ebook img

PhD THESIS PDF

171 Pages·2016·5.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PhD THESIS

PhD THESIS "INVESTIGATION OF THE EFFECT LASER IRRADIATION ON SURFACE STRUCTURE OF CERAMIC MATERIALS" «ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΩΝ LASER ΣΤΗ ΔΟΜΗ ΤΗΣ ΕΠΙΦΑΝΕΙΑΣ ΚΕΡΑΜΙΚΩΝ ΥΛΙΚΩΝ» Anastasia Beketova Aristotle University of Thessaloniki, School of Dentistry Department of Fixed Prosthesis and Implant Prosthodontics Head of the Department: Professor P. Koidis Thessaloniki, 2016 Investigation of the Effect of Laser Irradiation on Surface Structure of Ceramic Materials PhD Thesis Anastasia Beketova, dentist Supervisor: Dr. Petros Koidis, Professor, Head of the Department of Fixed Prosthesis and Implant Prosthodontics, Faculty of Dentistry, School of Health Sciences Aristotle University of Thessaloniki. Co-supervisors: Dr. Konstantinos M. Paraskevopoulos, Professor, Physics Department, Aristotle University of Thessaloniki Dr. Gerasimos Kourouklis, Professor, Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki Examining Committee: Dr. Nikolaos Poulakis, Professor, Department of Electrical Engineering, Technological Educational Institute of Western Macedonia, Koila, Kozani Dr. Argiris Pisiotis, Professor, Department of Removable Prosthodontics, Faculty of Dentistry, School of Health Sciences Aristotle University of Thessaloniki Dr. Eleana Kontonasaki, Assistant Professor, Department of Fixed Prosthesis and Implant Prosthodontics, Faculty of Dentistry, School of Health Sciences Aristotle University of Thessaloniki Dr. Athina Bakopoulou, Assistant Professor, Department of Fixed Prosthesis and Implant Prosthodontics, Faculty of Dentistry, School of Health Sciences Aristotle University of Thessaloniki Dedicated to my beloved family Table of Contents Acknowledgements ........................................................................................................... 6 Abstract ............................................................................................................................ 7 Περίληψη .......................................................................................................................... 8 Introduction and Skope ....................................................................................................10 1. Chapter: Literature review .........................................................................................13 1.1 Bioceramics .......................................................................................................13 1.1.1 Bioceramics Classification ..........................................................................13 1.1.2 Dental Feldspathic Porcelain ......................................................................14 1.1.3 Bioactive Glasses .......................................................................................16 1.1.4 Bioactive glass-Dental ceramic composites ................................................19 1.2 Calcium Orthophosphates .................................................................................21 1.2.1 Hydroxyapatite Structure ............................................................................23 1.2.2 Biological Hydroxyapatite............................................................................25 1.2.3 Crystallization of Calcium Phosphates from Supersaturated Solutions .......28 1.3 Structure of Dental Cementum...........................................................................30 1.4 Laser .................................................................................................................33 1.4.1 Interaction of Laser Light with Ceramic Materials ........................................34 1.5 Methods of Materials Characterization ...............................................................40 2 Chapter: Materials and Methods ...............................................................................43 2.1 Synthesis, characterization of BP80 and BP67 bioceramic materials and evaluation of their apatite forming ability .......................................................................44 2.1.1 Synthesis of BP80 and BP67 bioceramic materials by sol-gel method ........44 2.1.2 Fabrication of sintered specimens ..............................................................47 2.1.3 Characterization of the fabricated composite materials ...............................47 2.1.4 Evaluation of the apatite forming ability of BP80 and BP67 composites ......48 2.1.5 Characterization of the morphology and chemical composition of the BP67 and BP80 sample’s surface after immersion to 1.5xSBF ...........................................50 2.2 Development of an appropriate experimental set-up for Laser Assisted Biomimetic- LAB process (pilot studies) .......................................................................50 2.2.1 Description of the LAB method ...................................................................50 2.2.2 Overview of the pilot studies .......................................................................51 2.3 Evaluation of the optimum laser irradiation parameters for BP67 material .........52 2.3.1 Experimental Set-Up for LAB ......................................................................52 2.3.2 Irradiation of BP67 with different laser light densities (fluence) ...................55 3 2.3.3 Irradiation of the BP67 specimens for different time periods .......................55 2.4 Investigation of the chemical composition, morphology of the obtained HA coating and cell vability/proliferation studies .................................................................56 2.4.1 Characterization of the deposited coatings by micro Raman and SEM in cross-sections ...........................................................................................................56 2.4.2 Cell culture studies .....................................................................................57 3 Chapter: Results .......................................................................................................61 3.1 Structural characterization of BP80 and BP67 materials and evaluation of their apatite forming ability ...................................................................................................61 3.1.1 Characterization of BP67 and BP80 materials by FTIR and XRD ...............61 3.1.2 Evaluation of the apatite forming ability of BP67 and BP80 materials .........63 3.2 Investigation of different experimental conditions applied to BP80 composite, pilot studies (See Annexes) .........................................................................................68 3.3 Evaluation of the optimum laser irradiation parameters for BP67 material .........68 3.3.1 Irradiation of BP67 with different laser light densities (fluencies) .................68 3.3.2 Irradiation of the BP67 specimens for different time periods .......................70 3.4 Investigation of the chemical composition, morphology of the obtained HA coating and cell vability/proliferation studies .................................................................75 3.4.1 Characterization of the deposited coatings by micro Raman and SEM in cross-sections ...........................................................................................................75 3.4.2 Cell culture studies .....................................................................................77 4 Chapter: Discussion ..................................................................................................85 5 Conclusions ..............................................................................................................97 6 Annexes ...................................................................................................................98 6.1 Annex 1. Application of different parameters of Nd:YAG laser light (1064nm) to BP80 composite during LAB .........................................................................................98 6.1.1 Materials and Methods ...............................................................................98 6.1.2 Results ..................................................................................................... 100 6.1.3 Conclusions .............................................................................................. 103 6.2 Annex 2: Irradiation of BP80 material by Nd:YAG (355nm) laser in cSBF solution during LAB ................................................................................................................. 104 6.2.1 Materials and Methods ............................................................................. 104 6.2.2 Results ..................................................................................................... 106 6.2.3 Conclusions .............................................................................................. 108 6.3 Annex 3: Irradiation of BP80 material by KrB laser (248nm) in cSBF during LAB 109 6.3.1 Materials and Methods ............................................................................. 109 6.3.2 Results ..................................................................................................... 110 4 6.3.3 Conclusions .............................................................................................. 113 6.4 Annex 4: Spectrophotometric measurements of reflectivity of BP80 material and absorbance of cSBF solution ...................................................................................... 114 6.4.1 Materials and Methods ............................................................................. 114 6.4.2 Results ..................................................................................................... 114 7 References ............................................................................................................. 116 Εκτεταμένη Ελληνική Περίληψη………………………………………………........ 143 5 Acknowledgements I would like to express my deep and sincere gratitude to my supervisor, Professor P. Koidis, Head of the Department of Fixed Prosthesis and Implant Prosthodontics for his support though out my thesis, his endless patience and knowledge. Under his guidance during all these years I grew up as a person, and I attribute my PhD degree to his encouragement, effort and trust in me. My very special thanks to my co-supervisors, Professor Paraskevopoulos and Professor Kourouklis, for their scientific guidance and precious advice in every single step of the research and given research facilities. It is difficult to overestimate my gratitude to Dr. Poulakis, Professor in the Department of Electrical Engineering, Technological Educational Institute of Western Macedonia for his enormous contribution to this PhD thesis, without his help it wouldn’t be possible to perform the experiments with laser. I am also very thankful for his professionalism, kindness and support. I would like to express my gratitude to Dr. Bakopoulou for her help in experiments with cell cultures, her enthusiasm was very motivational for me. I am heartily thankful to Dr. Zorba and Dr. Papadopoulou and Dr. Kontonasaki who contributed with their experience and work to the realization of this thesis and also for their kindness and encouragement. My special thanks to Dr. Christofilos for help and guidance through the development of my thesis. I also would like to acknowledge Dr. Kantiranis for XRD analysis and Professor Zachariadis for ICP analysis. A part of experiments with laser were performed also in Crete, therefore I would like to acknowledge Professor Anglos, Dr. Klini, Dr. Papoutsakis for their contribution to this PhD thesis. I would like to thank G. Theodorou for his help with experiments and all the members of the FTIR group, who supported me in difficult moments. Lots of thanks to my family, especially to my parents and grandparents, for their emotional, moral, and financial support and to my friends also. This PhD dissertation was financed by several institutions and foundations. I would like to express my sincere gratitude to the Greek State Scholarship Foundation (IKY) that granted me with a scholarship for the years 2012-2015, the Research Committee of Aristotle University of Thessaloniki that granted me with a scholarship for the year 2011 and Erasmus Mundus Cooperation Window Lot 7 for the necessary financial support for this research in 2010-2011. Special thanks to my academic supervisor Professor Koidis and Professor Paraskevopoulos for their contributions towards my scholarships. 6 Abstract Objectives: Aims of this study were to investigate the optimal conditions of laser irradiation of Bioactive Glass (B) /Dental Porcelain (P) BP80 a novel BP67 composites for acceleration of hydroxyapatite-HA formation and to assess cellular responses on the precipitated HA region. Materials and Methods: BP80 (B:20%, P:80%) and BP67 (B:33.3%, P:66.7%) composites were fabricated by the sol-gel method, and their composition and apatite forming ability was evaluated. Laser assisted biomimetic (LAB) process was applied to both materials. The effect of various energy densities of and irradiation exposure times were evaluated for HA precipitation. The obtained HA film was characterized by FTIR, XRD, SEM and micro Raman techniques. ICP-AES was used for revealing changes in chemical composition of the precursor liquid during irradiation. Cell viability and morphological characteristics of periodontal ligament fibroblasts-PDLFs, human gingival fibroblasts-HGFs and SAOS-2 osteoblasts on the HA surface were evaluated by MTT assays and SEM. Results and Discussion: Laser irradiation of BP80 material under the applied conditions did not cause accelerated precipitation of HA due to low bioactivity of the material. Laser treatment of BP67 at optimal energy fluence of 1.52 J/cm2 and irradiation time for 3 h followed by immersion in 1.5xSBF at 60oC, resulted in formation of a dense HA layer within 7 days instead of 25 d required for HA precipitation during conventional biomimetic process. The accelerated formation of HA film during LAB could be attributed to increase of material’s solubility in the laser irradiated spot, together with increase of thermodynamic energy of the ion species and supersaturation in the solution. The resulting HA film was tightly bonded to the underlying substrate and had mineral composition similar to dental cementum. MTT assay showed a consistent reduction of cell proliferation on the HA layer in comparison to conventional control ceramic and BP67 for all 3 cell lines studied. Conclusion: LAB process is potentially applicable for functionalization of materials with low bioactivity under precise control of laser irradiation parameters, while cellular responses need further investigation. 7 Περίληψη Σκόπος: Ο στόχος αυτής της μελέτης ήταν η διερεύνηση των βέλτιστων συνθηκών ακτινοβόλησης με λέιζερ δύο σύνθετων βιοκεραμικών υλικών, των BP80 και BP67 συστημάτων οδοντιατρικής πορσελάνης (P) και βιοενεργού υάλου (B), για την επιτάχυνση σχηματισμού υδροξυαπατίτη (HA) στην επιφάνια αυτών, καθώς και την αξιολόγηση των κυτταρικών αποκρίσεών τους στην περιοχή του ΗΑ. Υλικά και Μέθοδοι: Τα σύνθετα υλικά BP80 (Β: 20%, P: 80%) και BP67 (Β: 33,3%, Ρ: 66,7%) κατασκευάστηκαν με την μέθοδο sol-gel, και αξιολογήθηκαν η σύνθεσή τους και η ικανότητά αυτών για το σχηματισμό απατίτη. Η μέθοδος LAB (Laser Assisted Biomimetic) εφαρμόστηκε και στα δύο υλικά. Η επίδραση των διαφόρων ενεργειακών πυκνότητων ακτινοβολίας και χρόνου έκθεσης αξιολογήθηκαν για την ανάπτυξη του ΗΑ. Το ληφθέν φιλμ του ΗΑ χαρακτηρίστηκε με τις τεχνικές FTIR, XRD, SEM και micro Raman. Επιπλέον, η φασματοσκοπία ICP-AES χρησιμοποιήθηκε για την ανίχνευση αλλαγών στη χημική σύνθεση του βιομιμητικού διαλύματος κατά τη διάρκεια της ακτινοβόλησης. Η βιωσιμότητα καθώς και τα μορφολογικά χαρακτηριστικά των περιοδοντικών ινοβλαστών PDLFs, των ουλικών ινοβλαστών HGFs και των οστεοβλαστών SAOS-2 στην επιφάνεια ΗΑ αξιολογήθηκαν με την δοκιμασία ΜΤΤ και με ηλεκτρονική μικροσκοπία SEM. Αποτελέσματα και Συζήτηση: Η ακτινοβόληση με λέιζερ του σύνθετου υλικού BP80 υπό τις εφαρμοζόμενες συνθήκες δεν προκάλεσε την επιταχυνόμενη ανάπτυξη του ΗΑ, γεγονός το οποίο οφείλεται στη μη βιοενεργή συμπεριφορά αυτού του υλικού. Η αγωγή με λέιζερ του σύνθετου υλικού BP67 στη βέλτιστη ενεργειακή ροή των 1,52 J/cm2 και για χρόνο ακτινοβόλησης τριών ωρών, ακολουθούμενη από διατήρηση των δοκιμίων σε διάλυμα 1.5x SBF στους 60°C, είχε ως αποτέλεσμα το σχηματισμό ενός πυκνού στρώματος ΗΑ μέσα σε 7 ημέρες αντί για 25 ημέρες που απαιτούνται για την καθίζηση του ΗΑ σύμφωνα με τη συμβατική βιομιμητική μέθοδο (conventional biomimetic method). Ο επιταχυνόμενος σχηματισμός του υμενίου από απατίτη κατά τη διάρκεια της LAB θα μπορούσε να αποδοθεί σε αύξηση της διαλυτότητας του υλικού στη περιοχή ακτινοβόλησης με λέιζερ, και στην αύξηση της θερμικής ενέργειας των ιόντων καθώς και λόγω υπερκορεσμού του διαλύματος. Το σχηματισθέν στρώμα του ΗΑ ήταν καλά συνδεδεμένο με το υπόστρωμα και είχε χημική σύνθεση παρόμοια με αυτήν της οστεΐνης. Η δοκιμασία ΜΤΤ υπέδειξε μια σταθερή μείωση του πολλαπλασιασμού των κυττάρων επί του στρώματος του ΗΑ σε σύγκριση 8 με τα συμβατικά κεραμικά ελέγχου και του σύνθετου υλικού BP67 και για τις τρεις κυτταρικές σειρές που μελετήθηκαν. Συμπέρασμα: Η μέθοδος LAB μπορεί να εφαρμοστεί για αύξηση της βιοενεργότητας των υλικών, τα οποία κανονικά παρουσιάζουν χαμηλή βιοενεργότητα υπό συμβατικές συνθήκες. Αυτό επιτυγχάνεται με ακριβή έλεγχο των παραμέτρων και των συνθηκών της ακτινοβόλησης με λέιζερ, ενώ οι κυτταρικές αποκρίσεις χρειάζονται περαιτέρω διερεύνηση. 9

Description:
Department of Fixed Prosthesis and Implant Prosthodontics Physics Department, Aristotle University of Thessaloniki .. My special thanks to Dr. are predominantly composed of glass, b. those made of particle-filled glass, and c.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.