ebook img

Phenolic Compounds in the Potato and Its Byproducts PDF

19 Pages·2016·0.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phenolic Compounds in the Potato and Its Byproducts

International Journal o f Molecular Sciences Review Phenolic Compounds in the Potato and Its Byproducts: An Overview HazalAkyol1,YleniaRiciputi2,EsraCapanoglu1,MariaFiorenzaCaboni2,3,* andVitoVerardo4,5 1 DepartmentofFoodEngineering,FacultyofChemicalandMetallurgicalEngineering, IstanbulTechnicalUniversity,Ayazag˘aCampus,Maslak,Istanbul34469,Turkey; [email protected](H.A.);[email protected](E.C.) 2 DepartmentofAgro-FoodSciencesandTechnologies,AlmaMaterStudiorum—UniversityofBologna, PiazzaGoidanich60,Cesena(FC)I-47521,Italy;[email protected] 3 Inter-DepartmentalCentreforAgri-FoodIndustrialResearch(CIRIAgroalimentare),UniversityofBologna, PiazzaGoidanich60,Cesena(FC)I-47521,Italy 4 DepartmentofChemistryandPhysics(AnalyticalChemistryArea)UniversityofAlmería, CarreteradeSacramentos/nAlmeríaE-04120,Spain;[email protected] 5 ResearchCentreforAgriculturalandFoodBiotechnology(BITAL), AgrifoodCampusofInternationalExcellence,ceiA3,UniversityofAlmería, CarreteradeSacramentos/nAlmeríaE-04120,Spain * Correspondence:[email protected];Tel.:+39-0547-338-117 AcademicEditor:AnaMariaGómezCaravaca Received:28April2016;Accepted:24May2016;Published:27May2016 Abstract: Thepotato(SolanumtuberosumL.)isatuberthatislargelyusedforfoodandisasource ofdifferentbioactivecompoundssuchasstarch,dietaryfiber,aminoacids,minerals,vitamins,and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compoundsexhibitedhealth-promotingeffectsinhumans. However,theuseofthepotatointhefood industrysubmitsthisvegetabletodifferentprocessesthatcanalterthephenoliccontent. Moreover, manyofthesecompoundswithhighbioactivityarelocatedinthepotato’sskin,andsoareeliminated aswaste. Inthisreviewthemostrecentarticlesdealingwithphenoliccompoundsinthepotatoand potatobyproducts,alongwiththeeffectsofharvesting,post-harvest,andtechnologicalprocesses, havebeenreviewed. Briefly,thephenoliccomposition,mainextraction,anddeterminationmethods have been described. In addition, the “alternative” food uses and healthy properties of potato phenoliccompoundshavebeenaddressed. Keywords: Solanumtuberosum;potato;phenoliccompounds;healtheffects 1. Introduction Thepotato(Solanumtuberosum)wasknownoutsidetheAndesfourcenturiesagoandhasturned intoanecessarycomponentofmuchoftheworld’scuisine. Followingrice,wheat,andmaize,itis thefourthlargestfoodcropintheworldandisveryimportantforhumanconsumption[1]. Itwas estimatedthatthetotalworldpotatoproductionwas368milliontonsin2013;ofthat,112milliontons wereproducedintheEuropeanUnion[2]. Thisstaplecropcontainsessentialaminoacids,vitamins,andminerals,andisthusreportedto playasignificantroleinhumannutrition[3]. Manyvarietiesofpotatoesoffernutritionalquantitiesof ascorbicacid(upto42mg/100g),potassium(upto693.8mg/100g),dietaryfiber(upto3.3%),and otherhealthybioactivecomponents,withlesseramountsofprotein(0.85%–4.2%)[4]. Inparticular, “resistant starch,” the dietary fiber that escapes digestion and absorption in the small intestine, is Int.J.Mol.Sci.2016,17,835;doi:10.3390/ijms17060835 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2016,17, 835 2of19 fermentedbymicroorganismsinthelargebowel[5]. Moreover,inastudyithasbeenfoundthatboiled potatoesshowedthehighestSI(satietyindex)scoreoutof38foodsgroupedintosixfoodclasses(fruit, bakeryproducts,snackfoods,carbohydrate-richfoods,protein-richfoods,andbreakfastcereals)[6]. Inadditiontothat,thepotatoisanidealsourceofantioxidantsforthehumandiet[7]. Despitethe growinginterest,littleinformationhasbeenreportedabouttheimportantphytochemicalspresentin thiswidelyconsumedvegetableanditsprocessingbyproducts[8]. Theworldwideutilizationofpotatoesismovingfromfreshtoprocessedpotatoproductssuch