ebook img

Phase shift spectra of a fiber-microsphere system at the single photon level PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phase shift spectra of a fiber-microsphere system at the single photon level

Phase shift spectra of a fiber–microsphere system at the single photon level AkiraTanaka1,2,TakeshiAsai1,2,KiyotaToubaru1,2,Hideaki Takashima1,2,MasazumiFujiwara1,2,RyoOkamoto1,2, 1 andShigekiTakeuchi1,2, ∗ 1 0 1ResearchInstituteforElectronicScience,HokkaidoUniversity,Sapporo001–0020,Japan 2 2TheInstituteofScientificandIndustrialResearch,OsakaUniversity,Mihogaoka8-1, Ibaraki,Osaka567-0047,Japan n a *[email protected] J 7 2 Abstract: We succeeded in measuring phase shift spectra of a micro- sphere cavity coupled with a tapered fiber using a weak coherent probe ] h light at the single photon level. We utilized a tapered fiber with almost p no depolarization and constructed a very stable phase shift measurement - schemebasedonpolarizationanalysisusingphotoncounting.Usingavery t n weak probe light (n¯ =0.41), we succeeded in observing the transition in a the phase shift spectrum between undercouplingand overcoupling(at gap u distances of 500 and 100 nm, respectively). We also used quantum state q [ tomographytoobtaina’purityspectrum’.Evenintheovercouplingregime, the average purity was 0.982 0.024(minimum purity: 0.892), suggesting 1 ± that the coherence of the fiber–microsphere system was well preserved. v 8 Based on these results, we believe this system is applicable to quantum 9 phase gates using single light emitters such as diamond nitrogen vacancy 1 centers. 5 . © 2011 OpticalSocietyofAmerica 1 0 OCIS codes: (060.5565) Quantum communications; (140.3948) Microcavity devices; 1 (270.5565)Quantumcommunications. 1 : v i Referencesandlinks X 1. G.Griffel,S.Arnold,D.Taskent,A.Serpenguzel, J.Connolly,andN.Morris,”Morphology-dependent reso- r nancesofamicrosphere-opticalfibersystem,” Opt.Lett.21,695–697(1996). a 2. J.C.Knight,G.Cheung,F.Jacques,andT.A.Birks,”Phase-matched excitation ofwhispering-gallery-mode resonancesbyafibertaper,” Opt.Lett.22,1129–1131(1997). 3. M.L.Gorodetsky,A.A.Savchenkov,andV.S.Ilchenko,”UltimateQofopticalmicrosphereresonators,” Opt. Lett.21,453–455(1996). 4. J.R.Buck,andH.J.Kimble,”OptimalsizesofdielectricmicrospheresforcavityQEDwithstrongcoupling,” Phys.Rev.A67,033806(2003). 5. H.Konishi,H.Fujiwara,S.Takeuchi,andK.Sasaki,”Polarization-discriminatedspectraofafiber-microsphere system,” Appl.Phys.Lett.89,121107(2006). 6. S.M.Spillane,T.J.Kippenberg,O.J.Painter,andK.J.Vahala,”Idealityinafiber-taper-coupledmicroresonator systemforapplicationtocavityquantumelectrodynamics,” Phys.Rev.Lett.91,043902(2003). 7. M.Cai,O.Painter,K.J.Vahala,andP.C.Sercel,”Fiber-coupledmicrospherelaser,” Opt.Lett.25,1430–1432 (2000). 8. S.M.Spillane,T.J.Kippenberg,andK.J.Vahala,”Ultralow-thresholdRamanlaserusingasphericaldielectric microcavity,” Nature(London)415,621–623(2002). 9. H.Takashima, H.Fujiwara, S.Takeuchi, K.Sasaki, andM.Takahashi, ”Fiber-microsphere laser withasub- micrometersol-gelsilicaglasslayercodopedwitherbium,aluminum,andphosphorus,” Appl.Phys.Lett.90, 101103(2007). 10. F.Vollmer,S.Arnold,D.Braun,I.Teraoka,andA.Libchaber,”MultiplexedDNAquantificationbyspectroscopic shiftoftwomicrospherecavities,”Biophys.J.85,1974–1979(2003). 