INTERNATIONAL SERIES OF MONOGRAPHS ON PHYSICS SERIES EDITORS J. BIRMAN CITY UNIVERSITY OF NEW YORK S. F. EDWARDS UNIVERSITY OF CAMBRIDGE R. FRIEND UNIVERSITY OF CAMBRIDGE M. REES UNIVERSITY OF CAMBRIDGE D. SHERRINGTON UNIVERSITY OF OXFORD G. VENEZIANO CERN, GENEVA International Series of Monographs on Physics 163. B.J.Dalton,J.Jeffers,S.M.Barnett:Phasespacemethods fordegeneratequantumgases 162. W.D.McComb:Homogeneous,isotropicturbulence–phenomenology,renormalizationandstatistical closures 161. V.Z.Kresin,H.Morawitz,S.A.Wolf:Superconducting state–mechanismsandproperties 160. C.Barrab`es,P.A.Hogan:Advanced generalrelativity –gravitywaves,spinningparticles, andblack holes 159. W.Barford:Electronicandopticalproperties ofconjugatedpolymers,Secondedition 158. F.Strocchi:Anintroduction tonon-perturbativefoundationsofquantumfieldtheory 157. K.H.Bennemann,J.B.Ketterson:Novelsuperfluids,Volume2 156. K.H.Bennemann,J.B.Ketterson:Novelsuperfluids,Volume1 155. C.Kiefer:Quantumgravity,Thirdedition 154. L.Mestel:Stellarmagnetism,Secondedition 153. R.A.Klemm:Layeredsuperconductors, Volume1 152. E.L.Wolf:Principlesofelectrontunnelingspectroscopy, Secondedition 151. R.Blinc:Advancedferroelectricity 150. L. Berthier, G. Biroli, J.-P. Bouchaud, W. van Saarloos, L. Cipelletti: Dynamical heterogeneities in glasses,colloids,andgranularmedia 149. J.Wesson:Tokamaks,Fourthedition 148. H.Asada,T.Futamase,P.Hogan:Equationsofmotioningeneralrelativity 147. A.Yaouanc,P.DalmasdeR´eotier:Muonspinrotation,relaxation,andresonance 146. B.McCoy:Advancedstatisticalmechanics 145. M.Bordag,G.L.Klimchitskaya,U.Mohideen,V.M.Mostepanenko:AdvancesintheCasimireffect 144. T.R.Field:Electromagneticscatteringfromrandommedia 143. W.G¨otze:Complexdynamicsofglass-formingliquids–amode-couplingtheory 142. V.M.Agranovich:Excitationsinorganicsolids 141. W.T.Grandy:Entropyandthetimeevolutionofmacroscopic systems 140. M.Alcubierre:Introductionto3+1numericalrelativity 139. A.L.Ivanov,S.G.Tikhodeev:Problemsofcondensedmatterphysics–quantumcoherencephenomena inelectron-holeandcoupledmatter-lightsystems 138. I.M.Vardavas,F.W.Taylor:Radiation andclimate 137. A.F.Borghesani:Ionsandelectronsinliquidhelium 135. V.Fortov,I.Iakubov,A.Khrapak:Physicsofstronglycoupledplasma 134. G.Fredrickson:Theequilibriumtheoryofinhomogeneous polymers 133. H.Suhl:Relaxationprocessesinmicromagnetics 132. J.Terning:Modernsupersymmetry 131. M.Marin˜o:Chern-Simonstheory,matrixmodels,andtopological strings 130. V.Gantmakher:Electronsanddisorderinsolids 129. W.Barford:Electronicandopticalproperties ofconjugatedpolymers 128. R.E.Raab,O.L.deLange:Multipoletheoryinelectromagnetism 127. A.Larkin,A.Varlamov:Theoryoffluctuationsinsuperconductors 126. P.Goldbart,N.Goldenfeld,D.Sherrington:Stealingthegold 125. S.Atzeni,J.Meyer-ter-Vehn:Thephysicsofinertialfusion 123. T.Fujimoto:Plasmaspectroscopy 122. K.Fujikawa,H.Suzuki:Pathintegralsandquantumanomalies 121. T.Giamarchi:Quantumphysicsinonedimension 120. M.Warner,E.Terentjev:Liquidcrystalelastomers 119. L.Jacak,P.Sitko,K.Wieczorek,A.Wojs:QuantumHallsystems 117. G.Volovik:TheUniverseinaheliumdroplet 116. L.Pitaevskii,S.Stringari:Bose–Einsteincondensation 115. G.Dissertori,I.G.Knowles,M.Schmelling:Quantumchromodynamics 114. B.DeWitt:Theglobalapproachtoquantumfieldtheory 113. J.Zinn-Justin:Quantumfieldtheoryandcriticalphenomena,Fourthedition 112. R.M.Mazo:Brownianmotion–fluctuations,dynamics,andapplications 111. H.Nishimori:Statisticalphysicsofspinglassesandinformation processing–anintroduction 110. N.B.Kopnin:Theoryofnonequilibriumsuperconductivity 109. A.Aharoni:Introduction tothetheoryofferromagnetism, Secondedition 108. R.Dobbs:Heliumthree 107. R.Wigmans:Calorimetry 106. J.Ku¨bler:Theoryofitinerantelectronmagnetism 105. Y.Kuramoto,Y.Kitaoka:Dynamicsofheavyelectrons 104. D.Bardin,G.Passarino:TheStandardModelinthemaking 103. G.C.Branco,L.Lavoura,J.P.Silva:CPviolation 102. T.C.Choy:Effectivemediumtheory 101. H.Araki:Mathematical theoryofquantumfields 100. L.M.Pismen:Vorticesinnonlinearfields 99.L.Mestel:Stellarmagnetism 98.K.H.Bennemann:Nonlinearopticsinmetals 94.S.Chikazumi:Physicsofferromagnetism 91.R.A.Bertlmann:Anomaliesinquantumfieldtheory 90.P.K.Gosh:Iontraps 87.P.S.Joshi:Globalaspectsingravitationandcosmology 86.E.R.Pike,S.Sarkar:Thequantumtheoryofradiation 83.P.G.deGennes,J.Prost:Thephysicsofliquidcrystals 73.M.Doi,S.F.Edwards:Thetheoryofpolymerdynamics 69.S.Chandrasekhar:Themathematical theoryofblackholes 51.C.Møller:Thetheoryofrelativity 46.H.E.Stanley:Introductiontophasetransitionsandcriticalphenomena 32.A.Abragam:Principlesofnuclearmagnetism 27.P.A.M.Dirac:Principlesofquantummechanics 23.R.E.Peierls:Quantumtheoryofsolids Phase Space Methods for Degenerate Quantum Gases Bryan J. Dalton Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria, Australia John Jeffers Department of Physics, University of Strathclyde, Glasgow, UK Stephen M. Barnett School of Physics and Astronomy, University of Glasgow, Glasgow, UK 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries (cid:2)c BryanJ.Dalton,JohnJeffersandStephenM.Barnett2015 Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2015 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2014939573 ISBN978–0–19–956274–9 PrintedinGreatBritainby ClaysLtd,StIvesplc Preface The aim of this book is to present a comprehensive theoretical description of phase space methods for both bosonic and fermionic systems in order to provide a useful textbook for postgraduate students, as well as a reference book for researchers in the newly emerging field of quantum atom optics. Phase space distribution function methods involving phase space variables suitable for systems where small numbers of modesareinvolvedarecomplementedbyphasespacedistributionfunctionalmethods involving field functions for the study of systems with large mode numbers, such as when macroscopic numbers of bosons or fermions are present. The approach for bosonic systems involves c-number quantities, whilst that for fermionic cases involves Grassmann quantities. The book covers both the Fokker–Planck-type equations that determinethedistributionfunctionsorfunctionals,andLangevin-typeequationswhich govern stochastic forms of the variables or fields. The approach taken to treat bosonic and fermionic systems can be regarded as complementary to approaches taken in other branches of physics, notably quantum fieldtheory,particlephysicsandstatisticalphysics.Inthosedisciplines,pathintegrals and Feynman diagrams rather than Fokker–Planck-type equations are the method of choice. Representative applications to physical systems are presented as examples of the methods,butnoattemptismadetoreviewthecontentofthebroadsubjectofquantum atom optics itself. There are other books and reviews that do this. The book provides proofs of important results, with detail presented in the Appendices. Each chapter contains a number of problems for students to solve. As Grassmann algebra and calculus will generally be unfamiliar to students and to re- searchers in quantum atom optics, the main points of this topic are given appropriate coverage. Chapters dealing with the following topics are included: • states and operators in bosonic and fermionic systems; • complex numbers and Grassmann numbers; • Grassmann calculus; • fermion and boson coherent states; • canonical transformations and their applications; • phase space distributions for fermions and bosons; • Fokker–Planck equations; • Langevin equations; • application to few-mode systems; vi Preface • functional calculus for c-number and Grassmann fields; • distribution functionals in quantum-atom optics; • functional Fokker–Planck equations; • Langevin field equations; • application to multi-mode systems; • further developments. Acknowledgements Thisbookwouldnothavebeenwrittenwithouthelpfuldiscussionswithandcomments from colleagues on key theoretical issues over the past several years. In particular, we wish to acknowledge M. Babiker, R. Ballagh, T. Busch, J. Corney, J. Cresser, P. Deuar,P.Drummond,A.Filinov,M.Fromhold,B.Garraway,C.Gilson,M.Olsen, L. Plimak, J. Ruostekowski, K. Rzazewski and R. Walser. This book would not have been completed without the patience and continued support of OUP. Work on this book was supported by the Australian Research Council via the Centre of Excellence for Quantum-Atom Optics (2003–2010). BJD thanks E. Hinds and S. Maricic for the hospitalityoftheCentreforColdMatter,ImperialCollege,Londonduringthewriting of this book. The authors are grateful to Maureen, Hazel and Claire for their patience during the writing of this book. Contents 1 Introduction 1 1.1 Bosons and Fermions, Commuting and Anticommuting Numbers 1 1.2 Quantum Correlation and Phase Space Distribution Functions 2 1.3 Field Operators 5 2 States and Operators 8 2.1 Physical States 9 2.2 Annihilation and Creation Operators 13 2.3 Fock States 14 2.4 Two-Mode Systems 17 2.5 Physical Quantities and Field Operators 20 2.6 Dynamical Processes 25 2.7 Normally Ordered Forms 27 2.8 Vacuum Projector 29 2.9 Position Measurements and Quantum Correlation Functions 30 Exercises 32 3 Complex Numbers and Grassmann Numbers 34 3.1 Algebra of Grassmann and Complex Numbers 34 3.2 Complex Conjugation 37 3.3 Monomials and Grassmann Functions 38 Exercises 43 4 Grassmann Calculus 45 4.1 C-number Calculus in Complex Phase Space 46 4.2 Grassmann Differentiation 49 4.2.1 Definition 49 4.2.2 Differentiation Rules for Grassmann Functions 50 4.2.3 Taylor Series 53 4.3 Grassmann Integration 55 4.3.1 Definition 55 4.3.2 Pairs of Grassmann Variables 59 Exercises 62 5 Coherent States 64 5.1 Grassmann States and Grassmann Operators 64 5.2 Unitary Displacement Operators 66 5.3 Boson and Fermion Coherent States 69 5.4 Bargmann States 71 5.5 Examples of Fermion States 74 viii Contents 5.6 State and Operator Representations via Coherent States 75 5.6.1 State Representation 75 5.6.2 Coherent-State Projectors 77 5.6.3 Fock-State Projectors 79 5.6.4 Representation of Operators 80 5.6.5 Equivalence of Operators 81 5.7 Canonical Forms for States and Operators 82 5.7.1 Fermions 82 5.7.2 Bosons 83 5.8 Evaluating the Trace of an Operator 85 5.8.1 Bosons 85 5.8.2 Fermions 86 5.8.3 Cyclic Properties of the Fermion Trace 87 5.8.4 Differentiating and Multiplying a Fermion Trace 89 5.9 Field Operators and Field Functions 90 5.9.1 Boson Fields 90 5.9.2 Fermion Fields 91 5.9.3 Quantum Correlation Functions 93 Exercises 93 6 Canonical Transformations 95 6.1 Linear Canonical Transformations 96 6.2 One- and Two-Mode Transformations 97 6.2.1 Bosonic Modes 97 6.2.2 Fermionic Modes 101 6.3 Two-Mode Interference 104 6.4 Particle-Pair Creation 106 6.4.1 Squeezed States of Light 106 6.4.2 Thermofields 109 6.4.3 Bogoliubov Excitations of a Zero-Temperature Bose Gas 111 Exercises 114 7 Phase Space Distributions 115 7.1 Quantum Correlation Functions 116 7.1.1 Normally Ordered Expectation Values 116 7.1.2 Symmetrically Ordered Expectation Values 117 7.2 Characteristic Functions 117 7.2.1 Bosons 117 7.2.2 Fermions 118 7.3 Distribution Functions 120 7.3.1 Bosons 121 7.3.2 Fermions 122 7.4 Existence of Distribution Functions and Canonical Forms for Density Operators 124 7.4.1 Fermions 124 7.4.2 Bosons 127 Contents ix 7.5 Combined Systems of Bosons and Fermions 128 7.6 Hermiticity of the Density Operator 132 7.7 Quantum Correlation Functions 134 7.7.1 Bosons 134 7.7.2 Fermions 136 7.7.3 Combined Case 138 7.7.4 Uncorrelated Systems 139 7.8 Unnormalised Distribution Functions 139 7.8.1 Quantum Correlation Functions 140 7.8.2 Populations and Coherences 141 Exercises 143 8 Fokker–Planck Equations 144 8.1 Correspondence Rules 144 8.2 Bosonic Correspondence Rules 145 8.2.1 Standard Correspondence Rules for Bosonic Annihilation and Creation Operators 145 8.2.2 General Bosonic Correspondence Rules 146 8.2.3 Canonical Bosonic Correspondence Rules 148 8.3 Fermionic Correspondence Rules 150 8.3.1 Fermionic Correspondence Rules for Annihilation and Creation Operators 150 8.4 Derivation of Bosonic and Fermionic Correspondence Rules 151 8.5 Effect of Several Operators 154 8.6 Correspondence Rules for Unnormalised Distribution Functions 157 8.7 Dynamical Processes and Fokker–Planck Equations 158 8.7.1 General Issues 158 8.8 Boson Fokker–Planck Equations 160 8.8.1 Bosonic Positive P Distribution 160 8.8.2 Bosonic Wigner Distribution 163 8.8.3 Fokker–Planck Equation in Positive Definite Form 164 8.9 Fermion Fokker–Planck Equations 167 8.10 Fokker–Planck Equations for Unnormalised Distribution Functions 171 8.10.1 Boson Unnormalised Distribution Function 171 8.10.2 Fermion Unnormalised Distribution Function 172 Exercises 173 9 Langevin Equations 174 9.1 Boson Ito Stochastic Equations 175 9.1.1 Relationship between Fokker–Planck and Ito Equations 180 9.1.2 Boson Stochastic Differential Equation in Complex Form 181 9.1.3 Summary of Boson Stochastic Equations 181 9.2 Wiener Stochastic Functions 182 9.3 Fermion Ito Stochastic Equations 183 9.3.1 Relationship between Fokker–Planck and Ito Equations 187 9.3.2 Existence of Coupling Matrix for Fermions 188 9.3.3 Summary of Fermion Stochastic Equations 191
Description: