PETROPHYSICAL ANALYSIS OF THE THAMAMA GROUP, ABU DHABI, U.A.E. by Atul Narsinh Rathod A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirement for the degree Master of Science (Petroleum Engineering). Golden, Colorado Date ________________ Signed: _____________________________ Atul Narsinh Rathod Approved: _____________________________ Dr. Ramona M. Graves Thesis Advisor Approved: _____________________________ Dr. Neil F. Hurley Thesis Co-Advisor Golden, Colorado Date ________________ _______________________________ Dr. Craig W. Van Kirk Professor and Head Department of Petroleum Engineering ii ABSTRACT When dealing with carbonate reservoirs, vuggy porosity can be a major concern. Conventional wireline logs do not always recognize vugs. Thus, a systematic petrophysical analysis to quantify vuggy porosity becomes essential. Electrical borehole images, neutron porosity, and 700 ft (213 m) of core from Thamama Group, Abu Dhabi, U.A.E., were available for this study. This study has three objectives: a) minipermeability measurements on core, b) vuggy porosity quantification from core and borehole images, and c) flow unit definition using neutron porosity, core-based pixel-count porosity and minipermeability. The first phase involved permeability data acquisition along the entire length of core using a pressure-decay minipermeameter. After cleaning and cataloging the core, permeability measurements were obtained every 1 inch (2.5 cm) down the center of the core. The core is dominantly limestone with different types of porosity (vuggy, moldic, interparticle, intercrystal) and local microfractures. Due to these features, the core showed a wide variation in permeability (0.002 mD to 8 D). Even after filtering of very high permeability values, many core intervals had permeability values close to 1 Darcy. iii The permeability dataset thus obtained will be useful for flow unit determination and future analyses. The second phase of this study quantified vuggy porosity from core and borehole images. For core-based vuggy porosity, the core was first polished, coated with fluorescent paint to highlight vugs, and photographed under ultraviolet light to obtain high-resolution black and white photographs. The photographs were scanned and stacked to form a single continuous core image, then analyzed using pixel-counting techniques to obtain core-based vuggy porosity. Using the borehole images, different thresholds were applied to the static FMI log. Frequency histograms of FMI pixel counts were then compared with the core pixel counts for vuggy porosity extraction. The comparison showed that the FMI-based vuggy porosity follows a similar trend, consistently lower than the core-based pixel-count vuggy porosity in the upper 400 ft (122 m) of the cored interval. In the rest of the core, FMI-based vuggy porosity shows higher values when compared to the core-based pixel-count vuggy porosity. This reversal in trend is attributed to differences in hydrocarbon and water saturations in those intervals, respectively. The third phase of this study was to characterize flow units using neutron porosity, core-based pixel-count vuggy porosity, and minipermeability. A flow unit is defined as a reservoir rock with a unique porosity-permeability relationship that affects iv fluid flow. Flow units in this study were defined by two methods: a) cumulative storage capacity (h) and cumulative flow capacity (kh) plots versus depth, and b) a Stratigraphic Modified Lorenz Plot (SMLP) which plots cumulative storage capacity (h) versus cumulative flow capacity (kh). Both methods recognized thirteen flow units which occur at different depths. v TABLE OF CONTENTS ABSTRACT ..................................................................................................................... iii TABLE OF CONTENTS ................................................................................................. vi LIST OF FIGURES .......................................................................................................... x LIST OF TABLES ......................................................................................................... xix ACKNOWLEDGEMENTS ........................................................................................... xxi CHAPTER 1. INTRODUCTION .................................................................................. 1 1.1 Background ......................................................................................... 1 1.2 Research Methods ............................................................................... 3 1.3 Research Objectives ............................................................................ 4 1.4 Research Contributions ....................................................................... 5 CHAPTER 2. GEOLOGIC SETTING ......................................................................... 7 2.1 Stratigraphy of the Thamama Group .................................................. 7 2.1.1 Stratigraphy of the Shuaiba Formation ................................. 11 2.1.1.1 Lower Member.................................................... 12 2.1.1.2 Upper Member .................................................... 