ebook img

Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan PDF

18 Pages·2017·2.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan

molecules Article Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan-Zuojin Formulas PingQian1,2,You-BoZhang1,Yan-FangYang1,WeiXu1andXiu-WeiYang1,* 1 StateKeyLaboratoryofNaturalandBiomimeticDrugs,DepartmentofNaturalMedicines, SchoolofPharmaceuticalSciences,PekingUniversityHealthScienceCenter,PekingUniversity, No.38,XueyuanRoad,HaidianDistrict,Beijing100191,China;[email protected](P.Q.); [email protected](Y.-B.Z.);[email protected](Y.-F.Y.);[email protected](W.X.) 2 DepartmentofPharmacognosy,SchoolofPharmacy,ChinaMedicalUniversity,Shenyang110122,China * Correspondence:[email protected];Tel.:+86-10-8280-1569;Fax:+86-10-8280-2724 AcademicEditor:ThomasJ.Schmidt Received:17December2016;Accepted:24January2017;Published:30January2017 Abstract: Zuojin formula (ZJ) is a traditional Chinese medicine (TCM) prescription consisted of CoptidisRhizoma(CR)andEuodiaeFructus(EF),andhasbeenusedtotreatgastrointestinal(GI) diseaseformorethan700years.Fan-Zuojinformula(FZJ)isarelatedTCMprescriptionalsoconsisted ofCRandEFwiththeoppositeproportion. Inrecentyears,ZJwasgettingmoreattentionforits antitumor potential, but the indeterminate pharmacokinetic (PK) behavior restricted its clinical applications,andthePKdifferencesbetweenZJandFZJwerealsolargelyunknown. Consequentlyit is necessary to carry out a full-scale PK study to demonstrate the physiological disposition of ZJ, as well as the comparative PK study between ZJ and FZJ to illustrate the compatibility dose effects. Therefore a liquid chromatographic–tandem mass spectrometry (LC–MS/MS) method was established and validated for the determinations of coptisine, epiberberine, palmatine, berberine, 8-oxocoptisine,8-oxoepiberberine,noroxyhydrastinine,corydaldine,dehydroevodiamine,evodiamine, wuchuyuamide-I,andevocarpineinratplasma.PKcharacteristicsof12alkaloidsafteroraladministration ofZJandFZJwerecompared,andtheresultwasanalyzedanddiscussedwiththehelpofaninsilico study.ThenanintegratedPKstudywascarriedoutwiththeAUC-basedweightingmethodandthetotal drugconcentrationmethod. TheestablishedmethodhasbeensuccessfullyappliedtorevealthePK profilesofthe12alkaloidsinratplasmaafteroraladministrationofZJandFZJ.Theresultsshowedthat: (1)doublepeakswereobservedintheplasmaconcentration-time(C–T)curvesofthealkaloidsafter ZJadministration;buttheC–Tcurvesapproximatelymatchedthetwo-compartmentmodelafterFZJ administration;(2)Therewerewidevariationsintheabsorptionlevelsofthesealkaloids;andeven foracertainalkaloid,thedosemodifiedsystemicexposurelevelsandeliminationratealsovaried significantlyafteradministrationofZJandFZJextracts. Theresultscouldbeinterpretedasfollows: firstly,inhibitioneffectonGImotilitycausedbythehighcontentCRalkaloids(especiallyberberine) inZJcoulddelaytheT ,andincreasetheabsorptionandsystemicexposurelevelsoftheother max alkaloids,andalsoleadtothedoublepeakphenomenonofthesealkaloids. However,forquaternary protoberberine alkaloids (QPA), double peaks were primarily caused by the different Ka value in two intestinal absorption sites; Secondly, absorption was the major obstacle to the systemic exposurelevelofthealkaloidsfromCRandEF.InsilicoandPKstudiessuggestedthattheabsorption of these alkaloids, except QPAs, mainly depended on their solubility rather than permeability; Thirdly,EFcouldpromotetheabsorptionandacceleratetheeliminationofQPAs,andhadagreater influenceontheformerthanthelatter. AtlasttheintegratedPKanalysissuggestedthatberberine and dehydroevodiamine could be regarded as the representative components to reflect the PK behaviorsofCRandEFalkaloidsafteradministrationofZJandFZJ.Inconclusion,theabsorption, eliminationandsystemicexposurelevelofthesealkaloidsweremainlyinfluencedbytheproportion Molecules2017,22,214;doi:10.3390/molecules22020214 www.mdpi.com/journal/molecules Molecules2017,22,214 2of18 ofEFandCR,thepharmacologicaleffectonGImotility,andthephysicochemicalpropertyofthese alkaloids. Thesefindingswouldbehelpfulforabetterunderstandingoftheactivitiesandclinical applicationsofZJ,FZJandotherrelatedTCMprescriptions. Keywords: Zuojin formula; Fan-Zuojin formula; Coptidis Rhizoma; Euodiae Fructus; alkaloids; pharmacokinetic 1. Introduction Zuojinformula(ZJ)isatraditionalChinesemedicine(TCM)prescriptionconsistedofCoptidis Rhizoma (CR, the rhizome of Coptis chinensis Franch.) and Euodiae Fructus (EF, the fruit of Euodia rutaecarpa (Juss.) Benth.) at a ratio of 6:1. ZJ has been used to treat gastrointestinal (GI) disease for more than 700 years in China. In modern clinics, it is mainly used to treat gastric ulcer,gastroesophagealrefluxdisease,gastritis,pyloricobstruction,etc.[1]. Inrecentyears,ZJhas beeninvestigatedforitsantitumoractivities[2–5],buttheambiguouspharmacokinetic(PK)study restricteditsclinicalapplications. ThePKstudiesofthreequaternaryprotoberberinealkaloids(QPAs), berberine, palmatine and jatrorrhizine in rat plasma after administration of the CR–EF powder hadalreadybeenreported[6],Ourpreviousstudieshaddiscoveredthatcompoundsisolatedfrom ZJ had multiple structural skeletons except QPAs [7–9], Consequently, it is necessary to carry out a multi-components PK study of ZJ, and both structure and bioactivity should be concerned in theselectingofquantitativemarkers. Alkaloids were the major components both in CR and EF. Berberine, palmatine, coptisine and epiberberine,allbelongingtoQPAs,werethemostabundantalkaloidsinCR[10],Studiesdemonstratedthat theyhadwidespectrumofpharmacologicaleffects,includinganti-diarrheal[11],anti-inflammatory[12], anti-cancer [13,14] activities, and therapeutic potential on diabetes, hyperlipemia, hypertension [15], cardiovascular system [16,17] and central nervous system [18,19] diseases. Besides QPAs, tertiary protoberberinealkaloid(TPA)andsimpleisoquinolinealkaloid(SIA)wereothertwotypesofalkaloid in CR, and the major components were 8-oxocoptisine, 8-oxoepiberberine, noroxyhydrastinine and corydaldine. TPAs and SIAs also had notable bioactivities. For example, 8-oxocoptisine had gastric mucousmembrane-protectiveactivity[20],andcouldinhibitP-glycoprotein(P-gp)mediatedmultidrug resistance[21].ThereforefourQPAs,twoTPAsandtwoSIAsfromCRwereselectedasthequantitative markersinthePKstudy.Evodiamineanddehydroevodiamine,belongingtoindoloquinazolinealkaloids (IQAs)withfiveunbrokenringstructures,weretwomajoralkaloidsinEF,andhadbeenreportedto haveanti-inflammatory[22],anti-cancer[23],neuroprotective[24,25],andvasodilatory[26]activities. EFalsocontainedIQAswithbrokenringstructures[7],andwuchuyuamide-Iwaschosenasoneof the quantitative markers to reflect the PK behavior of this type of alkaloid. Besides IQAs, EF also contained quinolone alkaloids (QLAs), which had anti-bacterial [27], anti-inflammatory [28] and anti-cancer[29]activities.SinceevocarpinewasoneofthemostabundantQLAsinEF[30],itshouldalso bemonitoredinthePKstudy.Chemicalstructuresoftheselected12alkaloidswereshowninFigure1. In previous PK studies of ZJ and related TCM prescriptions, discussions about the simple PK results were insufficient, such as the lacked unambiguous interpretation about the double peaks observed on plasma drug concentration-time (C–T) curves. Fan-Zuojin formula (FZJ) was a TCM prescription also consisted of CR and EF, but with the opposite proportion (1:6) [4]; accordingly,acomparativePKstudyofZJandFZJwouldbehelpfultoreflecthowtheproportionof EFandCRinfluencedthePKbehaviorsofthealkaloidsfromthetwoherbs. Astheabsorptionlevel ofcompoundsmainlyinfluencedbytheirsolubilityandpermeability[31,32],aninsilicoassessment wasnecessarytointerpretthewidevariationsoftheabsorptionandsystemexposurelevelbetween thealkaloidswithdifferentstructuralskeletons. Atlast,theintegratedPKstudycouldgiveamore visualizedC–TcurvesandPKparametersofCRandEFalkaloids. Areaundercurve(AUC)-based Molecules2017,22,214 3of18 Molecules 2017, 22, 214 3 of 18 weightingmethodwasthemostfrequentlyusedintegratedmethodintheTCMPKstudy[33–35], weighting method was the most frequently used integrated method in the TCM PK study [33–35], whereas the total drug concentration method was more concise, thus the results calculated by whereas the total drug concentration method was more concise, thus the results calculated by the thetwomethodsdeservedtobecomparedanddiscussed. Takingintoconsiderationtheprevious two methods deserved to be compared and discussed. Taking into consideration the previous issues, issues,themaingoalsofthepresentresearchwastodevelopareliableliquidchromatographic–tandem the main goals of the present research was to develop a reliable liquid chromatographic–tandem massspectrometry(LC–MS/MS)methodtoanalyzetheratplasmapharmacokineticsofthemain mass spectrometry (LC–MS/MS) method to analyze the rat plasma pharmacokinetics of the main alkaloids from CR and EF, as well as to provide useful information for better understanding alkaloids from CR and EF, as well as to provide useful information for better understanding the the physiological disposition, pharmacological effect and clinical application of ZJ, FZJ and other physiological disposition, pharmacological effect and clinical application of ZJ, FZJ and other related relatTeCdMT CpMrespcrriepstciornipst. ions. O H3CO H3CO H O cOoptisine N O He3CpiOberberine N O H3CpOalmatine N OCH3 O ONH m/z 320.1 O m/z 336.1 O m/z 352.1 OCH3 nmo/zro 1x9y2h.y2drastinine O -CO O -CH3 -H O -CH3 -H -HOCN -CO -H2 O N H3CO N H3CO N O OCH3 H3CO m/z 292.1 OCH3 m/z 320.2 O m/z 336.3 OCH3 m/z 119.1 H HO O O H H3CO H N OO N O bme/rzOb 3e3ri6n.e1 N OOCCHH33 8m-/ozOx 3o3c6o.p1tisine N OOO 8-Hox3mCoeO/zp i3b5e2rb.2erineN OOO wucmh/uzy 3Hu5aH2m3.C3ideN-I -CH3 -H -CO -CO -CH3 -H -CO O O O O N O NH H3CO NH N O O O H m/z 292.1 O m/z 308.2 m/z 308.3 m/z 158.2 O O H H O H H H HH33CCcmOOo/rzy 2d0a8ld.i2nOeNH dehydmr/oze 3v0o1d.iHN7am3CinNeN O emv/oz d3iHaNH0m43C.i2nNeN O emv/oz cNC3aH4rp03.iCn2e13H25 8, 9 caOrmba/Nzm N2aH3z72e.p1ine -HOCN -CH3 -H C11H22 -HOCN H3CO H N N O HN O O H3CmO/z 165.1 m/z 28H6.2N m/z H133C4.2 NCH3 m/z NH1294.2 m/z 186.1 Figure 1. Chemical structures of the precursor and product ions of the 12 alkaloids and Figure1.Chemicalstructuresoftheprecursorandproductionsofthe12alkaloidsandcarbamazepine carbamazepine (internal standard, IS). (internalstandard,IS). 2. Results and Discussion 2. ResultsandDiscussion 2.1. Optimization of Chromatographic and Mass Conditions 2.1. OptimizationofChromatographicandMassConditions Mobile phase was optimized by comparing acetonitrile (ACN)–water (H2O) and methanol Mobile phase was optimized by comparing acetonitrile (ACN)–water (H O) and methanol (MeOH)–H2O solvent systems. The mobile phase consisted of ACN and H2O was co2nfirmed finally (MeOH)–H Osolventsystems. ThemobilephaseconsistedofACNandH Owasconfirmedfinally with res2ults of higher response, lower background noise and shorter anal2ysis time than that of withMreeOsuHl–tsHo2Of. hMigohreerovreers, ptohne saed,dliotiwone robf aac kbgurffoeur nsdystneomis ecoannsidstesdh oorft e0r.1a%n afolyrmsiisc taimcide (tvh/avn) atnhda t of MeO11H m–Hm2oOl/L. Mamomreoonvieurm, tfhoermaadtde ictoiounld oimf aprbouveff ethres pyesatkem symcomnestirsyte, dionoifza0t.i1o%n effofercmt aicnda csiedns(ivti/vvit)y and 11momf tohle/ aLnaamlymteso. niumformatecouldimprovethepeaksymmetry,ionizationeffectandsensitivityof theanalyAtells t.he tested alkaloids and internal standard (IS) all had better responses in positive mode than nAegllattihvee tmesotdeed ina lkEaSIlo oidptsimanizdatiionnte. rTnhael Qst1a nadndar dQ3( IoSf) tahlel h12a dalbkaeltoteidrsr eanspdo InSs ewserine dpeotseicttievde bmy ode infusing the standard solutions (200 ng/mL) in scan and product ions mode, respectively (structures thannegativemodeinESIoptimization. TheQ1andQ3ofthe12alkaloidsandISweredetectedby see Figure 1). Key parameters, such as DP, CE and CXP were also optimized. infusingthestandardsolutions(200ng/mL)inscanandproductionsmode,respectively(structures seeFigure1). Keyparameters,suchasDP,CEandCXPwerealsooptimized. Molecules2017,22,214 4of18 2.2.MSaolmecupllees 2P01r7e,p 2a2r, a2t1i4o n 4 of 18 2D.2.i fSfaemrepnlet Psroeplvareantitosn, such as MeOH, MeOH–chloroform (3:1), and MeOH–ACN (2:1) (v/v), wereusedasproteinprecipitationreagents,andtheextractionefficiencieswerecompared. Theresults Different solvents, such as MeOH, MeOH–chloroform (3:1), and MeOH–ACN (2:1) (v/v), were showuseedd tahsa tpMroteeOinH plreedciptoitaetxitorne mreealgyelnotws, arencdo vtheer ieexstfroacrtaiollna enfafilcyietensc,ieasn dweMree OcoHm–pAarCeNd. (T2h:1e) rwesausltbse tter thanshMoweOedH –thcahtl oMroefOorHm le(3d: 1t)o beexctareumseeloyf ltohwe lorewcoevrebraiecsk gforro uanll dannaoliystee.sL, iaqnudi dM-leiqOuHid–AexCtNra c(2ti:o1n) wmaest hod wasbaeltstoere tvhaalnu MateeOdHbu–cthfilonraolfloyrnmo (t3a:1d)o bpetceadu,sbe eocfa tuhsee lotwheerp boalackrigtrieosunodf tnhoeisaen. aLliyqtueisd-vlaiqruieidd ewxtidraecltyioann dit wasmdeitfhfiocdu lwttaos fianlsdo aenvaalupapterodp bruiat tfeinsaolllvye nnottt oadeoxpttreadc,t baellcaaunsael ythtees pwolealrli.tiTehs uosf ,tphlea samnaalystaesm vpalreisedw ere treawteiddewlyit ahnMd eitO wHa–s AdCiffNicu(l2t: 1to) afisndd easnc raipbpedroipnriSaetec tsioolnve3n.6t .to extract all analytes well. Thus, plasma samples were treated with MeOH–ACN (2:1) as described in Section 3.6. 2.3. MethodValidation 2.3. Method Validation Typical multiple reactions monitoring (MRM) mode chromatograms of blank plasma, Typical multiple reactions monitoring (MRM) mode chromatograms of blank plasma, plasma plasma spiked with the 12 alkaloids at the lower limit of quantification (LLOQ) and IS, spiked with the 12 alkaloids at the lower limit of quantification (LLOQ) and IS, and plasma samples and plasma samples after oral administration of ZJ and FZJ extract were shown in Figure 2. after oral administration of ZJ and FZJ extract were shown in Figure 2. Retention times (Rt) were 7.57 Retentiontimes(R)were7.57(corydaldine),7.73(epiberberine),7.90(dehydroevodiamine),7.92(coptisine), t (corydaldine), 7.73 (epiberberine), 7.90 (dehydroevodiamine), 7.92 (coptisine), 8.12 (palmatine), 8.25 8.12(palmatine),8.25(noroxyhydrastinine),8.31(berberine),9.07(wuchuyuamide-I),10.04(carbamazepine), (noroxyhydrastinine), 8.31 (berberine), 9.07 (wuchuyuamide-I), 10.04 (carbamazepine), 11.43 11.43 (8-oxoepiberberine), 12.18 (8-oxocoptisine), 12.32 (evodiamine), and 20.11 (evocarpine) min, (8-oxoepiberberine), 12.18 (8-oxocoptisine), 12.32 (evodiamine), and 20.11 (evocarpine) min, respreecstpivecetliyv.elTy.h Tehreerwe wereeren nooe ennddooggeennoouuss iinntteerrfeferreenncecse sini ntheth MeRMMR aMnaalynsaisly osfi sthoef altkhaeloaildksa alonidd sISa inn d IS inblbalnankkp plalasmsmaa.. FiguFriegu2r.eM 2R. MMRcMhr cohmroamtoagtroagmrasmosf obfl abnlaknkp lpalsamsmaa( 1()1;)p; plalsamsmaas sppikikeedd wwiitthh tthhee 1122 aallkkaallooiiddss aatt LLLLOOQQ (2); plas(m2)a; pslaasmmpal esasmaptle1s hat a1 fhte arftoerra olraald amdminiinsitsrtaratitoionn ooff ZZJJ (3(3) )anadn dFZFJ Z(4J) (e4x)treaxctt.r Aac t(c.oAryd(caoldriynde)a,l dB ine), B (e(pepibibeerrbbeerriinnee)),, CC ((ddeehhyyddroroeveovdoidaimaminein),e )D, D(co(pctoispinties)i,n Ee) ,(pEalm(paatlinmea),t iFn e()n,oFrox(nyhoyrodxrayshtiyndinrea)s, tiGn ine), (berberine), H (wuchuyuamide-I), I (carbamazepine), J (8-oxoepiberberine), K (8-oxocoptisine), L G (berberine), H (wuchuyuamide-I), I (carbamazepine), J (8-oxoepiberberine), K (8-oxocoptisine), (evodiamine), M (evocarpine). L(evodiamine),M(evocarpine). Molecules2017,22,214 5of18 Calibration curves of the 12 alkaloids had good linearity, and the regression equations, Molecules 2017, 22, 214 5 of 18 linear ranges, correlation coefficients and LLOQ are listed in Table S1. It should be noted that becauseCtahleibrcaotniocne ncutrravteiso nof othfet h12e aalnkaalloyitdess hhaads gbooeedn linqeuaardityru, panledd thdeu rreignrgestshioen seaqmuaptiloenps,r elipneaarra tion procraenssg,esth, ceorarcetluatailonlo cwoeefsfticidernutsg acnodn LcLenOtQra atiroen lisdteedte irnm Tianbelde Si1n. Ipt lsahsomualdw bea snoateqdu tahratte rbeocfauthsee tLheL OQ. Thecionntrcae-ndtraaytiaonnd ofi nthteer a-dnaalyypterse hciassi obneesn( rqeulaatdivruepslteadn dduarrdindg ethveia staiomnp,lRe SpDre)paanrdatiaocnc uprraoccieesss,( RthEe) aocftuqaul ality conltorowle(sQt Cdr)usga mcopnlceesntwraetrioens hdoetweremdininedT ainb lpelaSs2m.aT hweasp rae qciusaiortners owf etrhee leLsLsOtQha. nTh1e5 %intaran-ddaayc caunrda cies werientweri-tdhainy p±r1ec5i%sio.nTsh (erelliamtiivtea tsitoanndraarndg desevwiaetiroen2, 0R%SDa)n adnd± a2c0c%urraecsiepse (cRtiEv)e olyf qfuoarlQityC csoanmtropll e(QsCof) low concsaemntpraletsio wne.rTeh sehorewseudlt sini nTdaibclaet eSd2. tThhaet tphreecmiseiothnso dwwerae slersesl itahbalne a1n5%d raenpdr oadccuucriabclieesfo wrethree wanitahliyns is. ±15%. The limitation ranges were 20% and ±20% respectively for QC samples of low concentration. Absoluterecoveriesofthe12alkaloidswereallabove69%(TableS2).Theresultsofmatrixeffectwere The results indicated that the method was reliable and reproducible for the analysis. listedinTableS2,whichshowedaslightionsuppressioneffectforfourQPAs(from78.16%to85.16%), Absolute recoveries of the 12 alkaloids were all above 69% (Table S2). The results of matrix andanionenhancementeffectforwuchuyuamide-I(from116.32%to117.64%).However,nosignificant effect were listed in Table S2, which showed a slight ion suppression effect for four QPAs (from matrixeffectwasobservedforIS(from96.47%to105.22%),andtheRSDvalueswerewithintheacceptable 78.16% to 85.16%), and an ion enhancement effect for wuchuyuamide-I (from 116.32% to 117.64%). criteria,whichindicatedthattherewerenoseverevariationsintheanalysis.Stabilityresultswerepresented However, no significant matrix effect was observed for IS (from 96.47% to 105.22%), and the RSD inTvaballueeSs3 w,werhei cwhitdheinm tohne satrcacetepdtatbhlae tctrhiteer1i2a, awlkhailcohi dinsdwicearteeds ttahbalte tihnerrea twpelares mnoa suenvdereer vdaifrfieartieonntss itno rage condthitei oannsalaynsdis.d Sutraibniglitsya mrespuleltsp rwoecrees spinregs.ented in Table S3, which demonstrated that the 12 alkaloids were stable in rat plasma under different storage conditions and during sample processing. 2.4. PKStudies 2.4. PK Studies ThevalidatedanalyticalmethodwassuccessfullyappliedtothePKstudyofthe12alkaloidsafter oraladmTihnei svtraalitdioantedo faZnJalayntidcaFl ZmJeetxhtorda cwt.aTs hsuecCce–sTsfcuullryv eapspolfietdh eto1 2thael kPaKlo sitdusdwy eorfe thseh o1w2 nalkinalFoiidgsu re3, andatfhteer coorrarle asdpmonindiisntrgatPioKn poaf rZamJ aentder FsZwJ eerxetrlaisctte. dThine TCa–bTl ecu1r.vBees coafu tshee d1o2u ablklealpoeidask swwereer eshoobwsenr vine din theFCi–gTurceu 3r,v aensdo tfhme coosrtroesfptohnedainlkga PloKid psa,roabmseetrevrse dwmerea xliismteudm inc Toanbcleen 1t.r aBteicoanusaen ddocuobrlree pspeaoknsd winegret ime observed in the C–T curves of most of the alkaloids, observed maximum concentration and valueswereusedasC andT . AfteroraladministrationofFZJextract,plasmaconcentrations max max of8c-ooxrroecsoppontidsiinnge atinmde 8v-oalxuoeesp wibeerreb eursiende aast mCmoasx tatnimd eTmpaox.i nAtsftewr eorreabl ealdomwinthisetrLatLioOnQ o,ft hFeZrJe efoxrtreatcht,e PK plasma concentrations of 8-oxocoptisine and 8-oxoepiberberine at most time points were below the parameterscouldn’tbecalculated. LLOQ, therefore the PK parameters couldn’t be calculated. IndrugPKstudies,theC–TcurvemayrevealqualitativecharacteristicsofPKprofiles,whilePK In drug PK studies, the C–T curve may reveal qualitative characteristics of PK profiles, while parameters such as AUC, MRT, C and t , can reflect the systemic exposure level of the drug PK parameters such as AUC, MRTm,a Cxmax and1 /t21/2, can reflect the systemic exposure level of the drug quantitatively. The PK results of the alkaloids of ZJ and FZJ were consequently discussed from quantitatively. The PK results of the alkaloids of ZJ and FZJ were consequently discussed from the theaabboovvee ttwwoo aaspspecetcst.s . ●: :CC–T– Tcucurvrevse soof ftthhee aallkkaaloloididss aafftteerr oorraall aaddmmiinniissttrraatitoionn ooff ZZJJ.. (cid:4)■:: CC––TT ccuurrvveess ooff tthhee aalklkaallooiiddss aafftteerr oorraall administrationofFZJ. administration of FZJ. FiguFirgeu3r.e C3.– CT–cTu cruvrevseos fotfh thee1 122a alklkaallooiiddss aafftteerr oorraall aaddmmininisitsrtartaiotino nofo ZfJZ aJnadn FdZJF eZxJtreaxcttr (anc t= (6n).= 6). Molecules2017,22,214 6of18 Table1.PKparametersofthe12alkaloidsinratplasmaafteroraladministrationofZJandFZJextract(mean±SD,n=6). Analytes Group AUC0→t(ng·h/mL) AUC0→∞(ng·h/mL) MRT0→t(min) MRT0→∞(min) t1/2(min) Tmax(min) Cmax(ng/mL) Tsec(min) Csec(ng/mL) ZJ 68.73±10.82 71.59±10.72 641.65±62.14 735.50±91.37 480.47±115.11 300 14.13±7.75 90 4.96±2.29* coptisine FZJ 10.99±1.64 11.85±1.25 250.52±27.45 312.29±83.18 176.05±73.47 180 4.78±2.31 - - ZJ 68.46±15.94 69.61±15.46 645.43±62.71 696.78±87.57 366.42±101.94 300 13.65±7.05 90 5.51±2.17* epiberberine FZJ 10.13±1.09 11.40±1.27 233.44±25.91 315.37±52.51 235.17±101.63 180 4.82±1.97 - - ZJ 88.34±24.92 96.63±33.22 404.26±105.70 525.01±192.01 339.21±144.61 90 34.07±19.25 300 11.18±8.71* palmatine FZJ 18.19±4.98 18.90±5.50 231.35±21.68 269.46±38.99 150.78±103.54 180 9.74±3.53 30 6.25±2.89* ZJ 277.48±50.15 299.84±55.27 387.56±67.86 514.76±164.64 378.28±194.53 90 109.40±48.27 300 44.68±21.28* berberine FZJ 48.07±9.60 50.24±10.74 244.37±17.40 280.76±37.56 133.26±50.10 180 23.67±7.42 30 11.64±7.28* ZJ 24.74±3.90 27.02±2.23 607.27±59.56 809.87±254.49 535.67±158.71 300 2.46±1.17 90 2.42±0.89 8-oxocoptisine FZJ - - - - - - - - - ZJ 14.30±2.32 16.63±3.22 450.77±59.37 740.15±138.92 592.65±274.26 90 2.38±1.14 300 1.85±0.99 8-oxoepiberberine FZJ - - - - - - - - - ZJ 133.19±18.49 140.06±17.83 529.35±75.19 662.05±153.25 644.66±169.16 90 29.64±15.15 300 16.29±8.38 noroxyhydrastinine FZJ 4.95±0.65 5.37±0.73 181.73±16.42 314.79±172.07 243.81±175.97 30 3.17±1.00 - - ZJ 45.14±7.46 47.27±7.36 402.95±56.32 513.14±109.81 595.01±123.69 90 10.34±5.45 300 9.03±4.31 corydaldine FZJ 2.86±0.35 3.10±0.46 170.94±11.39 239.52±47.43 233.20±77.36 30 1.73±0.58 - - ZJ 532.34±57.78 537.43±54.97 260.43±15.40 282.90±34.14 192.57±135.94 240 155.16±27.92 90 117.29±45.45 dehydroevodiamine FZJ 274.77±23.19 285.60±24.08 279.59±56.33 357.86±114.71 301.96±172.11 90 85.27±13.37 - - ZJ 31.71±2.94 31.84±3.11 315.19±44.82 359.80±45.66 141.31±71.63 60 9.59±4.22 300 5.54±3.14 evodiamine FZJ 10.83±1.77 11.72±2.06 178.31±22.86 254.67±42.11 227.88±62.98 30 9.10±4.79 180 2.21±0.85 ZJ 11.54±1.40 12.77±1.43 231.61±27.74 313.20±68.30 218.14±89.78 90 3.45±1.73 20 2.55±0.38 wuchuyuamide-I FZJ 48.25±8.86 50.11±8.81 346.41±46.61 413.10±94.85 295.01±109.89 30 10.73±4.43 - - ZJ 55.65±12.40 59.02±13.34 251.37±29.26 390.99±119.47 539.67±383.48 60 24.20±12.95 240 7.36±4.89 evocarpine FZJ 17.84±3.99 19.57±4.79 422.27±69.79 557.88±117.71 414.88±60.07 30 4.07±0.44 - - TsecandCsecwerethetimeanddrugconcentrationofthesecondarypeakinC–Tcurve.*p<0.05comparedwithCmax. Molecules2017,22,214 7of18 2.4.1. C–TCurvesoftheAlkaloids DoublepeaksinC–TcurveswereobservedrepeatedlyinthePKstudyofZJandrelatedTCM prescriptions,butexplanationstothephenomenonwerestillambiguous. Generally,possiblereasons forthedoublepeakphenomenoncouldbesummarizedasfollows:(a)enterohepaticcirculation[36,37]; (b) two different sites of drug absorption [38–40]; (c) irregular pattern of gastric emptying [41–44]. Inthepresentstudy,however,thefactorscontributetodoublepeaksofQPAsandtheotheralkaloids maybedifferent. (1) For the alkaloids except QPAs, double peaks were visibly observed in the C–T curves after oraladministrationofZJextract,butthesecondarypeakswereattenuatedandtheC–Tcurves approximately matched the two-compartment model after administration of FZJ (calculated by two fitting methods using DAS 2.0 software, Table 2). Moreover, T of the alkaloids max afteradministrationofZJextractweredeferredfromthatofFZJadministration. Alkaloidsof CR, especially berberine, have been reported to have inhibition effect on GI motility [45–49]. Itprobablyplayamajorroleinthedoublepeakphenomenon,sincetheGImotilitycanaffect thedrugabsorption. ThecontentofberberineinZJextractwere20timesmorethanthatinFZJ extract(TableS4),leadingtomoresignificantinfluenceontheGImotilityafteroraladministration. Thus,thedoublepeakphenomenonandthedelayedT ofthealkaloidsafteradministration max ofZJextractcouldbeattributedtotheinhibitioneffectonGImotilitycausedbyCRalkaloids, especiallyberberine. Table2.Two-compartmentmodelfittingresultofthealkaloidsinratplasmaafteroraladministration ofZJandFZJextract. ZJ FZJ Analytes r2 AIC r2 AIC noroxyhydrastinine 0.313±0.350 118.137±17.623 0.802±0.128 16.505±12.486 corydaldine 0.243±0.267 85.431±9.718 0.805±0.066 3.947±8.187 dehydroevodiamine 0.324±0.280 154.46±11.416 0.886±0.055 107.718±6.140 evodiamine 0.428±0.169 71.547±6.327 0.853±0.232 30.067±6.112 wuchuyuamide-I 0.544±0.140 35.057±11.851 0.519±0.407 66.844±7.076 evocarpine 0.734±0.201 78.232±11.393 0.740±0.167 27.61±10.527 r2:correlationcoefficientmethod;AIC:Akaike’sinformationcriterionmethod. (2) InZJgroup,twoplasmaconcentrationpeakswereobservedat90and300minforallthefourQPAs; but the primary plasma concentration peak was at 300 min for coptisine and epiberberine, and 90 min for palmatine and berberine (Table 1, significant differences between the plasma concentrationvaluesoftheprimaryandsecondarypeakswereexaminedwitht-testbyMicrosoft Office Excel 2007). Previous researches had suggested that the primary elimination route of berberine invivo was renal excretion [50], and its C–T curve matched the two-compartment modelfollowinganintravenousadministration[50,51]. Therefore,theenterohepaticcirculation couldn’t be the major reason of the double peak phenomenon of QPAs, since the plasma concentrationvaluesofcoptisineandepiberberineat300minweregreaterthanthatat90min. Inaddition,researchfindingsofthemainphaseImetabolismofberberine[52–54]certifiedthat metabolismcouldn’tbethereasonofthedoublepeakphenomenonofQPAs. Theabsorptionrate constant (Ka) of berberine and palmatine at jejunum had been reported to be greater than that at ileum and colon, which means the upper part of the intestine was their dominant absorptionsite[55–57]. Coptisine,incontrast,hadabetterabsorptionrateatcoloncompared with jejunum [57]. Therefore two absorption sites with different Ka could give a reasonable explanationaboutthedoublepeakphenomenonofthefourQPAs: plasmaconcentrationpeak at90minwasmainlycausedbytheabsorptionattheupperpartoftheintestine, butmainly Molecules2017,22,214 8of18 bytheabsorptionatileumandcolonwhilethatisat300min. Plasmaconcentrationpeaksof QPAsinFZJgroupat30and180minwereearlierthanthatofZJgroup,andpeaksat30min causedbytheabsorptionattheupperpartoftheintestinewereattenuated. Thepossiblereason wasthatthelowerberberinecontentinFZJweakenedtheinhibitioneffectonGImotilityand subsequentlyledtothedecreasedresidencetimeandabsorptionlevelofQPAsatupperpartof theintestine. 2.4.2. SystemicExposureoftheAlkaloids Because the alkaloids content in ZJ and FZJ were no longer linear with the proportion of CR and EF after extraction process [58,59], AUC0→∞/D (ratio of AUC0→∞ and dose) and Cmax/D (ratioofC anddose)werecalculatedtoestimatethedosemodifiedsystemicexposurelevelsof max the12alkaloids(Table3). MRT0→∞andt1/2valuessuggestedthatthe12alkaloidswerenoteliminated rapidlyinvivo,whichindicatedthatabsorptionswerethemajorobstacletotheirsystemicexposure level. Physicochemical properties of these alkaloids had been calculated in silico to predict their humancolonadenocarcinomacell(Caco-2)permeabilityaccordingtothethree-propertybasedrule (3PRule)[60].Polarsurfacearea(PSA),logarithmofthen-octanol/waterdistributioncoefficient(LogD), molecularweight(MW),hydrogenbonddonors(HBD),hydrogenbondacceptors(HBA),numberof freerotatablebonds(NRB)andmolarsolubility(S)ofthealkaloidswereretrievedfromSciFinder® (AmericanChemicalSociety). DataoftheinsilicostudywerelistedinTableS5. Physicochemicaldata of the four QPAs and dehydroevodiamine were not given because of the electric charge in their structureswhichhinderedthecalculation. Table3. DosemodifiedAUC0→∞, Cmax andAUCweightedfactors(Wi)ofthe12alkaloidsinrat plasmaafteroraladministrationofZJandFZJextract. ZJ FZJ Analytes AUC0→∞/D Cmax/D Wi* AUC0→∞/D Cmax/D Wi* coptisine 0.40 0.08 0.09 1.80 0.72 0.12 epiberberine 0.62 0.12 0.09 1.91 0.81 0.11 palmatine 0.77 0.27 0.13 3.03 1.56 0.19 berberine 0.84 0.31 0.39 2.56 1.21 0.50 CRalkaloids 8-oxocoptisine 44.44 3.98 0.04 - - - 8-oxoepiberberine 97.25 13.92 0.02 - - - noroxyhydrastinine 1687.47 357.11 0.18 268.50 158.50 0.05 corydaldine 1688.21 369.29 0.06 310.00 173.00 0.03 dehydroevodiamine 39.69 11.46 0.84 12.15 3.63 0.78 evodiamine 8.55 2.57 0.05 3.73 2.89 0.03 EFalkaloids wuchuyuamide-I 172.57 46.62 0.02 278.39 59.61 0.14 evocarpine 35.17 14.42 0.09 13.16 2.74 0.05 Ddenotedthedosageofthe12alkaloids,seeTableS4;*CalculatedbyAUC-basedweightingmethod. (1) The four QPAs from CR, especially berberine, had relatively high systemic exposure levels, but their AUC0→∞/D and Cmax/D values were extremely low. Previous studies suggested that absolute bioavailability of berberine was less than 1% [61,62], and it should be mainly attributedtoitspoorabsorption. Transportexperimentshadconfirmedthatberberine,palmatine andcoptisinehadpoorpermeabilityacrossCaco-2cellmonolayerwithapparentpermeability coefficient(P )valuesbetween0.1and1.0×10−6cm/s[63]aspoorlyabsorbedcompounds[64]. app TPAsandSIAs,incontrast,werecomponentswithlowcontentsinCRbuthigherAUC0→∞/D andC /Dvaluesindicatingtheirbetterabsorptionproperties. 3PRulesuggestedthatthetwo max TPAsandtwoSIAshadfavorablephysicochemicalpropertiesforCaco-2permeability: PSA≤60, MW≤400andLogD>−1. However,compoundsmustbedissolvedinwaterbeforepenetrating theintestinalepithelialcells,andthesuitablevaluesofsolubility(LogS)rangedfrom0to−4[65]. Molecules2017,22,214 9of18 Therefore,systemicexposurelevelsoftwoTPAs,especially8-oxocoptisine,appearedtobelimited bytheirlowersolubilitythanSIAs. (2) EvodiamineanddehydroevodiamineweretwomajorIQAsinEF,buttheresultssuggestedthat dehydroevodiaminehadahighersystemicexposurelevelregardlessofthedosemodification. Our previous study demonstrated that both evodiamine and dehydroevodiamine had high permeabilityacrossCaco-2cellmonolayerwithP valuesof2.32×10−5and1.26×10−5cm/s, app respectively[66],whichwereclosetothevaluespredictedby3PRule;butitwasalsofoundthat thefeedingconcentrationofevodiaminewaslimitedduetoitspoorsolubilityinthetransport experiment. Thus, its solubility should be the major obstacle to a higher systemic exposure level for evodiamine (predicted LogS < −5), and the poor solubility can be attributed to its flat, rigid, andunsaturatedstructure. Incontrast, thesolubilitiesofdehydroevodiamineand wuchuyuamide-Iwereimprovedbecauseoftheinnersaltstructureorthebrokenringstructure. (3) Effects on the absorption and elimination of the alkaloids from CR and EF were illustrated bycomparingtheAUC0→∞/D,Cmax/Dandt1/2 ofthealkaloidsaftertheadministrationsof ZJ and FZJ extract. Since the t values of some alkaloids, such as evodiamine, were not 1/2 accuratelycalculatedbecauseofthemulti-peakphenomenon,MRT0→∞wouldbemorereliablein thecomparison. MRT0→∞ andt1/2valuesofthefourQPAshalvedofFZJgroupcomparedwith thatofZJgroup,butCmax/DandAUC0→∞/Dincreased4–9timesand3–4times,respectively. ThecomparisonsindicatedthatabsorptionsofQPAswereincreased,buttheireliminationswere acceleratedasaresultofincreasedEFintake. TheQPAslikecoptisine,palmatineandberberine wereP-gpsubstrates[63,67],andtheireffluxratiocouldbereducedbyEFontheCaco-2transport model[68],soEFmaypossiblypromotetheabsorptionofQPAsbyinhibitingP-gp. Ontheother hand, EF could also induce hepatic UDP-glucuronosyltransferase 1A1 and then accelerate the elimination of QPAs [69]. In the present study, QPAs’ systemic exposure (AUC0→∞/D) werefinallyincreasedwhentheproportionofEFincreased,suggestingthatEFhadagreater influenceontheabsorptionthanontheeliminationofQPAsafterthecompatibilityofCRandEF. ContrarytoQPAs,noroxyhydrastinine,corydaldine,dehydroevodiamineandevocarpinehad a larger AUC0→∞/D and Cmax/D values in ZJ group than that in FZJ group. As argued above, highcontentofberberineinZJextractcouldcauseinhibitioneffectonGImotility;anddrugabsorption couldbesubsequentlyimprovedwhentheGImotilitywasslowedprobablybecauseofthelonger residencetime[70–72],whichmightleadtotheincreasedabsorptionsandsystemicexposurelevelsof noroxyhydrastinine,corydaldine,dehydroevodiamine. 2.4.3. IntegratedPKAnalysis Among the 12 alkaloids, berberine and dehydroevodiamine had the most similar C–T curve profileswiththatoftheintegratedC–TcurvesofCRandEFalkaloids(Figures3and4),indicatingthat berberine and dehydroevodiamine could be regarded as the representative components to reflect the PK behaviors of CR and EF alkaloids. The highest systemic exposure levels of berberine and dehydroevodiamineamongthealkaloids,i.e.,thebiggestW values(Table3),maycontributetothis i result. However,theAUC0→∞/DandCmax/Dvaluesofberberinewereextremelylow,indicatingthat large quantity of berberine was not absorbed. It has been reported that at least 56% of berberine existedasprototypeduringtheperiodof0–36hafterintragastricadministration,andtherewas24%of berberinestillremainedintheGItract evenat36h [62]. In recentyears, ZJhasbeeninvestigated foritsantitumoractivities,anditsinvitroandinvivoantitumoractivitiesagainstdigestivesystem cancerhavealreadybeenconfirmed[2–5]. Inaddition,ourpreviousstudiesshowedthatberberine, coptisine, and evodiamine had the inhibitory activities against the proliferation of human gastric carcinoma(NCI-N87)andCaco-2cellswiththehalfinhibitoryconcentrationof12.61–91.18µmol/L, suggestingthattheywereprobablythemaineffectivecomponentsinZJagainstthedigestivesystem cancer [9]. To epithelial tumor cells of digestive tract, oral drug could take effect directly without the absorption process, though the unabsorbed drug has been considered as useless traditionally. Molecules2017,22,214 10of18 Asforberberine,coptisine,andevodiamine,poorabsorptionwouldbeconductivetotheirlocaleffects in digestive tract; besides, GI retention effect caused by CR alkaloids could extend the treatment durationofthesealkaloids. Thereforethisresearchmaygiveasupporttotheanti-digestivesystem cancerpotentialsofZJinthePKrespect. Molecules 2017, 22, 214 10 of 18 FFiigguurree 44.. IInntteeggrraatteedd CC––TT ccuurrvveess ooff CCRR aanndd EEFF aallkkaallooiiddss ccaallccuullaatteedd bbyy AAUUCC--bbaasseedd wweeiigghhttiinngg mmeetthhoodd ((11)) aanndd ttoottaall ddrruugg ccoonncceennttrraattiioonn mmeetthhoodd ((22))a afftteerro orraalla addmmiinniissttrraattiioonno offZ ZJJa annddF FZZJJe exxttrraacctt.. TThhee ttwwoo iinntteeggrraatteedd mmeetthhooddss hhaadds simimilialarrC C––TTc cuurrvveessp prorofiflieles.s.H Hoowweevveer,rt, htheein intetgergartaetdedA AUUCC0→0→∞∞ and Cmax values of CR and EF alkaloids calculated by AUC-based weighting method were andC valuesofCRandEFalkaloidscalculatedbyAUC-basedweightingmethodweresignificantly max significantly lower than total drug concentration method (examined using t-test by Microsoft Office lowerthantotaldrugconcentrationmethod(examinedusingt-testbyMicrosoftOfficeExcel2007, Excel 2007, Table 4), and even lower than the values of berberine and dehydroevodiamine before Table 4), and even lower than the values of berberine and dehydroevodiamine before integrated. integrated. Therefore the total drug concentration method was more concise and credible than the ThereforethetotaldrugconcentrationmethodwasmoreconciseandcrediblethantheAUC-based AUC-based weighting method to reflect the systemic exposure levels of CR and EF alkaloids. weightingmethodtoreflectthesystemicexposurelevelsofCRandEFalkaloids. Table 4. Integrated PK parameters of the CR and EF alkaloids in rat plasma after oral administration Table4.IntegratedPKparametersoftheCRandEFalkaloidsinratplasmaafteroraladministrationof of ZJ and FZJ extract (mean ± SD, n = 6). ZJandFZJextract(mean±SD,n=6). ZJ FZJ PK Parameters Integrated Method CR AlkaloidsZ J EF Alkaloids CR Alkaloids FZJEF Alkaloids PKParameters IntegratedMethod A CR16A5.l8k5a ±lo 2id5.s24 E4F54A.0lk2 a±l o4i9d.5s0 C3R1.0A1l k± a4l.o3i8d s 22E2.F33A ±lk 1a8l.o8i7d s AUC0→t (ng·h/mL) AB 16754.805.5±8 ±2 59.62.429 465342.0.255± ±4 699.5.901 9371.2.041 ±± 124..0338 35222.27.43 3± ±311.982.8 7 AUC0→t(ng·h/mL) BA 74107.548.9±0 ±9 62.32.960 643528.5.550± ±6 496.9.918 9376..2942 ±± 81.26.10 3 23305.29.57 4± ±193.219.9 2 AUC0→∞ (ng·h/mL) B 790.50 ± 129.01 * 640.61 ± 64.83 * 113.78 ± 19.69 * 368.20 ± 33.08 * A 174.90±23.60 458.50±46.98 36.92±8.61 230.95±19.29 AUC0→M∞RT(n0→g·t h(m/minL)) BAB 79044.569058..±44871 ±±2 965.2401..52*64 6422066.6021..58±35 ±±6 411.578..35149* 122154313...727843 ±±± 111979...669922 * 223896258..21.2920 ±±± 54593..303.620 8* A 465.48±62.56 260.53±15.54 251.24±19.62 282.29±55.06 MRMTR0→Tt0→(m∞ (inm)in) BAB 4945861.4437..95±97 ±±5 465.532..41755 222689233.8..57632± ±±1 34740.1..87957 222574423...907593 ±±± 671027..96.9442 3357923.99.540.81 ± 2± 1 ±91014..7925.73 2 A 464.99±65.15 283.73±34.85 254.95±60.94 359.90±111.27 MRT0→t1/∞2 ((mmiinn)) BA 51533.75.702± ±5 430.785.47 219935..6022± ± 4103.67.785 124712..6029 ±± 3712.7.654 3033.7134.4 ±8 1±629.08.87 5 B 573.75 ± 447.62 218.36 ± 137.70 186.77 ± 91.91 334.42 ± 104.19 A 537.02±408.47 195.02±136.85 141.62±31.75 303.14±162.88 t1/T2m(max i(nm)in) BA 573.75±9404 7.62 218.36±24103 7.70 186.7178±0 91.91 334.4920± 104.19 B 90 240 180 90 A 90 240 180 90 TCmamxax( m(nign/)mL) BA 54.1940 ± 22.14 131.1284 0± 23.45 14.821 8±0 4.70 67.02 ± 9100.36 B 198.70 ± 76.91 * 167.10 ± 28.40 * 43.79 ± 14.12 * 92.367 ± 12.51 * A 54.14±22.14 131.18±23.45 14.82±4.70 67.02±10.36 CmaxT(snegc/ (mmLin)) BA 198.70±30706 .91* 167.10±902 8.40* 43.793±0 14.12* 92.367- ±12.51* B 300 90 30 - Tsec(min) AA 24.93900 ± 10.08 99.909 0± 38.75 7.51 3±0 4.19 - - Csec (ng/mL) B 300 90 30 - B 113.27 ± 40.70 138.18 ± 54.42 25.35 ± 10.26 - A 24.99±10.08 99.90±38.75 7.51±4.19 - CAse cd(enngo/tmedL) the AUC-based weighting method, and B denoted the total drug concentration method. B 113.27±40.70 138.18±54.42 25.35±10.26 - * p < 0.05 compared with method A. AdenotedtheAUC-basedweightingmethod,andBdenotedthetotaldrugconcentrationmethod. *p<0.05 comparedwithmethodA. 3. Experimental Section 3.1. Chemicals and Materials The rhizomes of Coptis chinensis Franch. (CR) were collected from “The National GAP Base of Chinese Materia Medica for Coptidis Rhizoma” at Shizhu County (Chongqing, China). The nearly ripe fruits of Euodia rutaecarpa (Juss.) Benth. (EF) were collected from Xiangtan city (Hunan, China). The two herbs were identified by Prof. Xiu-Wei Yang from School of Pharmaceutical Sciences,

Description:
for a certain alkaloid, the dose modified systemic exposure levels and exposure level of the alkaloids from CR and EF mass spectrometry (LC–MS/MS) method to analyze the rat plasma .. Office Excel 2007). Chinese Materia Medica for Coptidis Rhizoma” at Shizhu County (Chongqing, China).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.