ebook img

Perturbation Methods and Semilinear Elliptic Problems on R^n PDF

187 Pages·2006·1.074 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Perturbation Methods and Semilinear Elliptic Problems on R^n

Progress in Mathematics Volume 240 Series Editors H. Bass J. Oesterlé A. Weinstein Antonio Ambrosetti Andrea Malchiodi Perturbation Methods and Semilinear Elliptic Problems on R n Birkhäuser Verlag Basel (cid:1) Boston (cid:1) Berlin Authors: Antonio Ambrosetti Andrea Malchiodi S.I.S.S.A. Via Beirut 2-4 34014 Trieste Italy e-mail: [email protected] e-mail: [email protected] 2000 Mathematics Subject Classifi cation 34A47, 35A20, 35J60, 35Q55, 53A30 A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 3-7643-7321-0 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfi lms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2006 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp. TCF ∞ Printed in Germany ISBN-10: 3-7643-7321-0 e-ISBN: 3-7643-7396-2 ISBN-13: 978-3-7643-7321-4 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Examples and Motivations 1.1 Elliptic equations on Rn . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 The subcritical case . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 The critical case: the Scalar Curvature Problem. . . . . . . 3 1.2 Bifurcation from the essential spectrum . . . . . . . . . . . . . . . 5 1.3 Semiclassical standing waves of NLS . . . . . . . . . . . . . . . . . 6 1.4 Other problems with concentration . . . . . . . . . . . . . . . . . . 8 1.4.1 Neumann singularly perturbed problems . . . . . . . . . . . 8 1.4.2 Concentration on spheres for radial problems . . . . . . . . 9 1.5 The abstract setting . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Pertubation in Critical Point Theory 2.1 A review on critical point theory . . . . . . . . . . . . . . . . . . . 13 2.2 Critical points for a class of perturbed functionals, I . . . . . . . . 19 2.2.1 A finite-dimensional reduction: the Lyapunov-Schmidt method revisited . . . . . . . . . . . 20 2.2.2 Existence of critical points. . . . . . . . . . . . . . . . . . . 22 2.2.3 Other existence results . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 A degenerate case . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.5 A further existence result . . . . . . . . . . . . . . . . . . . 27 2.2.6 Morse index of the critical points of I . . . . . . . . . . . . 29 ε 2.3 Critical points for a class of perturbed functionals, II . . . . . . . . 29 2.4 A more general case . . . . . . . . . . . . . . . . . . . . . . . . . . 33 viii Contents 3 Bifurcation from the Essential Spectrum 3.1 A first bifurcation result . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 The unperturbed problem . . . . . . . . . . . . . . . . . . . 36 3.1.2 Study of G . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 A second bifurcation result . . . . . . . . . . . . . . . . . . . . . . 39 3.3 A problem arising in nonlinear optics . . . . . . . . . . . . . . . . . 41 4 Elliptic Problems on Rn with Subcritical Growth 4.1 The abstract setting . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Study of the Ker[I(cid:1)(cid:1)(z )] . . . . . . . . . . . . . . . . . . . . . . . . 47 0 ξ 4.3 A first existence result . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 Another existence result . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Elliptic Problems with Critical Exponent 5.1 The unperturbed problem . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 On the Yamabe-like equation . . . . . . . . . . . . . . . . . . . . . 62 5.2.1 Some auxiliary lemmas . . . . . . . . . . . . . . . . . . . . 63 5.2.2 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . 66 5.2.3 The radial case . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 Further existence results . . . . . . . . . . . . . . . . . . . . . . . . 68 6 The Yamabe Problem 6.1 Basic notions and facts . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.1.1 The Yamabe problem . . . . . . . . . . . . . . . . . . . . . 74 6.2 Some geometric preliminaries . . . . . . . . . . . . . . . . . . . . . 76 6.3 First multiplicity results . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.1 Expansions of the functionals . . . . . . . . . . . . . . . . . 80 6.3.2 The finite-dimensional functional . . . . . . . . . . . . . . . 82 6.3.3 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . 86 6.4 Existence of infinitely-many solutions. . . . . . . . . . . . . . . . . 88 6.4.1 Proof of Theorem 6.3 completed . . . . . . . . . . . . . . . 90 6.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7 Other Problems in Conformal Geometry 7.1 Prescribing the scalar curvature of the sphere . . . . . . . . . . . . 101 7.2 Problems with symmetry . . . . . . . . . . . . . . . . . . . . . . . 105 7.2.1 The perturbative case . . . . . . . . . . . . . . . . . . . . . 105 7.3 Prescribing Scalar and Mean Curvature on manifolds with boundary . . . . . . . . . . . . . . . . . . . . . . 109 7.3.1 The Yamabe-like problem . . . . . . . . . . . . . . . . . . . 109 7.3.2 The Scalar Curvature Problem with boundary conditions . . . . . . . . . . . . . . . . . . . . . . 111 Contents ix 8 Nonlinear Schro¨dinger Equations 8.1 Necessary conditions for existence of spikes . . . . . . . . . . . . . 115 8.2 Spikes at non-degenerate critical points of V . . . . . . . . . . . . . 117 8.3 The general case: Preliminaries . . . . . . . . . . . . . . . . . . . . 121 8.4 A modified abstract approach . . . . . . . . . . . . . . . . . . . . . 123 8.5 Study of the reduced functional . . . . . . . . . . . . . . . . . . . . 131 9 Singularly Perturbed Neumann Problems 9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.2 Construction of approximate solutions . . . . . . . . . . . . . . . . 138 9.3 The abstract setting . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4 Proof of Theorem 9.1. . . . . . . . . . . . . . . . . . . . . . . . . . 146 10 Concentration at Spheres for Radial Problems 10.1 Concentration at spheres for radial NLS . . . . . . . . . . . . . . . 151 10.2 The finite-dimensional reduction . . . . . . . . . . . . . . . . . . . 153 10.2.1 Some preliminary estimates . . . . . . . . . . . . . . . . . . 154 10.2.2 Solving PI(cid:1)(z+w)=0 . . . . . . . . . . . . . . . . . . . . 156 ε 10.3 Proof of Theorem 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.3.1 Proof of Theorem 10.1 completed . . . . . . . . . . . . . . . 160 10.4 Other results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.5 Concentration at spheres for (N ) . . . . . . . . . . . . . . . . . . . 162 ε 10.5.1 The finite-dimensional reduction . . . . . . . . . . . . . . . 163 10.5.2 Proof of Theorem 10.12 . . . . . . . . . . . . . . . . . . . . 166 10.5.3 Further results . . . . . . . . . . . . . . . . . . . . . . . . . 171 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Foreword Several important problems arising in Physics, Differential Geometry and other topics lead to consider semilinear variational elliptic equations on Rn and a great deal of work has been devoted to their study. From the mathematical point of view, the main interest relies on the fact that the tools of Nonlinear Functional Analysis, based on compactness arguments,in general cannot be used, at least in a straightforwardway, and some new techniques have to be developed. On the other hand, there are several elliptic problems on Rn which are per- turbative in nature. In some cases there is a natural perturbation parameter, like inthebifurcationfromtheessentialspectrumorinsingularlyperturbedequations or in the study of semiclassical standing waves for NLS. In some other circum- stances, one studies perturbations either because this is the first step to obtain global results or else because it often provides a correct perspective for further global studies. Fortheseperturbationproblemsaspecificapproach,thattakesadvantageof such a perturbative setting, seems the most appropriate.These abstract tools are provided by perturbation methods in critical point theory. Actually, it turns out that such a frameworkcan be used to handle a large variety of equations,usually considered different in nature. Theaimofthismonographistodiscusstheseabstractmethodstogetherwith their applications to several perturbation problems, whose common feature is to involvesemilinear Elliptic PartialDifferential Equations on Rn with a variational structure. The resultspresentedhereare basedonpapersofthe Authors carriedout in the last years.Many of them are works in collaborationwith other people like D. Arcoya,M. Badiale,M. Berti,S. Cingolani,V. Coti Zelati,J.L. Gamez, J. Garcia Azorero, V. Felli, Y.Y. Li, W.M. Ni, I. Peral, S. Secchi. We would like to express our warm gratitude to all of them. Notation • Rn is the Euclidean n-dimensional space with points x=(x ,...,x ). 1 n • (cid:1)x,y(cid:2) denote the Euclidean scalar product of x,y ∈ Rn; we also set |x|2 = (cid:1)x,x(cid:2). • B (y) is the ball {x∈Rn :|x−y|<r}. We will write B to shorten B (0). r r r • Sn denotes the unit n-dimensional sphere: Sn ={x∈Rn+1 :|x|=1}. • If Ω is an open subset of Rn and u : Ω (cid:4)→ R is smooth, we denote by D u, i D2u the partial derivatives of u with respect to x , x x , etc.; we will also ij i i j use the notation ∂ or∂ insteadofD ,and ∂2 or∂2 insteadofD2. ∂xi xi i ∂xi∂xj xixj ij • ∇u denotes the gradient of real-valued function u: ∇u = (D u,...,D u); 1 n sometime, for a real-valued function K, the notation K(cid:1) will also be used instead of ∇K. • ∇u·∇v will be also used to denote (cid:1)∇u,∇v(cid:2). (cid:1) • ∆ denotes the Laplacian: ∆u= n ∂2 . 1 ∂x2 • Ifu,v ∈H,a(real)Hilbertspace,thescialarproductwillbedenotedby(u|v) and the norm (cid:7)u(cid:7)2 =(u|u). • Id denotes the identity map in Rn or H. • Lp(Rn), Lp (Rn), Lp(Ω), etc. denote the usual Lebesgue spaces. loc • Wm,p(Rn),Wm.p(Ω),etc.denotetheusualSobolevspaces.IfM isasmooth manifold, Hm(M) denotes the Sobolev space Hm,2(M). • 2∗ stands for 2n if n≥3, and 2∗ =+∞ if n=1,2. n−2 • D1,2(Rn), n≥3, denotes the space {u∈L2∗(Rn):∇u∈L2(Rn)}. • IfX,Y areBanachspaces,L(X,Y)denotesthespaceofboundedlinearmaps from X to Y. • If f ∈ Ck(X,Y), k ≥ 1, df(u), d2f(u), denote the Fr´echet derivatives of f at u∈X. They are, respectively, a linear bounded map from X to Y, and a bilinear continuous map fro X×X to Y. • If I ∈ Ck(H,R), k ≥ 1, is a functional, I(cid:1)(u) denotes the gradient of I at u ∈ H, defined by means of the Riesz representation Theorem setting (I(cid:1)(u)|v) = dI(u)[v], ∀v ∈ H. Similarly, I(cid:1)(cid:1)(u) is the linear operator defined by setting (I(cid:1)(cid:1)(u)v|w)=d2I(u)[v,w], ∀v,w ∈H • If I ∈C1(H,R), Cr[I] denotes the set of critical points of I. • u=o(εk) means thatuε −k tends to zero as ε→0. • u=O(εk) means that|uε −k|≤c as ε→0. • o (1) denotes a function depending on ε that tends to 0 as ε→0. Similarly, ε o (1) denotes a function depending on R that tends to 0 as R→+∞. R • The notation ∼ denotes quantities which, in the limit are of the same order.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.