14 vi 2.1.1.3 Bab Member........................................................ 16 2.1.2 Stratigraphy of Kharaib Formation ....................................... 16 2.2 Local Stratigraphy ............................................................................. 17 2.3 Regional Structural Geology ............................................................. 22 CHAPTER 3. MINIPERMEAMETRY ...................................................................... 24 3.1 Minipermeameter .............................................................................. 24 3.1.1 Minipermeameter Theory .................................................. 25 3.1.1.1 Steady-State Permeametry .................................. 25 3.1.1.2 Pressure-Decay Permeametry ............................. 28 3.1.2 Minipermeameter Design ................................................... 30 3.1.3 Minipermeameter Operation .............................................. 32 3.2 Experimental Methods ...................................................................... 34 3.3 Permeability Data Calibration........................................................... 35 3.4 Results ............................................................................................... 40 3.4.1 Permeability Measurements on Study Core ....................... 40 3.4.2 Permeability Contours ....................................................... 49 3.5 Discussion ......................................................................................... 60 vii CHAPTER 4. VUGGY POROSITY QUANTIFICATION ...................................... 64 4.1 Carbonate Rocks ............................................................................... 64 4.1.1 Classification of Carbonate Rocks ........................................ 66 4.1.2 Carbonate Pore Systems ....................................................... 67 4.2 Vuggy Porosity Detection ................................................................. 76 4.2.1 Vuggy Porosity Detection Using CT Scans .......................... 76 4.2.2 Vuggy Porosity Detection Using NMR ................................ 79 4.2.3 Vuggy Porosity Detection - Core and Borehole Images ....... 80 4.2.3.1 Formation MicroScanner (FMS)......................... 80 4.2.3.2 Formation MicroImager (FMI) ........................... 81 4.3 Method: Vuggy Porosity Quantification from Core ......................... 87 4.3.1 Sample Preparation for Photography .................................... 88 4.3.2 Photography .......................................................................... 89 4.3.3 Digitization: Scanning and Stacking of Images .................... 92 4.3.4 Image Analysis for Extraction of Vuggy Porosity Data ....... 93 4.4 Method: Vuggy Porosity Quantification from Borehole Images ...... 94 4.5 Results ............................................................................................. 101 4.6 Discussion ....................................................................................... 109 viii CHAPTER 5. FLOW UNIT DEFINITION ............................................................. 118 5.1 The Concept of Flow Unit .............................................................. 118 5.2 Flow Unit Definition by Various Researchers ................................ 119 5.3 Methodology ................................................................................... 128 5.4 Results ............................................................................................. 131 5.5 Discussion ...................................................................................... 147 CHAPTER 6. CONCLUSIONS ................................................................................. 151 REFERENCES ............................................................................................................. 155 APPENDIX A: Status of the Core ................................................................................ 167 APPENDIX B: Core to Log Depth Converter .............................................................. 167 APPENDIX C: Vuggy Porosity Comparison of Well A .............................................. 167 ix LIST OF FIGURES Figure 2.1: Map of U.A.E. showing oil and gas fields. ................................................. 8 Figure 2.2: Arabian Peninsula showing major geological structures including Rub al Khali basin. .................................................................................................. 9 Figure 2.3: General stratigraphic chart of the Cretaceous in Abu Dhabi, U.A.E. ....... 10 Figure 2.4: Generalized stratigraphic column of U.A.E. showing the Shuaiba stratigraphy. ............................................................................................... 13 Figure 2.5: Log correlations showing the lateral variations within the Shuiaba Formation. Vertical scale: 1 inch = 100 ft. ................................................ 15 Figure 2.6: Well composite plus display of conventional openhole logs from the study area. ........................................................................................................... 18 x
Description: