PhasecollapseandrevivalofaBose-Einsteincondensateinducedbyanoff-resonantopticalprobe field L. G. E. Arruda,1,∗ G. A. Prataviera,2,† and M. C. de Oliveira3,‡ 1DepartamentodeF´ısica, UniversidadeFederaldeSa˜oCarlos, 13565-905, Sa˜oCarlos, SP,Brazil 2DepartamentodeAdministrac¸a˜o,FEA-RP,UniversidadedeSa˜oPaulo,14040-905,Ribeira˜oPreto,SP,Brazil 3InstitutodeF´ısicaGlebWataghin, UniversidadedeCampinas, 13083-970, Campinas, SP,Brazil (Dated:January20,2017) WeconsiderasinglemodeatomicBose-Einsteincondensateinteractingwithanoff-resonantopticalprobe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics through frequencies detuning. Also, incoherent effectsoverthecondensatephaseareincludedbyconsideringacontinuousphoto-detectionovertheprobefield. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the 7 condensate is achieved by the probe photo-detection. Whether or not conditioned to the number of photons 1 detected,thephoto-detectionprocesscontributestosuppressesthetypicalcollapseandrevivaldynamics. 0 2 PACSnumbers:03.75.Kk,42.50.Ct,32.80.-t n a J I. INTRODUCTION of the atomic field statistical properties [9–11]. Previously, withasetuprelyingontheatomicsystem-probefieldinterac- 9 1 CollapseandrevivalphenomenainBose-Einsteinconden- tionmediatedthroughaclassicalpump[12],weshowedthat sates (BECs) have been investigated since 1996 [1], shortly under continuous photo-counting, the moments of the probe ] afteritsexperimentalachievementwithultracoldatoms[2,3]. light photon number might carry information about the even h They are a consequence of the quantized structure of the moments of the atom number. However, neither the possi- p - matter field and the coherent interactions between the atoms bility of controlling of atomic properties with the proposed nt through atomic collisions (See [4] and references therein). setup, oradetailedanalyzesabouttheeffectsofconditioned a Dynamically originated due the presence of nonlinearities, singlephoto-countingeventsovertheBECstate,wascarried u phasecollapseandrevivalissimilarinnaturetothecollapse out. Such analyzes is important, given the interest in phase q andrevivalappearinginRabioscillationswhenasingletwo- collapse time, since in some situations the detection process [ level atom interacts with a single mode of a quantized opti- allowsanadditionalcontrolorbetterinferenceofparameters. 1 cal field, or when a coherent light field propagates in a non- Forexample,in[13]anopticalprobecontinuousdetectional- v linear medium [5]. The possibility of coexistence of non- lows one to create relative phase of two spatially separated 2 linear effects due to external influences opens an interesting atomic BEC. Also, as showed in [14], even dissipative envi- 2 venue for investigating and controlling [6] such phenomena ronmentscanbeusefultotailordynamicsofstatesandphase 5 inBECs. Particularly, thecontrolofphasecollapseinBECs incoldatomicsamples. 5 isextremelyrelevantforatomicinterferometrysinceitmight To address these questions, in this paper we analyze the 0 . preventphasediffusion,whileallowingaperformancebelow situation in which a single mode atomic BEC is coupled to 1 thestandardquantumlimit[7]. Severalattemptsonbothde- a quantized optical probe field, through an undepleted opti- 0 velopingnewtoolsandpushingforwardthepossiblefrontiers calpump. Thenonlinearnatureoftheengineeredinteraction 7 1 for collapse control have been investigated for double-well between the atoms and the probe