asmashedandcannedpotatoes, fries, chips, andreadymeals[9,10]. Thisindustrialprocessingof potatoescreateshugeamountsofpeelasabyproductandthisgeneratesdisposal, sanitation, and environmentalproblemslikeallotherindustrialwaste. Also,becauseoflegalrestrictions,thedisposal ofthiswasteposesachallenge[11,12].However,potatopeelsareagreatsourceofphenoliccompounds becausealmost50%ofphenolicsarelocatedinthepeelandadjoiningtissues[8,13]. Ontheotherhand,thereisgreatinterestintheutilizationofnaturalantioxidantsasfunctional ingredients in food formulation because they guarantee the cell constituents’ protection against oxidativedamageandlimittheriskofdegenerativediseaseslinkedtooxidativestress[14,15]. For thesereasons,theuseofthesebyproductsfortheproductionoffoodingredientswithhighnutritional valueincreasedand,consequently,theirrecoverymaybeeconomicallyattractive[11,16]. Ifaglobalhealthgoalistoexpandtheamountsofphytonutrientsconsumedinthediet,avaluable approachcouldbetoimprovethenutritionalcontentofthephytochemicalsinthemostconsumed crops, and/orusethebioactivecompoundsthatarecontainedinvegetablewaste[17]. Theuseof potato peel is underscored as a source of natural antioxidants by many previous studies [9,18,19]. Consequently,thesebioactivecompoundscanbeaddedinfunctionalfoodorcanbeusedtogenerate nutraceuticalsbyvirtueoftheirpotentialhealthbenefits. 2. PhenolicCompoundsinPotatoes Phenoliccompoundsaresecondarymetabolitesproducedinplantsthathaveacommonstructure basedonanaromaticringwithoneormorehydroxylsubstituents[20–22]. Thesecompoundscan bedividedaccordingtotheirchemicalstructureintoflavonoids,phenolicacids,tannins,stilbenes, coumarins,andlignans[23,24]. Theirpresenceaffectsthesensoryqualitiesofplant-derivedprocessed foods,includingtaste,color,andtexture[25–27]. Potatoesaregoodsourcesofphenoliccompounds,withtotalphenoliccontenthigherthanother widespreadfruitsandvegetableslikecarrots,onions,ortomatoesbecauseoftheirhighconsumption rates[28]. Thegermplasmofthepotatoshowsastrikingvarietyintermsofthephenoliccompounds profileandcontent[29]. Thephenoliccompoundsarepresentinthepotatopeelandflesh;however, thepeelisreportedtohavethehighestamounts[30]. Phenoliccompoundspresentinpotatoesare phenolicacidsandflavonoidsincludingflavonols,flavanols,andanthocyanins[3]. 2.1. PhenolicAcids Thepredominantphenolicacidsinplantsaresubstitutedderivativesofhydroxybenzoicacidsand hydroxycinnamicacids. Caffeic,p-coumaric,andferulicacidsarethemostcommonhydroxycinnamic acidsandfrequentlyoccurinfoodsasesterswithquinicacidorsugars[31]; hydroxybenzoicacid derivativesaremainlypresentinfoodsintheglucosideforms,andp-hydroxybenzoic,vanillic,and protocatechuicacidsarethemostcommonforms[31–35]. Phenolic acids are the most abundant phenolic compounds in potatoes [9,36–38]. Among all these phenolic acids, chlorogenic acid, which is the ester of caffeic acid and quinic acid, has been considerablydescribedinpotatoes[12,13,18,39,40]. Itconstitutes90%ofthephenoliccompoundsin potatopeels[37,41]andexistsintheformofthreemainisomers,chlorogenicacid(5-O-caffeoylquinic acid),neochlorogenicacid(3-O-caffeoylquinicacid),andcryptochlorogenicacid(4-O-caffeoylquinic acid)[42]. Also,caffeicacidisquantifiedat25–72mg/100ginpotatoesbymanyresearchers[13,43–45]. Int.J.Mol.Sci.2016,17, 835 3of19 Otherphenolicacidssuchasferulicacid,gallicacid,andp-coumaricacidhavealsobeenquantified in potatoes, ranging from 0 to 5 mg/100 g dry weight [8,9,36,46]; also, syringic acid, vanillic acid, sinapicacid,andsalicylicacidarepresentinsmallquantities[3,9,31,38]. 2.2. Flavonoids Flavonoidsrepresentthemostcommongroupofplantphenoliccompoundsandtheirpresence influencestheflavorandcoloroffruitsandvegetables. Thesixsignificantsubclassesofflavonoidsare theflavones,flavonols,flavanones,flavan-3-ols,anthocyanidins,andisoflavones. Occasionallythey canbefoundasaglyconesbutmostflavonoidsareattachedtosugars(glycosides)[29]. Inpotatoes,oneofthemostabundantflavonoidsiscatechin,rangingbetween0and204mg/100g dryweight[36,47–50]. Flavonolslikequercetinandkaempferolrutinosearealsopresentinpotato tubers[3,7,42,51,52]. Someauthorshavealsoreportedthepresenceofrutin[3,7,42,53]. Flavonoidsweremorethan30mgper100gfreshweightinwhitefleshedpotatoesandthislevel isnearlydoubledinredandpurplefleshedpotatoesasaresultofanthocyanins[54]. Thecolorofred andpurplepotatoesisderivedfromanthocyanins[55]. Anthocyaninsareasub-classofpigmented flavonoids. Themostcommonanthocyanidins(thedeglycosylatedformsofanthocyanins)present inpotatoesaremalvidin,petunidin,delphinidin,andpeonidininpurpletubersandpelargonidinin redones[48,56]. Inadditiontothisanthocyanin,aglycones,cyanidin,andpetaninarealsofoundin potatoes[51,57]. Thelevelsofphenoliccompoundsinpotatoescanvarygreatly[29]dependingonthecolorand varietyofthepotatocultivars[43].Table1reviewstherangeofindividualphenoliccompoundcontents reportedintheliterature. Table1.Concentrationlevelsofthemainphenoliccompoundsinpotatoes. PhenolicClasses PhenolicCompounds Range(mg/100gDryExtract) References 27.6 [43] 100.0–220.0 [53] 17.4–1274.6 [51] 47.0–283.0 [49] chlorogenicacid 17.3–1468.1 [36] 21.0–40.0 [58] 60.0–292.0 [17] 0.2–2193.0 [3] 0.1–0.2 [53] 5.0–50.0 [49] caffeicacid 1.1–172.4 [36] 2.0–6.9 [58] 0–41.6 [3] 0–9.2 [49] coumaricacid Phenolicacids 0–1.6 [36] protocatechuicacid 0–7.6 [36] vanillicacid 0–22.4 [36] 0.6–9.0 [49] ferulicacid 0–3.9 [36] 0–1.4 [3] 16.0–27.0 [53] 3.1–163.3 [36] cryptochlorogenicacid 8.0–59.0 [17] 0.1–168.3 [3] 2.9–9.9 [53] 49.2–91.2 [36] neochlorogenicacid 0.5–1.5 [58] 3.0–11.0 [17] 0.1–87.6 [3] Int.J.Mol.Sci.2016,17, 835 4of19 Table1.Cont. PhenolicClasses PhenolicCompounds Range(mg/100gDryExtract) References gallicacid 0–1.0 [36] Phenolicacids p-hydroxybenzoicacid 0–7.8 [36] 0.5–2.6 [53] rutin 0.6–1.3 [17] Flavonols 0–12.2 [3] kaempferolrutinose 0.5–1.7 [17] quercetin-3-o-glu-rut 2.5 [53] 43.0–204.0 [49] Flavan-3-ols catechin 0–1.5 [36] 0–1.4 [3] 1.4–163.3 [51] 87.0 [59] Anthocyanidins anthocyanins 953.8–1630.3 [60] 21.0–109.0 [56] PhenolicClasses PhenolicCompounds Range(mg/100gFreshProduct) References 1.4–12.1 [39] 0.9–27.0 [31] chlorogenicacid 0.4–34.0 [41] 0.4–30.1 [61] 8.7–28.6 [38] 0–1.2 [41] caffeicacid 0.6–10.2 [61] 5.2–12.2 [38] coumaricacid 0.8–6.5 [38] 0.2–0.5 [31] Phenolicacids protocatechuicacid 6.1–10.3 [62] 1.9–2.0 [38] vanillicacid 0.6 [31] 0.1 [31] ferulicacid 0–0.1 [61] 1.5–4.9 [38] 0.2–0.5 [31] syringicacid 0.9–1.7 [38] p-coumaricacid 0.2–3.0 [31] 0.3–0.9 [31] sinapicacid 0–0.4 [61] gallicacid 0.5–0.6 [38] 3. EffectofHarvesting,Post-Harvest,andTechnologicalProcessesonPhenolicContent The amount of phenolic compounds and their stability are dependent on several factors such as agrotechnical processes, climatic conditions, ripeness during harvest, and post-harvest manipulations[63],aswellasgenotype,storageconditionsafterharvest,andprocessingandcooking methods[24,48,64–68]. Manypolyphenols,particularlyphenolicacids,aredirectlyimplicatedinthe responseofplantstodifferenttypesofstressessuchasthermalstress,bioticstress,andinjuries,and intheirtolerancetoexposuretoUVraysandozone[44]. Thesephytochemicalsshowantimicrobial propertiesbyraisingconcentrationsafterpathogeninfectionandcontributetohealingbylignification ofdamagedzones[69]. Thesebioticandabioticfactorscanaffectpotatoesandmaycauseaseriouseconomicproblem in countries where potatoes are cultivated over large areas [1]. In the last decade, the effect of environmental conditions such as location on the phenolic content