarealow-costrawmaterialfortheextraction ofhealthycompoundssuchasdietaryfiber,naturalantioxidants,andnaturalfoodadditives[103]. Also,fruitandvegetablewasteandbyproductsarediscardedfrequentlyatacosttothemanufacturer. Hence, useofthewasteasasourceofpolyphenolsmaybeofnoticeableeconomicbenefittofood processors[101,104]. Inadditiontothis,sincetheconcentrationofphenoliccompoundsishigherin thepeelthaninthepotatotuber,researchersgenerallyusedpeelsinsteadofusingthewholepotatofor naturalfoodadditives[18,19,43]. Anumberofstudiesinvestigatedtheantioxidanteffectsofpotatopolyphenols(Table3). Most ofthemsearchedfortheeffectondifferentoils[16,19,87]. KoduvayurHabeebullahetal.[16]used Int.J.Mol.Sci.2016,17, 835 10of19 potatopeelextractforfishoilandoil-in-wateremulsionsandtheirresultsshowedthat‘Sava‘variety potatopeelextractishighlyefficientatreducinglipidperoxidation. Inanotherstudyperformedby Amadoetal.[18],ethanolicextractofpotatopeelwastewasusedtoevaluatetheabilitytolimitoil oxidationand,accordingtotheresults,extracts(obtainedbyextractionwithamediumorhighethanol concentration)wereabletostabilizesoybeanoilunderacceleratedoxidationconditions,minimizing peroxide(PV),anisidine(AV),andtotoxvalues(TV)athightemperature. Table3.Somematerialsinwhichpotatopeelswereusedasanantioxidantingredient. Food PotatoType Criteria References PotatoPeels(Solanum ProcessedLambMeat tuberosumcv.‘Kufri TBARSandcarbonylcontent [43] chandramukhi‘) Potatopeels(Solanum Peroxidevalue,anisidinevalue, Fish-RapeseedOilMixture tuberosumcv.‘Sava‘ tocopherolconcentration,and [19] andinOil-in-WaterEmulsions and‘Bintje‘) sensoryevaluation Potatopeels(Solanum Soybeanoil,sunfloweroil Peroxidevalues,p-anisidine [16] tuberosumcv.‘Diamond‘) Peroxidevalue,volatiles, carbonylcompounds,and Mincedhorsemackerel PotatoPeels(Solanum protectedagainstthelossof [9] (Trachurustrachurus) tuberosum‘Sava‘variety a-tocopherolandtryptophan andtyrosineresidues Potatopeelsandtubers GroundSalmon (‘Purple‘,‘Innovator‘, TBARS [8] ‘Russet‘and‘Yellow‘) Bothprimary(hydroperoxides) Potatopeels(Solanum Sunfloweroil andsecondaryoxidation [87] tuberosumcv.‘Diamond‘) products Peroxide,totoxand Soybeanoil Potatopeel(Agria) [18] p-anisidinevalues TBARS,Thiobarbituricacidreactivesubstances. Therearesomestudiesthatcomparetheantioxidantactivityofpotatopeelextract(PPE)with commercialantioxidants. Kanattetal.[43]foundthattheantioxidantactivityofPPEiscomparableto butylatedhydroxytoluene(BHT).Also,Mohdalyetal.[87]estimatedtheantioxidanteffectofpotato peelbymeasuringbothprimary(hydroperoxides)andsecondaryoxidationproducts,andcomparing them with sesame cakes and sugar beet pulp in terms of the effect on sunflower oil. The results showedthatpotatopeelsdisplayedmoreantioxidativeeffectthansesamecakeandsugarbeetpulp, performingaswellassyntheticantioxidants(BHTandBHA).Albishietal.[8]alsofoundthatRusset potatopeelwasmoreeffectiveininhibitingtheformationofTBARSthanBHA. Someresearchersusedpotatopeelstolimitthelipidoxidationinmeat[8,9,43]. Kanattetal.[43] addedpotatopeelextracttomeatbeforeirradiation;theextractwasabletoretardlipidperoxidation withoutaffectingitsflavor/aroma,therebyimprovingitsstoragequality. Inastudyperformedby Habeebullah et al. [9], potato peel was used in minced mackerel, a fatty fish particularly high in n-3PUFA,asanaturalantioxidantsourceforretardinglipidandproteinoxidation[105]. Theresults suggest that ethanol extracts of potato peel can be used as a natural additive to prevent lipid and protein oxidation in chilled storage. Albishi et al. [8] also indicated that potato peel extracts were efficientininhibitingtheoxidationofcookedsalmon;infact,thecontrolsamplesshowedhighTBARS values after seven days of storage. On the other hand, more studies are needed to support this hypothesisandextendtheutilizationoftheseextractsinfoods(suchasmeatandfishproducts)where acomplexmixtureofproteins,lipids,pro-oxidants,andendogenousantioxidantsarepresent.
Description: