ebook img

Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory PDF

0.22 MB·
by  Yi Liao
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory

Perturbative power counting, lowest-index operators and their renormalization in standard model effective field theory YiLiaoa,b,c1 andXiao-DongMaa2 a SchoolofPhysics,NankaiUniversity,Tianjin300071,China b CASKeyLaboratoryofTheoreticalPhysics,InstituteofTheoreticalPhysics,ChineseAcademyofSciences, Beijing100190,China c SynergeticInnovationCenterforQuantumEffectsandApplications,HunanNormalUniversity,Changsha, Hunan410081,China 7 1 Abstract 0 2 Westudytwoaspectsofhigherdimensionaloperatorsinstandardmodeleffectivefieldtheory. Wefirstintroduce b a perturbative power counting rule for the entries in the anomalous dimension matrix of operators with equal mass e dimension. The power counting is determined by the number of loops and the difference of the indices of the two F operators involved, which in turn is defined by assuming that all terms in the standard model Lagrangian have an 0 1 equalperturbativepower. Thenweshowthattheoperatorswiththelowestindexareuniqueateachmassdimension d, i.e., (H†H)d/2 for even d ≥ 4, and (LTεH)C(LTεH)T(H†H)(d−5)/2 for odd d ≥ 5. Here H, L are the Higgs ] h andleptondoublet,andε, C theantisymmetricmatrixofranktwoandthechargeconjugationmatrix,respectively. p Therenormalizationgrouprunningoftheseoperatorscanbestudiedseparatelyfromotheroperatorsofequalmass - p dimensionattheleadingorderinpowercounting. Wecomputetheiranomalousdimensionsatoneloopforgenerald e andfindthattheyareenhancedquadraticallyindduetocombinatorics. Wealsomakeconnectionswithclassification h ofoperatorsintermsoftheirholomorphicandanti-holomorphicweights. [ 2 v 9 1 0 8 0 . 1 0 7 1 : v i X r a [email protected] [email protected] 1 We study in this short paper two general aspects in standard model effective field theory (SMEFT). One is a power counting rule in perturbation theory for anomalous dimension matrix of higher dimensional operators with equalmass(canonical)dimensionthatisinducedbythestandardmodel(SM)interactions. Weshowthattheleading powerofeachentryintheanomalousdimensionmatrixisdeterminedintermsofthelooporderandthedifferenceof indicesforthetwooperatorsinvolved. Theotherisaboutthelowest-indexoperators. Wefindthattheyareuniqueat eachdimensionandcanberenormalizedindependentlyofotheroperatorsofequaldimensionattheleadingorderin SM interactions. We compute their one-loop anomalous dimensions, and find that they increase quadratically with theirdimensionduetocombinatorics. Regarding SM as an effective field theory below the electroweak scale, the low energy effects of high scale physicscanbeparameterizedintermsofhigherdimensionaloperators: L =L +L +L +L +···. (1) SMEFT 4 5 6 7 HeretheleadingtermsaretheSMLagrangian (cid:18) (cid:19)2 1 1 L = − ∑X Xµν+(D H)†(DµH)−λ H†H− v2 4 µν µ 4 2 X +∑Ψ¯iD/Ψ−(cid:2)Q¯Y uH˜ +Q¯Y dH+L¯Y eH+h.c.(cid:3), (2) u d e Ψ where X sums over the three gauge field strengths of couplings g , and Ψ extends over the lepton and quark 1,2,3 left-handed doublets L, Q and right-handed singlets e, u, d. The Higgs field H develops the vacuum expectation √ valuev/ 2,andH˜ =ε H∗. D istheusualgaugecovariantderivative,andY areYukawacouplingmatrices. i ij j µ u,d,e The higher dimensional operators, collected in L and ellipses in Eq. 1, are composed of the above SM 5,6,7 fields,andrespecttheSMgaugesymmetriesbutnotnecessarilyaccidentsymmetrieslikeleptonorbaryonnumber conservation. They are generated from high scale physics by integrating out heavy degrees of freedom, with their Wilson coefficients naturally suppressed by powers of certain high scale. It is thus consistent to leave aside those Wilson coefficients when we do power counting for their renormalization running effects due to SM interactions. The higher dimensional operators start at dimension-five (dim-5), which turns out to be unique [1]. The complete and independent list of dim-6 and dim-7 operators has been constructed in Refs. [2, 3] and [4, 5] respectively. The number of operators increases horribly fast with their dimension; for discussions on dim-8 operators and beyond, see recent papers [6, 7, 8, 9]. If SM is augmented by sterile neutrinos below the electroweak scale, there will be additional operators at each dimension, see Refs. [10, 11, 12, 13] for discussions on operators up to dim-7 that involvesterileneutrinos. Nowweconsiderpowercountingintheanomalousdimensionmatrixγ ofhigherdimensionaloperatorsdueto SMinteractions. Werestrictourselvesinthisworktothemixingofoperatorswithequalmassdimension. Sincethe power counting is additive, it is natural to assign an index of power counting χ[O] to the operator O which in turn isasumoftheindicesfortheelementsinvolvedinO. Forthepurposeofpowercounting,wedenotegasageneric couplinginSM.SupposeaneffectiveinteractionCO inL isdressedbySMinteractionsatn-loopstoinduce i i SMEFT an effective interaction, ∆ O (no sum over j), involving the operator O of equal dimension. Including the SM ji j j n-loop factor ofg2n yields the power counting of ∆ to be 2n+χ[O]−χ[O ]. As ∆ O contributes a counterterm ji i j ji j to the effective interactionC O and thus the running ofC , we obtain the power counting for the entry γ in the j j j ji anomalousdimensionmatrix χ[γ ]=2n+χ[O]−χ[O ]. (3) ji i j Theissuenowbecomesdefininganindexforoperatorsuptoaconstant. SinceweareconcernedwithoverallpowercountinginSMinteractions,itisplausibletoassumethatalltermsin L havethesameindexofpowercounting. Asimilarphilosophywastakenpreviouslytodefinechiraldimensions 4 2 index 3 2 2 2 2 2 1 0 index γ X3 X2H2 Ψ¯ΨHX H4D2 Ψ¯ΨH2D Ψ¯2Ψ2 Ψ¯ΨH3 H6 ij 3 X3 g2 g1 g1 g1 g1 g1 0 0 2 X2H2 g3 g2 g2 g2 g2 g2 g1 0 2 Ψ¯ΨHX g3 g2 g2 g2 g2 g2 g1 0 2 H4D2 g3 g2 g2 g2 g2 g2 g1 0 2 Ψ¯ΨH2D g3 g2 g2 g2 g2 g2 g1 0 2 Ψ¯2Ψ2 g3 g2 g2 g2 g2 g2 g1 0 1 Ψ¯ΨH3 g4 g3 g3 g3 g3 g3 g2 g1 0 H6 g5 g4 g4 g4 g4 g4 g3 g2 Table1: Indicesofpowercountingfordim-6operatorsandpowercountingoftheiranomalousdimensionmatrixat oneloop. index 3 3 2 2 2 1 index γ Ψ2H2D2 Ψ¯Ψ3D Ψ2H2X Ψ2H3D Ψ¯Ψ3H Ψ2H4 ij 3 Ψ2H2D2 g2 g2 g1 g1 g1 0 3 Ψ¯Ψ3D g2 g2 g1 g1 g1 0 2 Ψ2H2X g3 g3 g2 g2 g2 g1 2 Ψ2H3D g3 g3 g2 g2 g2 g1 2 Ψ¯Ψ3H g3 g3 g2 g2 g2 g1 1 Ψ2H4 g4 g4 g3 g3 g3 g2 Table2: SimilartoTable1butfordim-7operators. in chiral perturbation theory involving chiral fermions coupled to electromagnetism [14, 15, 16, 17]. Denoting arbitrarily χ[H]=x, χ[λ]=2y, (4) sothatχ[L ]=4x+2y,itisstraightforwardtodeterminetheindicesofothercomponentsinL : 4 4 3 1 χ[Ψ]= x+ y, χ[X ]=2x+y, χ[D ]=x+y, χ[g ]=χ[Y]=y. (5) µν µ 1,2,3 2 2 It is evident that the x term actually counts canonical dimension. Since we are concerned with renormalization mixingofoperatorswithequaldimension, thepowercountingfortheiranomalousdimensionmatrixdependsonly onthedifferenceoftheindicesaccordingtoEq.(3). Wecanthuschoosetoworkwithx=0andy=1, sothatthe nonvanishingindicesforpowercountingare 1 χ[Ψ]= , χ[X ]=1, χ[D ]=1, χ[g ]=χ[Y]=1, χ[λ]=2. (6) µν µ 1,2,3 2 Thelowestindexthatanoperatorcouldhaveiszerointhisconvention. Notethatthescalarself-couplingλ counts asasquaredgaugecoupling,justasaquarticgaugeinteraction. We can now associate an index of power counting χ[O] to a higher dimensional operator O by simply adding up the indices of its components according to Eq. (6). The entry γ in the anomalous dimension matrix for the set ji of operators O due to SM interactions at n-loops has the index of power counting shown in Eq. (3) in terms of k √ a generic coupling g, which denotes g , Y , and λ. Our results for dim-6 and dim-7 operators are shown 1,2,3 e,u,d in Table 1 and Table 2 respectively. The one-loop γ matrix for dim-6 operators has been computed in a series of papers [18, 19, 20, 21, 22, 23, 24], and is consistent with power counting in Table 1. The γ submatrix for baryon 3 number violating dim-7 operators is available recently [5], and also matches power counting in Table 2. Note that someentriesinthetablesmayactuallyvanishduetostructuresofone-loopFeynmandiagramsornonrenormalization theorem [25, 26, 27]. Since at least one vertex of SM interactions is involved in one-loop diagrams, γ counts as g1 or higher. This explains the presence of zero in the last two columns of the tables. The power counting in the explicitresultofone-loopγ matrixfordim-6operatorshasalsobeenexplainedinRef.[28]usingtheargumentsof naivedimensionalanalysis[29]thatrescaleoperatorsforthandbackbyfactorsofcouplingsandpowersof4π. Our analysisaboveismorestraightforwardandassumesonlytheuniformapplicationofSMperturbationtheory. With the above definition of the index of power counting for an operator, we make an interesting observation that the operator with the lowest index is unique at each mass dimension. To show this, we notice that out of the building blocks (H, Ψ, D , X ) for higher dimensional operators only H has a vanishing index. This means that µ µν itshouldappearasmanytimesaspossibleinthelowest-indexoperatorsforagivenmassdimensiond. Ford even, thisiseasytofigureout,i.e., Od = (H†H)d/2. (7) H For d odd, additional building blocks must be introduced. In the absence of fermions, X and D have to appear µν µ at least twice due to Lorentz invariance, which costs no less than two units of index. And in addition, this cannot yieldanoperatorofodddimension. Thecheapestpossiblewaywouldbetointroducetwofermionfieldsinascalar bilinear form on top of the Higgs fields, resulting in an operator of index unity. It turns out that gauge symmetries require the fermions to be leptons. Sorting out the quantum numbers of lepton fields 3, we arrive at the unique operatoratoddd dimension, Od pr = (cid:2)(LTεH)C(LTεH)T(cid:3)(H†H)(d−5)/2, (8) LH p r where p, r are lepton flavor indices. This is the generalized dim-d Weinberg operator for neutrino mass whose uniquenesswasestablishedpreviouslyinRef.[30]usingYoungtableau. The lowest-index operators are of interest because their renormalization running under SM interactions is gov- ernedattheleadingorderbytheirownanomalousdimensions;i.e.,theyareonlyrenormalizedatthenext-to-leading order by higher-index operators of the same canonical dimension. This is evident from Eq. (3) and the last row in Tables1and2. Theuniquenessofthelowest-indexoperatorsateachdimensionfurthersimplifiestheconsideration oftheirrenormalizationrunning,whichwillbetakenupintheremainingpartofthiswork. Beforethat,wemakea connectiontoclassificationofoperatorsintermsoftheirholomorphicandanti-holomorphicweightsω, ω¯ [25,27]. Theclaimisthatourlowest-indexoperatorsOd, Od arealsotheoneswiththelargestweights,i.e.,bothoftheirω H LH andω¯ arethelargestamongoperatorsofagivencanonicaldimension. Toshowthis, weintroducesomenotations. WedenoteΨtobeleft-handedfermionfields,i.e.,L, Q, eC, uC, dC,andΨ¯ theright-handedones,andXµν =Xµν∓ ± (i/2)εµνρσX . Thepairofweightshasthevalues(ω,ω¯)=(1,1), (1,1), (3/2,1/2), (1/2,3/2), (0,0), (0,2), (2,0) ρσ for the building blocks of operators, H, H†, Ψ, Ψ¯, D, X , X , respectively. The weights (ω(Od),ω¯(Od)) of an − + operatorOd ofdimensiond arethesumofthecorrespondingweightsofitscomponents: 1 ω(Od) = n +n + (n +3n )+2n =d−(n +n +2n )≤d, (9) H H† 2 Ψ¯ Ψ X+ Ψ¯ D X− 1 ω¯(Od) = n +n + (3n +n )+2n =d−(n +n +2n )≤d, (10) H H† 2 Ψ¯ Ψ X− Ψ D X+ wheren denotesthepowerofthecomponentBappearinginOd. Thelargestω andω¯ thatanoperatorcouldhaveis B thusitscanonicaldimension. Fordeven,thisiseasytorealizebysendingn =n =n =n =0,i.e.,theoperator X± D Ψ Ψ¯ withthehighestweightsisthelowest-indexoperatorOd madeuppurelyoftheHiggsfield. Ford odd,itisknown H 3Thebilinearform(L¯e)mustcoupletoanoddtotalnumberofH†andH resultinginanevendim-doperator. Thebilinear(ee)requires fourmorepowersofH thanH†tobalancehypercharge,whichthencannotbemadeweakisospininvariant. Thisleavestheonlypossibility asshown. 4 that all operators in SMEFT necessarily involve fermion fields [31], with the minimal choice being n +n =2. Ψ Ψ¯ Thiscanbearrangedbychoosingn =2, n =n =n =0resultingintheoperatorOd ofthehighestweights Ψ X± D Ψ¯ LH (d,d−2),orbychoosinginsteadn =2asitsHermitianconjugateOd†. Thealternativechoicen =n =1would Ψ¯ LH Ψ Ψ¯ requireafactorofDduetoLorentzsymmetry,whichreducesω (orω¯)bytwounitscomparedwithOd (orOd†). LH LH This establishes the claim. As a side remark, the above equations together with Lorentz symmetry also imply that theoperatorsateven(odd)dimensionhaveeven(odd)holomorphicandanti-holomorphicweights. Now we compute the anomalous dimensions at leading order for the lowest-index operators Od at even dim- H d and Od pr for odd dim-d in Eqs. (7,8). The Feynman diagrams shown in Figs. 1 and 2 are for O6 and O7 pr LH H LH respectively. At higher dimensions one has to be careful with combinatorics due to powers of H†H involved in the operators. We perform the calculation in dimensional regularization and minimal subtraction scheme and in the general R gauge. The cancelation of the ξ parameters in the final answer then serves as a useful check. The ξ renormalization group equations for the Wilson coefficients of the above two operators are, at leading order in perturbationtheory, (cid:20) (cid:21) d 3 9 16π2µ Cd = 3d2λ− dg2− dg2+dW Cd, (11) dµ H 4 1 4 2 H H (cid:20) (cid:21) d 3 3 16π2µ Cd pr = (3d2−18d+19)λ− (d−5)g2− (3d−11)g2+(d−3)W Cd pr dµ LH 4 1 4 2 H LH 3(cid:104) (cid:105) − (YY†) Cd vr+(YY†) Cd pv , (12) 2 e e vp LH e e vr LH whereW =Tr[3(Y†Y )+3(Y†Y )+(Y†Y )]comesfromfieldstrengthrenormalizationofH. H u u d d e e Wemakesomefinalcommentsontheaboveresult. ThetermsintheanomalousdimensionsduetotheHiggsself- couplingλ increasequadraticallywithcanonicaldimensiondduetocombinatorics,makingrenormalizationrunning effects significantly more and more important for higher dimensional operators. The Yukawa terms in Eq. (12) are independent of d because the lepton field L cannot connect to (H†H)(d−5)/2 to yield a nonvanishing contribution due to weak isospin symmetry. The large numerical factor in the λ term forC6 was observed previously in [21], H andourleadingorderresultsindeedmatchthatwork. Includingasymmetryfactorof1/2intheλ termofEq.(11) that appears in graphs (4)-(5) in Fig. 1 at d =4, our result also applies to renormalization of the λ coupling and is consistent with [32] upon noting different conventions for λ. The renormalization of the Weinberg operator O5 pr LH wasfinallygiveninRef.[33]andcorrespondstographs(1)-(5)inFig.2. Ourresultatd =5isconsistentwiththat work again after taking into account different conventions for λ. The λ term of the γ function for Od pr increases LH significantlywithd forthefirsttwooperatorsinparticular,from4λ atd=5to40λ atd=7. Acknowledgement ThisworkwassupportedinpartbytheGrantsNo. NSFC-11025525,No. NSFC-11575089andbytheCASCenter forExcellenceinParticlePhysics(CCEPP). References [1] S.Weinberg,Phys.Rev.Lett.43,1566(1979). [2] W.BuchmullerandD.Wyler,Nucl.Phys.B268,621(1986). [3] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, JHEP 1010, 085 (2010) [arXiv:1008.4884 [hep- ph]]. 5 H H H H x9 x3 x3 H H (1) (2) (3) x9 x3 x3 (4) (5) (6) Figure 1: One-loop Feynman diagrams for self-renormalization of the operator O6 shown as a grey square. The H wavy(dashed)linerepresentsgauge(scalar)fields. Thearrowsindicatetheflowofhypercharge. L L H H x1 x3 x6 H H (1) (2) (3) x6 x3 x3 (4) (5) (6) x3 x2 x2 (7) (8) (9) Figure 2: Similar to Fig. 1 but for the operator O7 pr. The arrow on the solid line stands for lepton number flow. LH Ford≥9theincomingscalarstothegreysquareintheloopofgraphs(2)and(5)canalsobeoutgoing. 6 [4] L.Lehman,Phys.Rev.D90,125023(2014)[arXiv:1410.4193[hep-ph]]. [5] Y.LiaoandX.D.Ma,JHEP1611,043(2016)[arXiv:1607.07309[hep-ph]]. [6] L.LehmanandA.Martin,Phys.Rev.D91,105014(2015)[arXiv:1503.07537[hep-ph]]. [7] B. Henning, X. Lu, T. Melia and H. Murayama, Commun. Math. Phys. 347, no. 2, 363 (2016) [arXiv:1507.07240[hep-th]]. [8] L.LehmanandA.Martin,JHEP1602,081(2016)[arXiv:1510.00372[hep-ph]]. [9] B.Henning,X.Lu,T.MeliaandH.Murayama,arXiv:1512.03433[hep-ph]. [10] A. Aparici, K. Kim, A. Santamaria and J. Wudka, Phys. Rev. D 80, 013010 (2009) [arXiv:0904.3244 [hep- ph]]. [11] F. del Aguila, S. Bar-Shalom, A. Soni and J. Wudka, Phys. Lett. B 670, 399 (2009) [arXiv:0806.0876 [hep- ph]]. [12] S.BhattacharyaandJ.Wudka,Phys.Rev.D94,no.5,055022(2016)[arXiv:1505.05264[hep-ph]]. [13] Y.LiaoandX.D.Ma,arXiv:1612.04527[hep-ph]. [14] R.Urech,Nucl.Phys.B433,234(1995)[hep-ph/9405341]. [15] M.Knecht,H.Neufeld,H.RupertsbergerandP.Talavera,Eur.Phys.J.C12,469(2000)[hep-ph/9909284]. [16] A.NyffelerandA.Schenk,Phys.Rev.D62,113006(2000)[hep-ph/9907294]. [17] For recent comparative discussions on chiral dimensional counting and naive dimensional analysis, see: G.Buchalla,O.CataandC.Krause,Phys.Lett.B731,80(2014)[arXiv:1312.5624[hep-ph]];B.M.Gavela, E. E. Jenkins, A. V. Manohar and L. Merlo, Eur. Phys. J. C 76, 485 (2016) [arXiv:1601.07551 [hep-ph]]; G.Buchalla,O.Cata,A.CelisandC.Krause,arXiv:1603.03062[hep-ph]. [18] C.Grojean,E.E.Jenkins,A.V.ManoharandM.Trott,JHEP1304,016(2013)[arXiv:1301.2588[hep-ph]]. [19] J.Elias-Miro,J.R.Espinosa,E.MassoandA.Pomarol,JHEP1308,033(2013)[arXiv:1302.5661[hep-ph]]. [20] J.Elias-Miro,J.R.Espinosa,E.MassoandA.Pomarol,JHEP1311,066(2013)[arXiv:1308.1879[hep-ph]]. [21] E.E.Jenkins,A.V.ManoharandM.Trott,JHEP1310,087(2013)[arXiv:1308.2627[hep-ph]]. [22] E.E.Jenkins,A.V.ManoharandM.Trott,JHEP1401,035(2014)[arXiv:1310.4838[hep-ph]]. [23] R.Alonso,E.E.Jenkins,A.V.ManoharandM.Trott,JHEP1404,159(2014)[arXiv:1312.2014[hep-ph]]. [24] R. Alonso, H. M. Chang, E. E. Jenkins, A. V. Manohar and B. Shotwell, Phys. Lett. B 734, 302 (2014) [arXiv:1405.0486[hep-ph]]. [25] R.Alonso,E.E.JenkinsandA.V.Manohar,Phys.Lett.B739,95(2014)[arXiv:1409.0868[hep-ph]]. [26] J.Elias-Miro,J.R.EspinosaandA.Pomarol,Phys.Lett.B747,272(2015)[arXiv:1412.7151[hep-ph]]. [27] C.CheungandC.H.Shen,Phys.Rev.Lett.115,no.7,071601(2015)[arXiv:1505.01844[hep-ph]]. [28] E.E.Jenkins,A.V.ManoharandM.Trott,Phys.Lett.B726,697(2013)[arXiv:1309.0819[hep-ph]]. 7 [29] A.ManoharandH.Georgi,Nucl.Phys.B234,189(1984). [30] Y.Liao,Phys.Lett.B694,346(2011)[arXiv:1009.1692[hep-ph]]. [31] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock and C. Zhang, AnnalsPhys.335,21(2013)[arXiv:1205.4231[hep-ph]]. [32] H.Arason,D.J.Castano,B.Keszthelyi,S.Mikaelian,E.J.Piard,P.RamondandB.D.Wright,Phys.Rev.D 46,3945(1992). [33] S.Antusch,M.Drees,J.Kersten,M.LindnerandM.Ratz,Phys.Lett.B519,238(2001)[hep-ph/0108005]. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.