of potatoes has been widely Int.J.Mol.Sci.2016,17, 835 5of19 studied [50,60,70,71]. During tuber development, environmental conditions may influence the phenylpropanoidpathwayandthepolyphenoliccompositioninpotatotubers[60]. Higherchlorogenic acid levels were found in warm locations with regular periods of drought, in comparison with high-altitudelocationsthatarebeneficialforpotatocultivation. Organicallygrownpotatoesreported significantly higher levels of chlorogenic acids compared to conventional treatments [72]. On the otherhand,thesestudiesdemonstratedthatthegenotypeofapotatohasmoreeffectonthephenolic contentthanthelocation[50,70]. Navarreetal.[52]determinedthephenolicandantioxidantcapacity ofdifferentpotatogenotypes. Although wild species or primitive germplasm reported the highest phenolic content, commercial/industrial cultivars are preferred because they have the agronomic characteristics to beeconomicallypracticalandcouldeasilyandmorecommonlybeplanted. Moreover,itisknownthat themostnoteworthyphenolicgenotypeswerecolored-fleshpotatoes;however,consumerchoiceisfor white-fleshpotatoes,sotheyarethemostproduced. Thisencouragesnewharvestand/orpost-harvest treatmentsinordertoimprovethephenoliccontent. Forimprovingthephenoliccontentofpotatoes,someimplementationswereusedbeforeand some after harvesting. Ngadze et al. [44] reported that calcium contributes to increase caffeic and chlorogenicacidinpotatoes. Furthermore,calciumsoilamendmentalsoimprovedtheconcentration ofpolyphenoloxidase(PPO)andperoxidase(POD)enzymes,whichareinvolvedinthephenolicsand totalsolublephenolsmetabolism. SeveralauthorsdefinedtheroleofCa2+ inphenolicmetabolism; Castañeda & Pérez [73] found that foliar application of 10 mM of CaCl increased phenylalanine 2 activity and resulted in the accumulation of phenols [44]. Other authors used a curing treatment (10daysat16˝C)immediatelyafterharvest,obtainingahighphenoliccontentandPPOactivityin potatoflesh;moreover,theyenhancedthefresh-cutcolorandthesensoryqualitiesaftercutting[69]. Afterharvest,storageconditionsalsoplayanimportantroleinphenoliccontents. WhileSingh& Saldaña[38]indicatedthatphenoliccompoundsmaydegradeduringstorageconditions,manyother studiesreportedthatcoldstorage(„4˝C)ofpotatoescausedanincreaseinthephenoliccontentorkept itconstant[40,61,68]. However,asdescribedbyAndreetal.[74],highstoragetemperatures(10˝C) decreasedthephenoliccontentsorhadnoeffect. Ontheotherhand,Külenetal.[40]demonstrated thatstoragetimeisalsoveryimportantforphenoliccompounds. Theyfoundthatthetotalphenolic content(TPC)ofpotatoeswashighatharvest,declinedaftertwomonthsofcoldstorage,increased afterfourmonthsofcoldstorage,andfinallyincreasedtoalmostharvestlevelaftersevenmonthsof coldstorage. TheresultsofBlessingtonetal.[47]wereinaccordancewiththeirdata,showingthatTPC decreasedslightlyafterfourmonthsofcoldstorageinthe‘RussetBurbank‘varietyduringcoldstorage. Furtherdetailedstudiesarerequiredtoclarifytheeffectsofcoldstorageonindividualpotatoclones. Inadditiontotheharvestandpost-harvestcondition,cookingprocessesshouldbeconsidered aswell. Thechemical,physical,andenzymemodificationsthatwereproducedduringcookingwill changetheantioxidantcapacityanddigestibilityofpotatoes,whichlaterinfluencesthebioavailability of phytochemicals to the postprandial glycemic response of the human body [75]. In a study of Mulinaccietal.[76],thecontentsofphenolicacids,glycoalkaloids,andanthocyaninsaremeasuredin freshandalsoinprocessed(boilingandmicrowavecooking)potatoesfromthreecultivars(Vitelotte Noire,HighlandBurgundyRedwithpigmentedflesh,andKennebecwithwhitepulp). Differentfrom theliteraturedata,itisindicatedthattheheatingtreatmentdidnotcauseanychangesinphenolic acidscontentexceptforasmalldecreaseinanthocyanins. Also,Perlaetal.[54]studiedsomepotato cookingmethodssuchasboiling,baking,andmicrowavingonphenoliccompoundsinfivecultivars withdifferentskinandfleshcolorsaftersixmonthsofstorage. Thelevelofphenoliccompoundswas reducedbythethreecookingmethodsbutboilingminimizedtheselosses. Briefly,thecultivar,stageofmaturityofthetuber,cookingtemperatureandtime,andpresenceof waterormoistureduringcookingallstronglyaffectthelossofphenoliccompoundsinpotatoes. Int.J.Mol.Sci.2016,17, 835 6of19 4. ExtractionandDeterminationMethodsforPhenolicsinPotato During the extraction of antioxidant compounds from plant materials, the selection of the appropriateextractionconditionsrepresentsacrucialpoint[18]. Duringtheextraction,thedistribution ofphenoliccompoundsinextractionsolventsshouldbemadetoreachtheappropriatedistribution coefficient[75].Toextractphenoliccompoundsfrompotatoes,themostcommonmethodissolid–liquid extraction [18,27,76]. Commonly, the extraction solvents used for potato phenolics are methanol, ethanol,andaqueousalcoholmixtures[46,77–79]. However,thesetechniquesrequirealongextraction timeandresultinlowyields[38]. Therefore,othermodernextractionandisolationtechniqueshave beenappliedasalternativetechniquesforpotatophenolicextraction. Ultrasound-assistedextraction (UAE),microwave-assistedextraction(MAE),andpressurizedliquidextraction(PLE)areafewof thesemoderntechniques[45,62,80–82](Table2). Table2. Overviewoftheextractionsystemsandanalyticalmethodsusedforphenoliccompounds determinationinpotatoes. Analytical ExtractionSystem PotatoCultivar PhenolicCompoundsDescribed References Technique Chlorogenicacid,caffeicacid, HPLC-DAD ‘Kufrichandromukhi’ [43] gallicacid 9italiancultivars(‘Agata‘, ‘Primura‘,‘Arinda‘,‘Merit‘, HPLCUV-Vis Chlorogenicacid [39] ‘Marabel‘,‘Jelli‘,‘Frinka‘, ‘Sponta‘,‘Agria‘) Neochlorogenicacid,chlorogenic acid,caffeicacid, ‘RangerRusset’ quercetin-3-o-glu-rut,rutin, HPLC-MS [53] ‘NorkotahRusset’ kaempferol-3-o-rutinoside, cryptochlorogenicacid, quinicacid Chlorogenicacid,neochlorogenic HPLC-DAD, acid,cryptochlorogenicacid, HPLC-MS, 23NativeAndeancultivars caffeicacid,protocatechuicacid, [51] HPLC-FLD vanillicacid,ferulicacid,petanin, rutin,kaempferol-3-o-rutinoside Solid-liquid extraction 320specialty Chlorogenicacid,caffeicacid, HPLC-DAD [40] potatogenotypes gallicacid,catechin Chlorogenicacid,ferulicacid, Notcited ‘RussetBurbank’ vanillicacid,caffeicacid, [83] benzoicacid Chlorogenicacid,caffeicacid, ‘Jasim’,‘Atlantic’,‘Jawan’, HPLC-MS ferulicacid,p-coumaricacid, [41] ‘Superior’,‘Jopung’ trans-cinnamicacid ‘Nicola’,‘SieglindeF’, Chlorogenicacid,caffeicacid, HPLC-DAD [49] ‘Isci4052’,‘Isci67’ ferulicacid,catechin Gallicacid,caffeicacid, HPLC Notcited(Indiancultivar) chlorogenicacid, [84] protocatechuicacid Neochlorogenicacid, cryptochlorogenicacid, 13native HPLC-DAD chlorogenicacid, [60] Andeangenotypes kaempferol-3-o-rutinoside, quercetin HPLC:HighPerformanceLiquidChromatography;UPLC:UltraPerformanceLiquidChromatography;DAD: DiodeArrayDetector;UV:Ultravioletdetector;MS:massspectrometer. Int.J.Mol.Sci.2016,17, 835 7of19 Table2.Cont. Analytical ExtractionSystem PotatoCultivar PhenolicCompoundsDescribed References Technique Gallicacid,neochlorogenicacid, protocatechuicacid,catechin, cryptochlorogenicacid, HPLC ‘Karlena’ [36] chlorogenicacid,vanillicacid, caffeicacid,ferulicacid, p-coumaricacid ‘Siecle’,‘PurpleMajesty’, HPLCUV-Vis ‘Dakotapearl’,‘FL1533’, Chlorogenicacid,caffeicacid [13] ‘Vivaldi’,‘Yukongold’ ‘Goldrosh’,‘Nordonna’, ‘DakotaPearl’,‘Norkotah’, Chlorogenicacid,caffeicacid, HPLC-DAD, ‘RedNordland’,‘Sangre’, gallicacid,ferulicacid,catechin, [46] HPLC-MS ‘Viking’,‘Dark p-coumaricacid,o-coumaricacid RedNordland’ Chlorogenicacid,caffeicacid, HPLC-DAD 8cultivars epicatechin,p-coumaricacid, [47] vanillicacid,quercetin Protocatechuicacid,gentisicacid, gallicacid,chlorogenicacid, HPLC-DAD ‘Sava’,‘Bintje’ [19] salicylicacid,caffeicacid,ferulic acid,p-coumaricacid Chlorogenicacid,neochlorogenic ‘Bintje’,‘Piccolo’, HPLC-DAD-MS acid,cryptochlorogenicacid, [17] ‘PurpleMajesty’ kaempferolrutinose,rutin Chlorogenicacid,caffeicacid, HPLC-DAD/ 16cultivars 3-o-caffeoylquinicacid, [77] APCI-MS 1-o-caffeoylquinicacid Solid-liquid extraction 5-o-caffeoylquinicacid, 4-o-caffeoylquinicacid, HPLC-DAD-MS 13Italiancultivars [66] 3-o-caffeoylquinicacid,ferulic acid,anthocyanins ‘PurpleMajesty’,‘Yukon Chlorogenicacid,caffeicacid, UPLC-MS [61] gold’,‘Atlantic’ ferulicacid,sinapicacid Chlorogenicacid,rutin, HPLC-DAD-MS 50cultivars [52] kaempferol-3-rutinose Chlorogenicacid,neochlorogenic acid,cryptochlorogenicacid, ‘Vitelotte’,‘Luminella’, caffeicacid,ferulicacid, UPLC-DAD [3] ‘Charlotte’,‘Bintje’ p-coumaricacid,syringicacid, vanillicacid,catechin,rutin, kaempferol-3-o-rutinoside Gallicacid,protocatechuicacid, gentisicacid,chlorogenicacid, HPLC-DAD ‘Sava’ vanillicacid,syringicacid,caffeic [9] acid,salicylicacid,p-coumaric acid,ferulicacid Chlorogenicacid,neochlorogenic acid,cryptochlorogenicacid, coumaricacid,genistin, HPLC-DAD Notcited [85] quercetin-3-β-D-galactoside, naringin,naringenin,luteolin, genistein,kaempferol,flavan-3-ol chlorogenicacid,quinicacid, UPLC-MS Notcited [86] caffeicacid,methylcaffeate HPLC:HighPerformanceLiquidChromatography;UPLC:UltraPerformanceLiquidChromatography;DAD: DiodeArrayDetector;UV:Ultravioletdetector;MS:massspectrometer. Int.J.Mol.Sci.2016,17, 835 8of19 Table2.Cont. Analytical ExtractionSystem PotatoCultivar PhenolicCompoundsDescribed References Technique Chlorogenicacid,neochlorogenic HPLC-DAD-MS 15Colombiancultivars acid,cryptochlorogenicacid, [76] caffeicacid Chlorogenicacid,ferulicacid, Solid-liquid HPLCUV ‘Agria’ gallicacid [18] extraction Chlorogenicacid,caffeicacid, ferulicacid,coumaricacid, ‘Valfi’,‘BlaueElise’,‘Bore HPLCUV cryptochlorogenicacid, [27] Valley’,‘BlueCango’ neochlorogenicacid,p-coumaric acid Chlorogenicacid,caffeicacid, ‘Nicola’,‘Timo’,‘Siikli’, HPLC-DAD ferulicacid,sinapicacid,vanillic [31] ‘Rosamund’,‘VanGogh’ acid,syringicacid Protocatechuicacid,chlorogenic HPLC-DAD ‘Agria’ acid,neochlorogenicacid, [62] cryptochlorogenicacid Chlorogenicacid, HPLC-DAD 20potatocultivars petunidin-3-glucosidechloride, [81] pelargonidin-3-glucopyranoside ‘Purple’,‘Innovator’, Chlorogenicacid,caffeicacid, HPLC-MS [8] ‘Russet’,‘Yellow’ p-coumaricacid,ferulicacid Chlorogenicacid,caffeicacid, Ultrasound-assisted HPLC-DAD ‘Penta’,‘Marcy’ gallicacid,p-coumaricacid, [15] extraction ferulicacid Chlorogenicacid,caffeic, 4-hydroxybenzoic,p-coumaric, HPLC-DAD ‘Diamond’ [87] andtrans-o-hydroxycinnamic acids Chlorogenicacid,caffeicacid, HPLC-DAD-MS ‘BlueBell’,‘Melody’ quinicacid,ferulicacid, [88] cryptochlorogenicacid,rutin Chlorogenicacid,caffeicacid, HPLC-MS ‘Russet’ [42] neochlorogenicacid RP-HPLC Chlorogenicacid,caffeicacid, ‘BP1’ [44] UV-DAD ferulicacid Gallicacid,protocatechuicacid, HPLC-DAD ‘Netherlands#7’ [69] chlorogenicacid Chlorogenicacid,caffeicacid, gallicacid,protocatechuicacid, HPLC-UV ‘Red’ [38] syringicacid,ferulicacid, coumaricacid Microwave-assisted extraction Chlorogenicacid,caffeicacid, neochlorogenicacid, HPLC-DAD ‘Calwhite’ [82] cryptochlorogenicacid,ferulic acid,p-coumaricacid Pressurizedliquid HPLC-DAD ‘LadyClaire’ Caffeicacid [45] extraction(PLE)+ solid-liquid HPLC-UV ‘Red’ Gallic,chlorogenicand [80] extraction syringicacid HPLC:HighPerformanceLiquidChromatography;UPLC:UltraPerformanceLiquidChromatography;DAD: DiodeArrayDetector;UV:Ultravioletdetector;MS:massspectrometer. Sonicationorultrasound-assistedextraction(UAE)isasimpleandefficientgreentechnologyfor theextractionofphenoliccompoundsthatcouldbeusedasanalternativetoconventionalshaking andwarmingsteps. Sonicationpermitsagreaterpenetrationofthesolventintothesamplematrix, Int.J.Mol.Sci.2016,17, 835 9of19 increasingthecontactsurfaceareabetweenthesolidandliquidphase;asaresult,thesolutequickly diffusesfromthesolidphaseintothesolvent,improvingtheextractionyield[55,89]. Also,UAEcan providethepossibilityforimprovedextractionofheat-sensitivebioactivesandfoodcomponentsat lowerprocessingtemperatures[90]. Theuseofmicrowave-assisted(MAE)extractionforfoodbioactiveshasincreasedsignificantlyin recentyears[82,91–93]. InMAE,thedirecteffectofmicrowavesonmoleculesbyionicconductionand dipolerotationpermitsanincreaseoftemperature,andbecauseofthatahighrecoveryofbioactive compounds[94]. MAEisafast,selective,andenergy-savingmethodandrequiresloweramountsof solventswhencomparedtoconventionalheatingmethods[82,95]. The pressurized liquid extraction (PLE) of phenolics has also been recommended as a green extractiontechniqueforantioxidantsinpotatopeel[38,45]. Thistechnologyuseshighpressuresto maintainwaterattemperaturesbetween100and374˝C;however,itrequirescomplexandhigh-cost equipment in large-scale industrial extractions [82]. Nevertheless, the use of high temperatures improvedthemasstransferandextractionrates,thusPLEgenerallyrequiresshorterextractiontimes andalowerconsumptionoforganicsolventsthanconventionaltechniques[45,96]. Afterextraction,eventhoughtheanalysisofphenoliccompoundsisverychallengingduetothe extensivediversityandreactivityofthesecompounds,novelseparationanddetectionmethods,suchas hyphenatedtechniquesofhigh-performanceliquidchromatography(HPLC)withmassspectrometry (MS),ultraviolet-visiblelight(UV-Vis),ornuclearmagneticresonance(NMR)spectroscopycanbe usedsuccessfully[87,97]. Forthedeterminationoftotalphenoliccompoundsinthepotatotuberand peel,themostcommonlyusedmethodistheFolin-Ciocalteumethod[70,74,98]. Ontheotherhand, amongallthesemethodsHPLCisthemostfrequentlyusedfortheidentificationofindividualphenolic compoundspresentinthepotato[13,18,31,38,80]. Thisanalyticaltechniqueacquiresahighdegreeof versatilitynotfoundinotherchromatographicsystemsandallowsforseparatingawidevarietyof chemicalmixtures[52]. 5. UseofPotatoPeelExtractasanAntioxidant Inthelastdecade,therehasbeenincreasingattentiongiventonewsourcesofnaturalantioxidant phytochemicalsasaresultoftheirpotentialhealthbenefits,inadditiontotheirfunctionalproperties intraditionallycommercializedproductssuchaspreservingcolorandflavorandhenceimproving shelflife[99–101]. Lipidoxidationisoneofthemostimportantcausesoffoodqualitydeterioration;itgenerates offodorsandoffflavors,decreasesshelflife,alterstextureandcolor,anddecreasesthenutritional valueoffood[102]. Countlessmethodshavebeenintroducedtocontroltherateandextentoflipid oxidationinfoods,buttheadditionofantioxidantsisoneofthemosteffective. Antioxidantshave becomeacrucialgroupoffoodadditivesduetotheirabilitytoextendtheshelflifeoffoodswithout anyadverseeffectontheirsensoryornutritionalqualities[32]. Generallysyntheticantioxidantssuch asbutylatedhydroxytoluene(BHT)andbutylatedhydroxyanisole(BHA)areusedtocontroloxidation, but these synthetic antioxidants are known to have carcinogenic and toxic effects on humans [16]. Therefore,theimportanceofreplacingsyntheticantioxidantswithnaturalingredientshasincreased significantly[19]. Ontheotherhand,byproductsoffoodprocessingarealow-costrawmaterialfortheextraction ofhealthycompoundssuchasdietaryfiber,naturalantioxidants,andnaturalfoodadditives[103]. Also,fruitandvegetablewasteandbyproductsarediscardedfrequentlyatacosttothemanufacturer. Hence, useofthewasteasasourceofpolyphenolsmaybeofnoticeableeconomicbenefittofood processors[101,104]. Inadditiontothis,sincetheconcentrationofphenoliccompoundsishigherin thepeelthaninthepotatotuber,researchersgenerallyusedpeelsinsteadofusingthewholepotatofor naturalfoodadditives[18,19,43]. Anumberofstudiesinvestigatedtheantioxidanteffectsofpotatopolyphenols(Table3). Most ofthemsearchedfortheeffectondifferentoils[16,19,87]. KoduvayurHabeebullahetal.[16]used Int.J.Mol.Sci.2016,17, 835 10of19 potatopeelextractforfishoilandoil-in-wateremulsionsandtheirresultsshowedthat‘Sava‘variety potatopeelextractishighlyefficientatreducinglipidperoxidation. Inanotherstudyperformedby Amadoetal.[18],ethanolicextractofpotatopeelwastewasusedtoevaluatetheabilitytolimitoil oxidationand,accordingtotheresults,extracts(obtainedbyextractionwithamediumorhighethanol concentration)wereabletostabilizesoybeanoilunderacceleratedoxidationconditions,minimizing peroxide(PV),anisidine(AV),andtotoxvalues(TV)athightemperature. Table3.Somematerialsinwhichpotatopeelswereusedasanantioxidantingredient. Food PotatoType Criteria References PotatoPeels(Solanum ProcessedLambMeat tuberosumcv.‘Kufri TBARSandcarbonylcontent [43] chandramukhi‘) Potatopeels(Solanum Peroxidevalue,anisidinevalue, Fish-RapeseedOilMixture tuberosumcv.‘Sava‘ tocopherolconcentration,and [19] andinOil-in-WaterEmulsions and‘Bintje‘) sensoryevaluation Potatopeels(Solanum Soybeanoil,sunfloweroil Peroxidevalues,p-anisidine [16] tuberosumcv.‘Diamond‘) Peroxidevalue,volatiles, carbonylcompounds,and Mincedhorsemackerel PotatoPeels(Solanum protectedagainstthelossof [9] (Trachurustrachurus) tuberosum‘Sava‘variety a-tocopherolandtryptophan andtyrosineresidues Potatopeelsandtubers GroundSalmon (‘Purple‘,‘Innovator‘, TBARS [8] ‘Russet‘and‘Yellow‘) Bothprimary(hydroperoxides) Potatopeels(Solanum Sunfloweroil andsecondaryoxidation [87] tuberosumcv.‘Diamond‘) products Peroxide,totoxand Soybeanoil Potatopeel(Agria) [18] p-anisidinevalues TBARS,Thiobarbituricacidreactivesubstances. Therearesomestudiesthatcomparetheantioxidantactivityofpotatopeelextract(PPE)with commercialantioxidants. Kanattetal.[43]foundthattheantioxidantactivityofPPEiscomparableto butylatedhydroxytoluene(BHT).Also,Mohdalyetal.[87]estimatedtheantioxidanteffectofpotato peelbymeasuringbothprimary(hydroperoxides)andsecondaryoxidationproducts,andcomparing them with sesame cakes and sugar beet pulp in terms of the effect on sunflower oil. The results showedthatpotatopeelsdisplayedmoreantioxidativeeffectthansesamecakeandsugarbeetpulp, performingaswellassyntheticantioxidants(BHTandBHA).Albishietal.[8]alsofoundthatRusset potatopeelwasmoreeffectiveininhibitingtheformationofTBARSthanBHA. Someresearchersusedpotatopeelstolimitthelipidoxidationinmeat[8,9,43]. Kanattetal.[43] addedpotatopeelextracttomeatbeforeirradiation;theextractwasabletoretardlipidperoxidation withoutaffectingitsflavor/aroma,therebyimprovingitsstoragequality. Inastudyperformedby Habeebullah et al. [9], potato peel was used in minced mackerel, a fatty fish particularly high in n-3PUFA,asanaturalantioxidantsourceforretardinglipidandproteinoxidation[105]. Theresults suggest that ethanol extracts of potato peel can be used as a natural additive to prevent lipid and protein oxidation in chilled storage. Albishi et al. [8] also indicated that potato peel extracts were efficientininhibitingtheoxidationofcookedsalmon;infact,thecontrolsamplesshowedhighTBARS values after seven days of storage. On the other hand, more studies are needed to support this hypothesisandextendtheutilizationoftheseextractsinfoods(suchasmeatandfishproducts)where acomplexmixtureofproteins,lipids,pro-oxidants,andendogenousantioxidantsarepresent.

Description:
In potatoes, one of the most abundant flavonoids is catechin, ranging between 0 and 204 mg/100 g dry weight [36,47–50]. Flavonols like quercetin and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.