11. I.H.Agha,Y.Okawachi,M.A.Foster,J.E.Sharping,andA.L.Gaeta,”Four-wave-mixingparametricoscilla- tionsindispersion-compensatedhigh-Qsilicamicrospheres,” Phys.Rev.A76,043837(2007). 12. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, ”Fiber-microsphere system at cryogenictemperaturestowardcavityQEDusingdiamondNVcenters,” Opt.Express18,15169–15173(2010). 13. H.F.Hofmann,K.Kojima,S.Takeuchi,andK.Sasaki,”Optimizedphaseswitchingusingasingle-atomnonlin- earity,”J.Opt.B-QuantumSO5,218–221(2003). 14. K.Kojima,H.F.Hofmann,S.Takeuchi,andK.Sasaki,”Efficienciesforthesingle-modeoperationofaquantum opticalnonlinearshiftgate”, Phys.Rev.A70,013810(2004). 15. Q.A.Turchette,C.J.Hood,W.Lange,H.Mabuchi,andH.J.Kimble,”Measurementofconditionalphase-shifts forquantumlogic,” Phys.Rev.Lett.75,4710–4713(1995). 16. E.Knill, R.Laflamme,andG.J.Milburn, ”Aschemeforefficient quantum computation withlinear optics,” Nature(London)409,46–52(2001). 17. T.D.Ladd,P.vanLoock, K.Nemoto, W.J.Munro,andY.Yamamoto, ”Hybridquantum repeater basedon dispersiveCQEDinteractionsbetweenmatterqubitsandbrightcoherentlight,”NewJ.Phys.8,184(2006). 18. A.Beveratos, S.Kuhn,R.Brouri,T.Gacoin, J.P.Poizat, andP.Grangier, ”Roomtemperature stable single- photonsource,”Eur.Phys.J.D18,191–196(2002). 19. K.TotsukaandM.Tomita,”Slowandfastlightinamicrosphere-opticalfibersystem,” J.Opt.Soc.Am.B23, 2194–2199(2006). 20. M.Tomita,M.Okishio,T.Matsumoto,andK.Totsuka,”Observationofnormalandanomalousdispersionsina microspheretaperfibersystem,”J.Phys.Soc.Jpn.78,035001(2009). 21. T.Asai,H.Konishi,H.Takashima,H.Fujiwara,S.Takeuchi,andK.Sasaki,”Opticalphaseshiftobservedina resonancemodeofatapered-fibercoupledwithamicrosphereresonator”,inMeetingAbstractsofthePhys.Soc. ofJapan,(Academic,Osaka,Japan,2008)63,23pQD-13,pp.152. 22. D.F.V.James,P.G.Kwiat,W.J.Munro,andA.G.White,”Measurementofqubits,” Phys.Rev.A64,052312 (2001). 23. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, ”Fano resonance in a multimode tapered fiber coupledwithamicrosphericalcavity,” Appl.Phys.Lett.86,261106(2005). 24. L.Collot,V.Lefevreseguin,M.Brune,J.M.Raimond,andS.Haroche,”Veryhigh-Qwhispering-gallerymode resonancesobservedonfused-silicamicrospheres,”Europhys.Lett.23,327–334(1993). 25. J.C.Knight,G.Cheung,F.Jacques,andT.A.Birks,”Phase-matched excitation ofwhispering-gallery-mode resonancesbyafibertaper,” Opt.Lett.22,1129–1131(1997). 26. N.Dubreuil,J.C.Knight,D.K.Leventhal,V.Sandoghdar,J.Hare,andV.Lefevre,”Erodedmonomodeoptical- fiberforwhispering-gallerymodeexcitationinfused-silicamicrospheres,” Opt.Lett.20,813–815(1995). 27. A.Yariv,”OpticalElectronicsinModernCommunications”,pp.12(Oxford,NewYork,1997). 1. Introduction Microsphereresonatorscoupledwithtaperedopticalfibers[1,2]havebeenattractinginter- estbecauseoftheirultrahighqualityfactors[3],smallmodevolumes[4],polarizationselective coupling[5],andhighlyefficientsingle-spatial-modeinput-output[6].Followingthepioneer- ingdemonstrationsofcouplingbetweena microcavityanda taperedfiber[1, 2],applications tolasers[7,8,9],biosensors[10],andnonlinearoptics[11]havebeenreported.Whenasingle lightemitterisdepositedonthecavity,theinteractionbetweenthelightemitterandphotonsis enhancedduetoconfinementinthesmallmodevolume.Thus,thissystemisanidealtestbed forcavityquantumelectrodynamics(QED)experiments[12].Examplesofapplicationsinclude a nonlinearsign shift gate [13, 14, 15] for photonic quantumcomputation[16] and quantum memory [17] for long-distancequantum communication.We are currently interested in real- izing such devices using a fiber–microspheresystem with a coupled single light emitter, e.g. nitrogen-vacancy(NV)centersindiamond[18]. To characterize such photonic quantum devices, the probe input light has to be very weak (i.e.,singlephotonlevel).Itisalsoessentialtoanalyzethephasechangeoftheprobelightto evaluate the coherencepropertiesof quantum devices. The first step toward performingsuch evaluationsisobservingthephaseshiftofanemptymicrospherecavitycoupledwithatapered fiberusingaprobelightatthesinglephotonlevel[19]. A phase shift spectrum was recently obtained by interfering the bright coherent signal outputfromafiber–microspheresystemwithareferencelight[20].However,itistechnically verydifficulttostabilizetheopticalphasebetweensignalandreferencelightsthathavedifferent opticalpaths,especiallywhenusingaveryfaintprobelight. Inthisletter,wereportthemeasurementofphaseshiftspectraofafiber–microspheresys- tematthesinglephotonlevel.Torealizestablephaseshiftmeasurementsofafiber–microsphere system, we utilized a taperedfiber thathas almost no depolarization[5, 21]. We assume that therearetwoorthogonalpolarizationmodes,XandY,inthetaperedfiber.Inthiscase,wecan detectthephaseshiftduetotheresonanceofthemicrospherecavityasachangeinthepolar- izationusingaprobelightthatisasuperpositionofXandY;forexample,polarizationmodeX servesasareferencewhenonlypolarizationmodeYcouplestothecavitymode.Sinceneither polarizationsexhibitanysignificantdepolarizationinthetaperedfiber[5],itisnotnecessaryto performanystabilization,unlikein thepreviousexperiment[20].We succeededinobserving a suddentransitioninthephaseshiftspectrumbetweenundercouplingandovercoupling[19] usingaveryweakprobelightwithn¯=0.41,wheren¯istheaveragenumberofphotonsper10 ns(i.e.,typicaldecaytimeofadiamondNVcenter[18]). Furthermore,weneedtocharacterizethedepolarizationofanoutputphotonfromafiber– microsphere system. For this purpose, we performedfrequency-dependentquantum state to- mography [22] of an output photon and derived the purity spectrum, which is important for characterizingthedepolarizationofthesystem.Thismethodinvolvesreconstructinganoutput stateasadensitymatrixrˆ(w )fromtheoutputspectraforthreedifferentpolarizationbasesfor apolarizationinputconsistingofacombinationoftwoorthogonalpolarizationmodes,Xand Y.Quantumstatetomographyisabletoaccuratelyestimatethecoherenceevenwhenthereare statisticalfluctuations,whichissignificantwhenaveryweakprobelightisused.Fromrˆ(w ), we obtainedpurityspectrathatindicatethedecoherence(i.e. thedepolarization)in the fiber– microspheresystem.Theaveragepuritywas0.982 0.024(minimumpurity:0.892),indicating ± that our fiber–microsphere system can maintain coherence and is thus suitable for quantum coherentdevices.Suchanobservationofthepurityspectrumwillbeessentialinfuturecavity QEDexperiments. 2. ExperimentalSetup Ataperedfiberwasfabricatedfromacommercialsingle-modefiber(Thorlab,780HP).The fiber was heated using a ceramic heater [23] and stretched at about 1330 C. To generate a ◦ large evanescent field strength, a tapered fiber was fabricated with a diameter of 410 nm in the tapered region, as measured by scanning electron microscopy (Keyence, VE9800). The total transmittance of the tapered fiber used in the experiment was 30% (the values of the transmittancegivenbelowwerecompensatedbythisvalue).Amicrospherecavitywithastem [24] was fabricated by melting the tip of a tapered fiber (fused silica) by focusing a carbon dioxidelaserbeam(outputpower:4–8W;wavelength:1.55m m)onthetip.Opticalmicroscopy observationsrevealedthatthemicrospherecavityhasadiameterof43.3m m. Fig.1.showsthemeasurementsetup.Theprobelightisgeneratedbyatunablelaserdiode (NewFocus,Velocity6312),whosefrequencywassweptbyafunctiongeneratorabouttheres- onancefrequencyofthemicrospherecavity.Wesetthesweepingrangeto150and300MHz; these frequencies correspond to the two coupling conditions. To calibrate the frequency, we measuredtheabsorptionspectrumof a rubidiumgascell.The laseroutputwasattenuatedby threeneutraldensityfilterstoaweakwithn¯ 1.Afterapolarizingfilter,ahalf-waveplatewas ≤ used to prepare a combinationof X and Y modesat the couplingregion in the tapered fiber. Fig.1.Experimentalsetup.HWP:halfwaveplate;QWP:quarterwaveplate;PBS:polariz- ingbeamsplitter;SMF:singlemodefiber;PD:photodiode;PZT:piezoelectrictransducer; SPCM:singlephotoncountingmodule. Twoquarter-waveplatesandahalf-waveplatewereusedforprecompensationofthebirefrin- genceinasingle-modefiber.Theprobewasthencoupledtothesingle-modefiber,whichwas connectedtothetaperedfiber.Theintensityoftheprobelightwasmeasuredattheconnector. After thetaperedfiber,we used anadditionalpolarizationcontrollerfor postcompensationof thebirefringence.Themicrospherewassetclosetothefiberinthetaperedregion.Tocontrol thecouplingwiththecavity,thestemofthemicrospherewasfixedontoametaljigofathree- axispiezoelectrictransducer(PI,NanoCube)toenablethedistancebetweenthecavityandthe taperedfibertobevariedin20nmsteps.Theoutputwassenttothepolarizationmeasurement region,whichconsistsofahalf-waveplate,aquarter-waveplate,apolarizingbeamsplitter,two fiber-coupledsingle-photoncountingmodules(ParkinElmer,SPCM-AQR-14)andtwophoton counters(StanfordResearchSystems,SR400).Theanalogoutputsofthephotoncounters(per 1 ms) were sent to an oscilloscope (Tektronix, DPO 4104). Photon counting spectra, which indicatethecouplingofindividualpolarizationswith themicrospherecavity mode,weredis- playedontheoscilloscope.Thetypicalphotoncountwas800countsper1msandthedarkcount ofSPCMswerebelow0.3countsper1ms.Theoriginofthesignallevelontheoscilloscopewas setwhentheprobelaserwasoff. 3. Gapdistancedependenceoftransmittancespectrum Fig.2(a)showsatransmittancespectrumofthetaperedfiberobtainedwhenthemicrosphere cavity was set close to the fiber. The input light power to the fiber–microsphere system was 10.5 pW, which corresponds to n¯ =0.41. The horizontal axis represents the detuning D f of the probe light from the offset frequency f and the vertical axis indicates the transmittance 0 of the input probe light for X polarization. The offset frequency f was set to the frequency 0 atwhich theminimumwas obtained;the minimumtransmittanceisapproximately40%after compensation. A transmittance of unity was defined as the transmittance obtained when the microsphere was set very far from the tapered fiber. The dip in the spectrum is due to the coupling[19] betweenthe guidedwave modeof the tapered fiber andthe whisperinggallery modeofthemicrospherecavity[25].ThesolidcurveinFig.2(a)showsafitofthetransmittance spectrumtothetransmittancederivedfromthecoupled-modetheorypresentedin[19],which isrepresentedbyT(w )inthefollowingequation: AAX((ww )) = 1−g (cid:20)1y−xxyee−ifif (cid:21)= T(w )e−iq (w ), (1) 0X p − − p whereA (w )andA (w )correspondrespectivelytothecomplexamplitudeoftheprobelight 0X X Fig.2.(a)Minimumtransmittance,(c)phaseshift,and(e)purityspectraobtainedatagap distance of500 nm; (b),(d),and (f)spectraobtainedat agapdistance of100 nm. Solid curvesin(a)to(d)aretheoreticalfitsbasedoncoupled-modetheory. atanangularfrequencyw =2p (f +D f)inthetaperedfiberinX-polarizationbeforeandafter 0 fiber–microspherecoupling,g isthetotalphotonlossrateduetocoupling,f istheround-trip phase in the cavity, and q (w ) is the phase shift of the probe light for X-polarization at w . Wedefinedx=√1 g e r L andy=cosk ,wherer istheabsorptioncoefficientofthecavity − medium, L is the ca−vity length, and k is the coupling efficiency from the fiber to the cavity, whichisdefinedastheoverlapintegralbetweenthetwoguidedwavemodes. Fig. 3showstheminimumtransmittanceT oftheprobelightasafunctionofthedis- min tance d between the tapered fiber and the microsphere cavity. In this experiment, we used a 1 m Winputprobelightanda calibratedphotodiode,whichhasplacedafterthe taperedfiber. The horizontalaxisrepresentsthe distanced betweenthetaperedfiberandthe surfaceofthe microspherecavity. Theleft verticalaxisis the minimumtransmittanceT at the resonance min frequency(indicatedbytheredtriangles).Sincethespectrumdidnotchangewhenthemicro- spherewasmovedtowardthetaperedfiber,webelievethatthemicrospherewasincontactwith thetaperedfiberatd=0.Asthemicrospherewasmovedtowardthetaperedfiber(fromapprox- imately800nm),T decreasesford>300nm.T hasaminimumneard=d 300nm.As min min c ≃ d isfurtherreduced,T tendstoincrease,aspredictedbytheory[19].Theregionwhered is min larger(smaller)thand iscalledtheunder(over)couplingregime[19,26].Fig.2(a)wasobtained c atd=500nm,wherethereisundercoupling.Tostudytheeffectofthecouplingcondition,an- othertransmittancespectrumwasobtainedatd=100nm(overcoupling)(seeFig.2(b)).Note thatthescan rangeofFig. 2(b)(200MHz)ismuchlargerlargerthanFig.2(a)(60MHz).The fullwidthathalfmaximum(FWHM)ofthedipinFig.2(b)isthreetimesgreaterthanthatin Fig.2(a),duetothelargedampingofthecavitymodeinthetaperedfiberintheovercoupling regime. Forreference,wecalculatedthequalityfactorQ=2p f /d f fromtheFWHMd f ofthe 0 resonancedip.Qindicatesthedegreeofconfinementoftheprobelightinthecavity.Thecal- culated Q for differentd is indicated by the green trianglesin Fig. 3. As a result, the quality factor(rightverticalaxis)decreasescontinuouslyfrom3.0 107atd=800nmto1.1 106at × × d=0nm,aspredictedbytheory.Theeffectofthesmallparasiticdipat 50MHzinFig.2(b) − isdiscussedbelow. Fig. 3. Dependences of (red) minimum transmittance and (green) quality factor on gap distance.BlackarrowsindicategapdistancesusedtomeasurethespectrainFig.2. 4. Phaseshiftspectrumatthesinglephotonlevel We then measured phase shift spectra for both coupling conditions. As stated earlier, the phase shiftis measuredusing referencepolarizationmodeY, whichdoesnotcouplewith the cavity mode; in contrast, X mode couples with the cavity mode, giving a phase shift q (w ) X describedbyeq.(1).WerepresenttheX(Y)-polarizedcomplexamplitudeoftheinputelectric fieldbyA .Here,weconsiderthecasewhenonlyA coupleswiththecavityresonance 0X(0Y) 0X modewithatransmittanceT T (w )andaphaseshiftq (w ).T isthetotaltransmittanceof all X X all bothpolarizationmodes.Theoutputelectricfieldofthefiber–microspheresystemthenobeys thefollowingtransformation: A (w ) A (w )= T T (w )eiqX(w )A (w ), 0X X all X 0X → A (w ) A (w )p= TpA (w ) (2) 0Y Y all 0Y → p Thephaseshiftq (w )isobtainedasfollows: X S (w ) q (w )=Tan 1 3 ArgA +ArgA (3) X − (cid:18)S (w )(cid:19)− 0X 0Y 2 where S (w )=I (w ) I (w ) and S (w )=I (w ) I (w ) are Stokes parametersat the fre- 2 P M 3 R L quencyw .I (w )andI−(w )arerespectivelytheinte−nsitiesofdiagonal/antidiagonalpolariza- P M tionmodes,andI (w )andI (w )arerespectivelytheintensitiesofright/leftcircularpolariza- R L tion modes, where X and Y are taken to be horizontaland vertical polarization modes. Note thatI (w )isgivenby[27] P A (w )2 IP(w )= | P2h | 1 A (w )+A (w ) 2 X Y = (4) 2h (cid:12) √2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) where h = m /e is vacuumimpedance.(cid:12)Similarly,I (w )(cid:12), I (w ), and I (w ) are foundus- 0 0 M R L ingA (w )=p(A (w ) A (w ))/√2,A (w )=(A (w ) iA (w )/√2,andA (w )=(A (w )+ M X Y R X Y L X iA (w )/√2. Figs.2−(c)and(d)arephaseshiftspectra−obtainedforundercoupling(Fig.2(a)) Y andovercoupling(Fig.2(b)),respectively.Theverticalaxisindicatesthephaseshiftq (w ).We X subtractedaconstantphaseshiftduetothesmallbirefringenceofthefiber(0.9radinFigs.2(c) and(d)).Thephase shiftasymptoticallyapproaches0rad in thehighlydetunedregionin the undercouplingcondition,whereasitapproaches p intheovercouplingcondition( 2.9radat ± ± 100MHz).Thus, the transition of the phase shift spectrum from undercouplingto overcou- ± pling[20,21]isclearlyobservedusingaprobelightwithn¯=0.41.Notethattheparasiticdip at 50MHzinFig.2(b)causedasmallstep-likechangeat-50MHzinFig.2(d).Thechange − is small(0.3rad)maybebecauseitisstill in theundercouplingconditionwith smallcoupling efficiencyk . 5. Purityspectrumofthefiber–microspheresystem We next investigated the depolarization, or dephasing, in this system using quantum state tomography [22]. This method has the advantage that it estimates the most probable state, whichisphysicallymeaningfulevenwhentherearestatisticalfluctuationsduetofinitephoton counting,whichiscriticalwhenn¯ 1.Thisenablesthe’purity’tobeestimated,whichcanbe ≤ usedtoevaluatethedepolarization.Thedensitymatrixofasinglepolarizationqubitisobtained bymeasuringStokesparametersS ,S ,S ,andS oftheoutputprobelight.Thedensitymatrix 0 1 2 3 rˆ forthesingle-photonoutputstateisgivenby 1 S S S rˆ = Iˆ+ 1Zˆ+ 2Xˆ 3Yˆ . (5) 2(cid:18) S S −S (cid:19) 0 0 0 Here,IˆistheidentitymatrixandXˆ,Yˆ,andZˆ arethePaulispinmatricesinthebasisofX-and Y-polarizationmodesofasinglephoton.Inquantumstatetomography,thedensitymatrixrˆ(w ) is estimated using the maximum-likelihoodestimation methodwith the differentialevolution algorithminMathematica7.0(scalingfactor=1.5)undertheconstraints(a)Trrˆ(w )=1and (b)rˆ(w ) 0;theformerconstraintstatesthatthetotalprobabilityisunityandthelattercon- ≥ straintstatesthattheprobabilitiesarenotnegative.Weperformedthistomographyfordifferent frequenciesw and obtained the frequency-dependentr (ˆw ). From r (ˆw ), the purity spectrum p(w )isobtainedasfollows. p(w )=Tr[rˆ(w )2]. (6) Thispurityisunitywhenacompletelypolarizedphotonexperiencesnodepolarization,whereas itis0.5whenthephotoniscompletelydepolarized.Whentheabsolutedetuningfromthereso- nancefrequencyisrelativelylarge(D f >20MHzinFig.2(e)),thepuritywas0.999 0.004 | | ± (basedonanaverageof200points)forundercouplingand0.998 0.004forovercoupling.This ± highpurityismainlyduetotheoptimizationprocedureandtheintrinsicnondepolarizationof thetaperedfiber.Inundercoupling,thepurityis0.992 0.016withinthebandwidthaboutthe resonance(D f <15MHz)(theminimumis0.913).In±overcoupling,thepurityis0.982 0.024 withintheb|and|widthabouttheresonance(D f <50MHz)(theminimumis0.892.N±otethat | | thepurityishighforalldetunings.Thepossiblereasonsforthesmalldegradationinthepurity spectra aboutthe resonanceis consideredto be the intrinsicdepolarizationofthe system and spectraljitter.Thus,usingquantumstatetomography[22],wehavedemonstratedthatphotons thatpassthroughthefiber–microspheresystemexperienceatinydepolarization.Basedonthis experimentalresult,whichindicateshighpurityforbothcouplingconditions,weconsiderthat thefiber–microspheresystemissuitableforapplicationsinvolvingcoherentquantumdevices. Our recent experiments have demonstrated that it is possible to evaluate photonic quantum devicesusing,forexample,diamondNVcenterswithasimilarsetup[12] 6. Conclusion Wesucceededinmeasuringphaseshiftspectraofamicrospherecavitycoupledwithatapered fiber usinga weakcoherentprobelightatthe single photonlevel.We utilizeda taperedfiber with almostnodepolarizationand constructeda verystable phase shiftmeasurementscheme basedonpolarizationanalysisusingphotoncounting.Usingaveryweakprobelight(n¯=0.41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling(at gap distances of 500 and 100 nm, respectively).We also used quantum state tomography to obtain a ’purity spectrum’. Even in the overcoupling regime, the aver- age purity was 0.982 0.024 (minimum purity: 0.892), suggesting that the coherence of the ± fiber–microspheresystemwaswellpreserved.Basedontheseresults,webelievethissystemis applicabletoquantumphasegatesusingsinglelightemitterssuchasdiamondnitrogenvacancy centers. Acknowledgements Thecurrentworkwassupportedinpartbytheprogram“R&DSupportSchemeforFundingSe- lectedITProposals”oftheMinistryofPublicManagement,HomeAffairs,PostsandTelecom- munications, a Grant-in-Aid from the Japan Society for the Promotion of Science, the 21st CenturyCOEProgram,CRESTProject,JapanScienceandTechnologyAgency,JSPS-Grantin AidforScientificResearchonInnovativeareas‘QuantumCyberneticsf,FundingProgramfor World-LeadingInnovativeR&DonScienceandTechnology,andSpecialCoordinationFunds forPromotingScienceandTechnology.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.