field, induces a proper dy- : condensates (See [6] and references therein). A possible ap- namics of collapse and revival of the atomic phase, even in v proachistoconsidertheactionofanexternallightprobeover theabsenceofatomiccollisionsforaverydilutedatomicgas. i X the atomic system, although, in general this leads to an even We show that the characteristic revival time, depends on the r worsesituationwherethelightfielditselfinducesphasecol- commensurability between the parameters such as the cou- a lapse in an irreversible manner. It is expected that, unless a pling constants and the detuning between the transition fre- timedependentinteractionisemployed, nofurthercontrolis quencyofthetwolevelatoms(thatrepresentsourBEC)and achieved. thefrequency ofthe pumpfield, as wellas, the atomiccolli- Nonetheless, the interaction of the atomic system with a sionparameter. This allowscontrol overthe atomiccollapse quantized light probe field can be engineered with the assis- andrevivalthroughtheeffectiveatom-lightcouplingparame- tanceofanadditionalpumpfield(See[8]foranexcellentre- ters. Inaddition, weincludecontinuousphoto-countingover viewonthistopic).Thisschemeallows,e.g.,thesimultaneous the probe field and analyze its possible control over the col- amplification of atomic and optical fields, as well as control lapseandrevivaltimes. Weconcludethatnofurthercontrolis achievedbythesemeasurements. Thepaperisorganizedasfollows: InSectionIIwededuce the model for a BEC trapped in a single well potential, in- ∗[email protected] teractingwithaclassicalundepletedopticalfieldandaquan- †[email protected] tized optical probe mode in the far-off resonant regime. In ‡marcos@ifi.unicamp.br Section III, we analyze the collapse and revival dynamics of 2 theBECphaseusingtheHusimifunctionandthevarianceof n,andtogetherwiththecreationoperator,satisfiestheregular the phase operator. We show how the coupling parameters comutationrelation: (cid:2)c ,c†(cid:3)=δ . Withtheexpansion(2), n n nm between atomsand light determineand enable tocontrol the theHamiltonian(1)takesthefollowingform collapse and revival dynamics. In Section IV we include an (cid:32) (cid:33) incoherent process through a continuous photo-detection on H =(cid:126)(cid:88) ω˜ + |g2α2|2 c†c +(cid:126)(cid:88)κ c†c†c c thequantizedopticalprobefield. Theeffectofopticalphoto- n ∆ n n ijlm i j l m counting over the BEC phase dynamics is analyzed. Finally, n ijlm inSectionVwepresenttheconclusions. +(cid:126)(cid:88)(cid:18)g1∗g2α2χ a†c†c + g2∗g1α2∗χ a c† c (cid:19) ∆ mn 1 n m ∆ nm 1 m n mn (cid:32) (cid:33) II. MODEL +(cid:126) δ+ |g1|2 (cid:88)c†c a†a , (3) ∆ n n 1 1 n We consider a system of bosonic two-level atoms inter- acting via two-body collisions and coupled through electric- where dipoleinteractionwithtwosingle-moderunningwaveoptical U (cid:90) fireeslpdescotifvefrleyq.uTenhceiepsroωb1eaonpdtiωca2l, afinedldw(a1v)eivsectrteoartsekd1qaunadntkum2, κijlm = 2(cid:126) d3rϕ∗i(r)ϕ∗j(r)ϕl(r)ϕm(r), (4) mechanically,whilethepump(2)isundepletedandistreated istheinter-modescollisionparameterand classically. Both fields are assumed to be far off-resonance fromanyelectronictransition,andtheexcitedstatepopulation (cid:90) issmallsothatspontaneousemissionmaybeneglected. Sim- χ = d3rϕ∗ (r)e−ik·rϕ (r), (5) nm m n ilarly, collisionsamongexcitedstateatoms,aswellas, colli- sionsbetweengroundstateatomswithexcitedstateones,are is the optical transition matrix elements from the mth state veryimprobableandcanalsobeneglected. Inthisregimethe to nth state. Hamiltonian (3), accounts for the process of excited state can be adiabatically eliminated and the ground atomic and optical parametric amplification due momentum stateatomicfieldplustheopticalprobeevolvecoherentlyun- exchangebetweenatomsandopticalfield[10]. Here,weas- dertheeffectiveHamiltonian[10,12,15] sume a sufficiently low temperature so that all atoms form a (cid:90) (cid:34) U |g α |2(cid:35) pureBECinthetrapgroundstate,andtoavoidscatteringpro- H = d3rΨ†(r) H0+ 2Ψ†(r)Ψ(r)+(cid:126) 2∆2 Ψ(r) cesswhichtransfersatomstoothertrapmodesviamomentum exchange we consider that k ≈ k (and ω ≈ ω ). With 1 2 1 2 +(cid:126)(cid:90) d3rΨ†(r)(cid:20)g1∗g2α2a†e−ik·r+H.c.(cid:21)Ψ(r) these assumptions, only the atomic operators c†0 (c0) corre- ∆ 1 spondingtocreation(annihilation)ofatomsatthetrapground (cid:34) (cid:35) stateremains,andtheHamiltonian(3)simplifiesto |g |2 (cid:90) +(cid:126) (ω1−ω2)+ ∆1 d3rΨ†(r)Ψ(r) a†1a1. (1) (cid:32) |g |2(cid:33) H =(cid:126) ω + (cid:101)2 c†c +(cid:126)κc†c†c c (cid:101)0 ∆ 0 0 0 0 0 0 Ψ(r)isthegroundstateatomicfieldoperatorwhichsatisfies theusualbosoniccommutationrelations(cid:2)Ψ(r),Ψ†(r(cid:48))(cid:3) = (cid:18)g g∗ g g∗ (cid:19) |g |2 δ(r−r(cid:48)).H0 =−2(cid:126)m2 ∇2+V(r)isthetrappedatomsHamil- +(cid:126)c†0c0 1∆(cid:101)2a+ (cid:101)2∆1a† +(cid:126) ∆1 c†0c0a†a, (6) tonian,wheremistheatomicmassandV(r)isthetrappoten- tial.∆=ω2−νisthedetuningbetweentheatomictransition whereg(cid:101)2 = g2α2 andκ = 2U(cid:126)(cid:82) d3r|ϕ0(r)|4 isthecollision andtheopticalpumpfrequencies,g1andg2aretheatom-light parameter between the atoms in the trap ground state. The coupling coefficients, and k = k1 − k2. The operators a1 optical probe mode index was dropped in order to simplify and a† (given in a rotating frame with frequency ω ) satisfy thenotation. 1 2 (cid:104) (cid:105) the commutation relation a ,a† = 1, and α is the pump Assuming that initially the atoms plus optical field joint 1 1 2 state is completely disentangled, i.e., |ψ(0)(cid:105) = |α(cid:105) ⊗ |β(cid:105), amplitude. Two-bodycollisionswereincludedinthes-wave where both, atomic (|α(cid:105)) and optical field (|β(cid:105)) are suposed scatteringlimit,whereU = 4π(cid:126)2a andaisthes-wavescatter- m tobecoherentstates,thetimeevolutionofthecombinedsys- inglength[16]. temcanbeobtainedexactlyfromtheHamiltonian(6)(Seethe We expand the atomic field operators in terms of the or- appendixforadetailedderivation),andisgivenby thogonalsetoftrapeigenmodes{ϕ (r)},as n Ψ(r)=(cid:88)cnϕn(r), (2) |ψ(t)(cid:105)=e−|α2|2 (cid:88)αm√e−Φm(t)|m(cid:105)⊗|βm(t)(cid:105), (7) m! n m where the trap eigen-modes satisfies the ortogonality rela- where tion (cid:82) d3rϕ∗ (r)ϕ (r) = δ and the eigenvalue equation m n mn fHre0qϕune(nrc)ie=s).(cid:126)cω(cid:101)nnisϕtnh(era)to(ω(cid:101)mnainsntihheilactoiorrnesoppoenradtionrgintrathpeemigoedne- βm(t)=βe−i|g1∆|2mt+ gg(cid:101)21(e−i|g1∆|2mt−1), (8) 3 istheprobefieldcoherentstatetimedependentamplitudeand 1(cid:104) (cid:105) g Φ (t)= |β (t)|2−|β|2 + (cid:101)2 [β (t)−β] m 2 m g m 1 −iω mt−iκm(m−1)t, (9) (cid:101)0 istherelativephaseintroducedbythedynamics. Thedensity operator for the combined system is ρ(t) = |ψ(t)(cid:105)(cid:104)ψ(t)| from which we can obtain the BEC state by tracing over the optical state, ρ (t) = Tr ρ(t), where A and L stand for A L atomsandlight,respectivelly. III. CONDENSATEPHASEDYNAMICS Analyzing each term from Hamiltonian (6) separately, we are able to visualize different scenarios. For instance, its FIG.1. Husimifunctiondynamicsofthepre-selectedatomicden- second term plays a key role on the collapse and revival of sity operator in the limit |g1|2 (cid:29) κ. In (a) t = 0; (b) t = ∆ the atomic phase dynamics, typical of one-mode BECs (See 0.1(2π∆/|g1|2);(c)t=0.4(2π∆/|g1|2);(d)t=0.5(2π∆/|g1|2); Fig. 1 in Greiner et al. [4] for the atomic Husimi func- (e)t = 0.6(2π∆/|g1|2);(f)t = 0.9(2π∆/|g1|2). Afullrevivalof tion QA(αA,t) = π1(cid:104)αA|ρA(t)|αA(cid:105) corresponding here to theinitialcoherentstatein(a)isreachedattLrev =2π∆/|g1|2. |g1|2 (cid:28) κ). After evolving into states of totally uncertain ∆ phasesandalsosomeexactsuperpositionsofcoherentstates, several times in Fig. 2(a) for the atomic mode at the chosen the atomic state fully recover the initial phase at the revival timescale. Howeverthisbehaviorisveryfragileandchanges timetCrev =π/κ. completelywiththeinclusionofaverysmallperturbationin ThethirdandfourthtermsinHamiltonian(6)describethe |g |2/κ∆. The revival time for this scenario can be inves- 1 couplingsbetweenatomsandthequantumopticalprobe. The tigated by expanding the collision and interaction terms in a thirdtermcorrespondstoatransferofphotonsfromtheclassi- Fock basis, {|n(cid:105),|m(cid:105)} for the atoms and light field, respec- calundepletedpumpopticalfieldtothequantizedprobemode tively. Therevivaltimeisnotdependentonthethirdtermof mediatedbytheatoms. Thefourthtermisquiterelevantsince theHamiltonian(6),whoseeffectisonlytodisplaceaninitial it will also contribute to the collapse and revival of the BEC lightfieldcoherentstatedependingonthenumberofatomsin phase (and of the optical probe) due to the cross-Kerr type the BEC. Then, considering a rotating frame with frequency of nonlinearity. The regime |g∆1|2 (cid:29) κ, for a small detuning ω(cid:101)0 + |g(cid:101)∆2|2, the revival time coincides with the recurrence of (largeenoughthoughtopreventspontaneousemission[8])or theinitialphase,whichwilltakeplacewheneverthefollowing for a very diluted atomic gas (κ ≈ 0), is depicted in Fig. 1. relationissatisfied Thecollapseandrevivaldynamicsoccursatacompletelydis- tinctrevivaltimetLrev = 2π∆/|g1|2,dependingontheatom- e−i(cid:20)κn(n−1)+|g∆1|2nm(cid:21)t =e−2ilπ, (10) lightinteractionparameter. Similarlytheprobelightfieldwill also show a collapse and revival dynamics. The only extra wherel,m,andnarepositiveintegers. Thisoccursfortimes effect is due to the third term in Hamiltonian (6), which dis- suchthat places an initial light field coherent state depending on the (cid:34) (cid:35) numberofatomsintheBEC. 2κ∆ l t = tC , (11) A nontrivial dynamics occurs when both the second and rev |g |2 κ∆ n(n−1)+nm rev fourth therms in (6) are of the same order, which can be 1 |g1|2 reached by varying the detuning ∆. In a general way the since tC = π/κ. The revival depends on the commensura- rev revival occurs whenever the terms in a expansion spanned bility between |g |2/∆ and κ. Since n and m are integers, 1 by Fock states of the atomic state are in phase. While it is when|g |2/κ∆isrational(≡ p,withp,qintegers)wehave 1 q easy to describe this when only the collision term or the in- (cid:20) (cid:21) teraction with the optical probe are on, the situation is more 2κ∆ lq t = tC . (12) complicated when both terms are relevant. To show that, let rev |g |2 pn(n−1)+qnm rev 1 us analyze the behavior of the variance of the phase opera- tor for the atomic mode [17]. For an initial coherent state Given that pn(n−1)+qnm is an integer and l is arbitrary, of a large amplitude α, the phase variance is approximately there always exists a lq = pn(n−1)+qnm in the numer- V(φ) = 1/4|α|2 andclearlyshowsthatthephaseiswellde- ator of Eq. (12), so that the revival time reduces to trev = fined for large α. For the chosen amplitude of |α|2 = 3 the 2|gκ1∆|2tCrev. However, for an irrational |g1|2/κ∆, there is no phase revival, as depicted in Fig. 2, occurs every time V(φ) revivalatall. approaches zero. Note that the collapse and revival dynam- Letusexemplifywiththeinclusionofperturbationsinthe ics similar to the one in Fig. 1 in Greiner et al. [4] repeats interactionwiththelightfield(bydecreasingthedetuning).In 4 Fig. 2(b), for|g |2/κ∆ = 1/50, weseeaninhibitionofthe where|α (cid:105)areoddandevencoherentstates. Suchstatesare 1 ± number of revivals at this time scale, even though an actual useful,e.g.,forteleportation[18]. revivaloccursatadifferenttimescaleat100tC .Inasimilar rev wayFig.2(c)for|g |2/κ∆=1/5,showsthattherevivaltime 1 is10tC ,andinFigs.2(d)and2(f),for|g |2/κ∆=1/2,and IV. PROBEFIELDPHOTO-DETECTION rev 1 |g |2/κ∆ = 1, where the revival time is 4 tC and 2 tC , 1 rev rev respectively. However, for g2 = 2, as in Fig. 2(e), there Sofarwehaveassumedacoherentunitaryevolution. Now, κ∆ π is no phase revival, as we expected. The relevant aspect on we turn to the situation where the probe light field is being detected. In several situations detection allows an additional control [13, 14]. Here we will see that the continuous pho- todetection over the probe field does not give any additional controloverthesinglemodeBECphase. We employ a continuous photodetection model [12, 17] characterizedbyasetofoperationsN (k),suchthat, t N (k)ρ(0) ρ (t)= t , (14) k P (k,t) where P (k,t) = Tr[N (k)ρ(0)] is the probability that k t photocountsareobservedduringthetimeintervalt. Theop- eration (cid:90) t (cid:90) tk (cid:90) tk−1 N (k)ρ= dt dt dt ... t k k−1 k−2 0 0 0 (cid:90) t1 ... dt S JS ...JS ρ (15) 1 t−tk tk−tk−1 t1 0 accounts for all possible one-count process, with Jρ = γaρa† (where γ is the detector counting rate) followed by thenon-unitaryevolutionbetweenconsecutivecountsS ρ = t eYtρeY†t, with Y = −iH − γa†a. After k-counts on the (cid:126) 2 probefield,theconditionedjointstatebecomes 1 (cid:88) ρ (t)= C(k) (t)|m(cid:105)(cid:104)n|⊗|β (t)(cid:105)(cid:104)β (t)|, k P (k,t)k! m,n m n m,n (16) whereCm(k,)n(t)=e−|α|2α√mα∗n [Fm,n]keΦm(t)+Φ∗n(t),with m!n! (cid:26) Λ Λ∗ (cid:104) (cid:105) (cid:27) Fm,n(t)=γ −Γ m+Γn∗ e−(Γm+Γ∗n)t−1 +GmG∗nt m n (cid:26)G Λ∗ G∗Λ (cid:27) +iγ m nf∗(t)− n mf (t) , (17) Γ∗ n Γ m n m FIG.2. PhasevariancefortheBECowingtobothatomcollisions andinteractionwiththeopticalprobe. Thelatteronedisturbsenor- wherefm(t)≡(cid:0)e−Γmt−1(cid:1)and mouslytherevivaltime,whentheatomicstatereturnsapproximately 1(cid:16) (cid:17) to a coherent state. From top to bottom, (a) |g |2/κ∆ = 0, (b) Φ (t)=− |β|2−|β (t)|2 +iG Λ f (t) |g |2/κ∆ = 1/50,(c)|g |2/κ∆ = 1/5,(d)|g |12/κ∆ = 1/2,(e) m 2 m m m m 1 1 1 |g1|2/κ∆=2/π,and(f)|g1|2/κ∆=1. −|G |2Γ∗ t−i[(ω + |g2|2)m+κm(m−1)]t. m m (cid:101)0 ∆ the atomic revival time change is the possibility to control it (18) throughthevariationof∆. Whenevertherevivaloccurs,and only then, both optical pump and the BEC are left disentan- In Eqs. (17) and (18), Gm = ∆g1∗Γg(cid:101)m2 m, Λm = β + iGm, gled. Besidesthecontrolovertherevival,onecouldbeinter- Γm =i|g∆1|2m+ γ2,andβm(t)=Λme−Γmt−iGm. Besides estedinthisavailableentanglement. Severalentangledcoher- P (k,t)isgivenby entstatesoccur,beingatypicalexampleatexactlyhalfofthe rleefvtivinalatsimtaete- the optical probe and BEC are approximately P (k,t)= e−k|α!2|2 (cid:88)(cid:0)|αm|2!(cid:1)m [Fm,m(t)]ke−Fm,m(t). m |ψ(cid:105)≈|β(cid:105)|α (cid:105)+|β(cid:105)|α (cid:105), (13) (19) + − 5 In Fig. 3 we plot the phase variance and the correspond- ing probability of occurrence for (a) k = 0 and (b) k = 1, respectively, forthe same parameters foundin Fig. 2(f), and withγ =2×10−2κ. WeseeinFig. 3(a)thattheno-counting doesnotaffecttherevivalofthestate,atthetypicaltimescale for a no-count event (Fig. 3(d)). We only see some change after a few collapse and revivals. At the revival time scale theprobabilitythatk = 1countingoccursislargeenoughso that the chance to get a revival of the BEC phase is severely compromisedasweseeinFig. 3(b). Infactthesameoccurs for any k (cid:54)= 0. Therefore the phase evolution given by the postselected state is very sensitive, and whenever a photode- tection event occurs the whole atom-light system state is so affectedthatthereisnochanceforarevivaloftheinitialBEC phase. This contrasts to other situations where the detection processhelpstodefineaphase. Thereforenofurthercontrol isachieved, otherthantheonebythedetuningoftheoptical pump frequency. For completeness, in Fig. 3(c) we plot the phase variance for unconditioned (pre-selected) state of the jointBEC-lightsystemundertheeffectofcounting, (cid:88) ρ(t)= P (k,t)ρ (t) k k (cid:88) = C (t)|β (t)(cid:105)(cid:104)β (t)|⊗|m(cid:105)(cid:104)n|, (20) m,n m n FIG.3. Therevivalofthephaseisseverelyaffectedbythecounting m,n processasdepictedbythephasevariancefortheBECwiththephoto- with Cm,n(t) = e−|α|2α√mα∗neΦm(t)+Φ∗n(t)+Fm,n(t). This is countingprocessataγ =2×10−2κcountingrate.Otherparameters m!n! aresimilartotheonesinFig.2(f).(a)Varianceforano-countevent, thesituationwhenoneisabsolutelyignorantaboutthecount- and(b)thevarianceforasinglecountevent.(c)Varianceforthepre- ing events, and therefore the best one can do is to assume selectedstate(20). (d)P(0,t)(purpleline),P(1,t)(redline),and a convex sum of all conditioned states ρk(t) occurring with probabilityofanarbitrarycountingevent,[1−P(0,t)](blueline). probabilityP(k,t).Effectivelytheevolvedstate(20)isequiv- alent to the situation where the light field is under the action ofanamplitudedampingchannel,duetocontactwithazero- temperaturereservoir.Thereforethepre-selectedstatereflects thejointsystemincoherentevolution. WeseeinFig3(c)thattheremightbeachanceofapartial orcompleterevivalunderdampingdependingonγ. Thede- pendence on the counting rate is better seen in Fig. 4 where thephasevariancevalueattherevivaltimesisplottedagainst the variation of γ for the pre-selected state. We can see that above γ/2κ = 6×10−4 (γ/2κ = 1.2×10−3) there is not a single phase revival, inside a tolerance of 10% (20%). All thefollowingrevivalscanbetrackedinasimilarmannerand obviouslywillbemoresensitivetothevariationofγ. Were- markthattheobservedeffectforonecountingevent(k = 1) FIG. 4. Phase variance at the revival time calculated with the pre- wouldbesimilarlyobservedhadwetakenanarbitrarycount- selected state (20) as a function of the detector rate γ for the case ingevent,givenbythestate showninFig. 2(f). (a)-(e)correspondtothefirst-fifthrevivals,re- spectively. Thedashedanddottedlinesrepresenttoleranceof10% 1 and20%intherevival,respectively. ρ(t)= [ρ(t)−P(0,t)ρ (t)], (21) (cid:101) 1−P(0,t) 0 occurring with probability 1 − P(0,t), with no further ob- one-mode quantized optical probe, is thoroughly dependent servedadvantagethantheoneconsideredinFig. 3. ontheatom-lightinteractionparameters. Thisdependenceal- lowssomedegreeofopticalcontrolontheatomiccollapseand revivaltimesbyadjustingthecouplingbetweentheatomsand V. CONCLUSION the optical field, through the variation of frequency detuning ∆. Inaddition,weanalyzetheeffectsofdissipationandpho- In conclusion, the observed collapse and revival of the todetectionovertheopticalfieldupontheBECphasedynam- macroscopic matter wave field of a BEC interacting with a icstocheckwhetheranadditionalcontrolwouldbepossible. 6 Weshowthatincontrastwithothersituations,suchastheone c-number expansion coefficients. The propagator for this presentindouble-wellcondensates[13],thephaserevivalfor Hamiltonianwillsatisfythefollowingequation a single mode BEC is very sensitive to detection and never occurs for k (cid:54)= 0 counting events on the optical probe. The ∂U (cid:88) i(cid:126) = h (t)a†lamU. (A.5) overalleffectofthedetectionistoinduceaphasedampingin ∂t l,m l,m thecondensate. ThereforeforthesinglemodeBECinteract- ingwithaquantumopticalprobe,theonlypossiblecontrolof Now, consider the theorem [? ] that says if m phasecollapseandrevivalisthroughthefrequencydetuning. is an integer and f(cid:0)a,a†(cid:1) = f(n)(cid:0)a,a†(cid:1) (where the superscript denotes normal order), then amf(cid:0)a,a†(cid:1) = N (cid:110)(cid:16)β+ ∂ (cid:17)mf¯(n)(β,β∗)(cid:111) = N (cid:8)(cid:104)β|amf(cid:0)a,a†(cid:1)|β(cid:105)(cid:9), ACKNOWLEDGMENTS ∂β∗ wheref¯(n)(β,β∗)isaordinaryfunctionofthecomplexvari- This work is partially supported by the Brazilian Na- ableβ,andN isanoperatorthattransformsanordinaryfunc- tionalCouncilforScientificandTechnologicalDevelopment tion f¯(n)(β,β∗) to an operator function f(n)(cid:0)a,a†(cid:1) by re- (CNPq),FAPESPthroughtheResearchCenterinOpticsand placing β by a and β∗ by a†. With the help of this theorem Photonics(CePOF)andbyPNPD/CAPES. wecanrewrite(A.5)as i(cid:126)∂U =(cid:88)h (t)a†lN (cid:26)(cid:18)β+ ∂ (cid:19)mU¯(n)(β,β∗,t)(cid:27), Appendix:DerivationofEquations(7),(8)and(9) ∂t l,m ∂β∗ l,m (A.6) To obtain the state given by Eq. (7), we apply the prop- whereU¯(n)(β,β∗,t) = (cid:104)β|U(β,β∗,t)|β(cid:105). Ifwetakediag- agator U(t) = exp(cid:0)−iHt(cid:1) into the initial state given by onalcoherentstatematrixelementsofbothsidesof(A.6)we (cid:126) Eq. |ψ(0)(cid:105) = |α(cid:105)⊗|β(cid:105)withH givenby(6). Sincethefirst obtainthefollowingc-numberequation twotermsintheHamiltonian(6)commutewiththeremaining ones,wecanwritethepropagatorasfollows i(cid:126)∂U¯(n) =(cid:88)h (t)β∗l(cid:18)β+ ∂ (cid:19)mU¯(n), (A.7) ∂t l,m ∂β∗ U(t)=e−i[ωAn0+κn0(n0−1)]te−i(Fa+F∗a†+ξa†a)n0t, l,m (A.1) sincetherighthandsideisinnormalorder. Solving(A.7),we whereωA =ω(cid:101)0+ |g(cid:101)∆2|2,n0 =c†0c0,F = g1∆g(cid:101)2∗ andξ = |g∆1|2. obtain |β(t)(cid:105) by |β(t)(cid:105) = N (cid:8)U(n)(β,β∗,t)(cid:9)|β(t0)(cid:105). In By expanding the initial atomic state in the Fock basis, the ourparticularcase,withthegeneratorH ,wehave DHO application of the propagator over the global initial state is givenby ∂U¯(n) (cid:18) ∂ (cid:19) i(cid:126) =(cid:126)ξ β∗ β+ U¯(n) ∂t m ∂β∗ U(t)|ψ(0)(cid:105)=e−|α2|2 (cid:88)m √αm2!e−i[ωAm+κm(m−1)]t|m(cid:105) +(cid:126)(cid:20)Fm(cid:18)β+ ∂∂β∗(cid:19)+Fm∗β∗(cid:21)U¯(n).(A.8) ⊗e−i(Fa+F∗a†+ξa†a)mt|β(cid:105). (A.2) If U¯(n) = eG(β,β∗,t) where G(β,β∗,t) = A(t) + Tosolvee−i[Fma+Fm∗a†+ξma†a]t|β(cid:105),whereFm = g1∆g(cid:101)2∗mand Bcom(te)sβ i+(cid:2)dAC+(td)Bββ∗++dCβD∗(+t)dβD∗ββ∗,β(cid:3)the=n (ξA.8β)∗βb+e- ξm = |g∆1|2m, we employ the normal ordering method for ξmβ∗(C+dDt β) +dt Fmβd+t Fm∗β∗dt+ Fm(C+Dβm), which solvingSchro¨dingerequation[19]. Thegeneratoroftheevo- canbeseparatedinthefollowingsetofequations lution is the Hamiltonian of a Driven Harmonic Oscillator: H =(cid:126)ξ a†a+(cid:126)F a+(cid:126)F∗a†. TheSchro¨dingerequa- dD DHO m m m i =ξ (D+1), (A.9) tion dt m ∂|β(t)(cid:105) i(cid:126) =H |β(t)(cid:105), (A.3) ∂t DHO dB i =F (D+1), (A.10) hasasolutiongivenby|β(t)(cid:105)=U (t,t )|β(t )(cid:105)where dt m DHO 0 0 |β(t )(cid:105)=|β(cid:105)andU alsosatisfies 0 DHO ∂U dC i(cid:126) DHO =H U , (A.4) i =ξ C+F∗, (A.11) ∂t DHO DHO dt m m subject to the initial condition U (t ,t ) = 1. In gen- DHO 0 0 eral, a Hamiltonian H(cid:0)a,a†,t(cid:1) in the normal order is given dA by H(cid:0)a,a†,t(cid:1) = (cid:80)l,mhl,m(t)a†lam, where hl,m(t) are i dt =FmC, (A.12) 7 and whose solutions are given by D(t) = e−iξmt − 1, andf(a)|β(cid:105)=f(β)|β(cid:105),then B(t) = Fm (cid:0)e−iξmt−1(cid:1), C(t) = Fm∗ (cid:0)e−iξmt−1(cid:1) and A(t)= |Fξmm|2 (cid:0)e−iξmt−1(cid:1)+i|Fm|2t.ξSmince |β(t)(cid:105)=eA(t)+B(t)βeC(t)a†eD(t)βa†|β(cid:105). (A.14) ξm2 ξm By identifying |β(cid:105) = e−|β2|2eβa†|0(cid:105), then we are able to recognisethat (cid:110) (cid:111) |β(t)(cid:105)=eA(t)+B(t)β−|β2|2e{[1+D(t)]β+C(t)}a†|0(cid:105). (A.15) |β(t)(cid:105)=U(t)|β(cid:105)=N eA+Bβ+Cβ∗+Dβ∗β |β(cid:105) IfwesubstitutetheA(t),B(t),C(t)andD(t),ξ ,andF (cid:110) (cid:111) m m =eA(t)eC(t)a†N eD(t)β∗β eB(t)β|β(cid:105), (A.13) in(A.15)werecovertheEquations(7),(8)and(9). [1] M.LewensteinandL.You,Phys.Rev.Lett.77,3489(1996). [11] V. V. Franc¸a and G. A. Prataviera, Phys. Rev. A 75, 043604 [2] M.H.Anderson,J.R.Ensher,M.R.Matthews,C.E.Wieman, (2007). andE.A.Cornell,Science269,198(1995). [12] G.A.PratavieraandM.C.deOliveira,Phys.Rev.A70,011602 [3] K.B.Davis,M.O.Mewes,M.R.Andrews,N.J.vanDruten, (2004). D.S.Durfee,D.M.Kurn, andW.Ketterle,Phys.Rev.Lett.75, [13] M. Saba, T. A. Pasquini, C. Sanner, Y. Shin, W. Ket- 3969(1995). terle, and D. E. Pritchard, Science 307, 1945 (2005), [4] M. Greiner, O. Mandel, T. W. Hansch, and I. Bloch, Nature http://science.sciencemag.org/content/307/5717/1945.full.pdf. 419,51(2002). [14] S.Diehl,A.Micheli,A.Kantian,B.Kraus,H.P.Buchler, and [5] M.O.ScullyandM.S.Zubairy,QuantumOptics(Cambridge P.Zoller,NaturePhysics4,878(2008). UniversityPress,1997)p.630. [15] V. V. Franc¸a and G. A. Prataviera, Phys. Rev. A 75, 043604 [6] J. Lozada-Vera, V. S. Bagnato, and M. C. de Oliveira, New (2007). JournalofPhysics15,113012(2013). [16] C. J. Pethick and H. Smith, [7] C. Gross, T. Zibold, E. Nicklas, J. Este`ve, and M. K. Bose-EinsteinCondensationinDiluteGases, 2nd ed. (Cam- Oberthaler,Nature464,1165(2010). bridgeExpress,2008). [8] I. B. Mekhov and H. Ritsch, Journal of Physics B: Atomic, [17] D. F. Walls and G. J. Milburn, QuantumOptics (Springer, MolecularandOpticalPhysics45,102001(2012). 2008). [9] M.G.MooreandP.Meystre,Phys.Rev.A59,R1754(1999). [18] M.C.deOliveira,Phys.Rev.A67,022307(2003). [10] M.G.Moore,O.Zobay, andP.Meystre,Phys.Rev.A60,1491 [19] W. H. Louisel, Quantumstatisticalpropertiesofradiation (A (1999). Wiley-Intersciencepublication,1973)p.528.