ebook img

Perovskite Solar Cells: Materials, Processes, and Devices PDF

576 Pages·2022·20.15 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Perovskite Solar Cells: Materials, Processes, and Devices

PerovskiteSolarCells Perovskite Solar Cells Materials, Processes, and Devices Edited by Shahzada Ahmad, Samrana Kazim, ̈ and Michael Gratzel Editors AllbookspublishedbyWILEY-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.ShahzadaAhmad publisherdonotwarranttheinformation BCMaterials,BasqueCenterfor containedinthesebooks,includingthisbook, Materials,Applications& tobefreeoferrors.Readersareadvisedtokeep Nanostructures inmindthatstatements,data,illustrations, EHU/UPVSciencePark proceduraldetailsorotheritemsmay 48940Leioa inadvertentlybeinaccurate. Spain LibraryofCongressCardNo.:appliedfor Ikerbasque,BasqueFoundation forScience,Bilbao BritishLibraryCataloguing-in-PublicationData Spain Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Dr.SamranaKazim BCMaterials,BasqueCenterfor Bibliographicinformationpublishedby Materials,Applications& theDeutscheNationalbibliothek Nanostructures TheDeutscheNationalbibliotheklists EHU/UPVSciencePark thispublicationintheDeutsche 48940Leioa Nationalbibliografie;detailedbibliographic Spain dataareavailableontheInternetat <http://dnb.d-nb.de>. Ikerbasque,BasqueFoundation forScience,Bilbao ©2022WILEY-VCHGmbH,Boschstr.12, Spain 69469Weinheim,Germany Prof.MichaelGrätzel Allrightsreserved(includingthoseof Écolepolytechniquefédéralede translationintootherlanguages).Nopartof Lausanne(EPFL) thisbookmaybereproducedinanyform–by Institutdessciencesetingénierie photoprinting,microfilm,oranyother chimiques means–nortransmittedortranslatedintoa Station6 machinelanguagewithoutwrittenpermission 1015Lausanne fromthepublishers.Registerednames, Switzerland trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe CoverDesign:FORMGEBER, consideredunprotectedbylaw. Mannheim,Germany CoverImage:basedon“Angew.Chem. PrintISBN:978-3-527-34715-5 Int.Ed.2016,55,14522–1454” ePDFISBN:978-3-527-82578-3 (@LauraCalio) ePubISBN:978-3-527-82580-6 oBookISBN:978-3-527-82579-0 Typesetting Straive,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Foreword xv 1 ChemicalProcessingofMixed-CationHybridPerovskites: StabilizingEffectsofConfigurationalEntropy 1 FerayÜnlü,EunhwanJung,SenolÖz,HeechaeChoi,ThomasFischer,and SanjayMathur 1.1 Introduction 1 1.1.1 StabilityIssuesofOrganic–InorganicHybridPerovskites 2 1.2 CrystalStructureofPerovskites 4 1.2.1 GoldschmidtToleranceFactorfor3DStructure 5 1.2.2 OctahedralFactor 5 1.2.3 RoleofA-SiteCation 7 1.2.4 TheoreticalCalculations:MolecularDynamicsofA-SiteCation 8 1.2.5 EntropyofMixing:ConfigurationalEffectsinMixed-Cation Perovskites 11 1.3 MultipleA-SiteCationPerovskites 12 1.3.1 FA+/MA+AlloyingforHigherPhaseStabilityandPhotovoltaic Efficiency 12 1.3.2 CesiumInclusionforThermalStability 13 1.3.3 Rb+Small-CationInfluenceonPerovskiteStructureforThermal Stability 15 1.3.4 GuanidiniumLarge-CationInfluenceonPerovskiteStructurefor Stability 16 1.3.5 Triple-andQuadruple-CationHybridPerovskitesforStabilityand OptimumPerformance 17 1.3.6 LargerOrganicCations:ReducingDimensionalityforImprovedThermal Stability 20 1.4 ConclusionandPerspectives 22 Acknowledgments 24 References 24 vi Contents 2 FlashInfraredAnnealingforProcessingofPerovskiteSolar Cells 33 SandySánchezandAndersHagfeldt 2.1 Introduction 33 2.2 PerovskiteCrystalNucleationandGrowthfromSolution 34 2.2.1 TheAntisolventDrippingMethod 34 2.2.2 ThermodynamicsofNucleationandCrystalGrowth 34 2.2.3 KineticProcessforRapidThermalGrowth 36 2.3 RapidThermalAnnealing 37 2.3.1 TheFIRAMethod 37 2.3.2 FIRAandAntisolvent 39 2.3.3 PerovskiteFilmCrystallizationforaSingleIRPulse 40 2.3.4 PerovskiteCrystallizationwithPulseDuration 42 2.3.5 PulsedFIRAMethodforInorganicPerovskiteComposition 45 2.3.6 Warmed-PulsedFIRAMethod 46 2.3.7 CrystallizationBehaviorofMixedPerovskiteSolutions 47 2.4 StructuralAnalysisofFIRA-AnnealedPerovskiteFilmswithVariable PulseTime 50 2.4.1 PlanarandMesoporousSubstrates 50 2.4.2 CrystalStructureAnalysis 51 2.4.3 StructureoftheIntermediatePhases 53 2.4.4 InternalCrystalDomainStructure 56 2.5 ACost-EffectiveandEnvironmentallyFriendlyMethod 57 2.5.1 Life-CycleAssessment(LCA)ofthePerovskiteFilmSynthesis Methods 57 2.5.2 RelativeCostandEnvironmentalImpactoftheASandFIRA Methods 58 2.6 ApplicationforMAPI PerovskiteSolarCells 60 3 2.6.1 SingleIRPulseandMAPbI PerovskiteComposition 60 3 2.6.2 Large-AreaDevices 60 2.7 PlanarDevicesArchitectureandMixedPerovskiteComposition 64 2.7.1 ThinFilmAnalysis 64 2.7.2 PVPerformanceandElectronicCharacteristicoftheDevices 64 2.8 PulsedFIRAforInorganicPerovskiteSolarCells 67 2.8.1 ThinFilmAnalysis 67 2.8.2 PVPerformance 68 2.9 RapidManufacturingofPSCswithanAdaptedPerovskiteChemical Composition 71 2.9.1 RapidAnnealedTiO MesoscopicFilm 71 2 2.9.2 FCGPerovskiteStabilizedwithTBAI 72 2.9.3 PVPerformanceoftheManufacturedPSCs 73 2.10 OutlookandTechnicalDetails 75 2.10.1 OptimizationofFIRAProcessforTandemSolarCells 75 2.10.2 AutomaticRoll-to-RollSystemfortheFIRAManufactureofPerovskite SolarCells 77 Contents vii 2.10.3 ElectronicSetup 78 2.10.4 LabViewInterface 78 2.11 ExperimentalMethods 80 2.11.1 ManufactureofPerovskiteSolarCells 80 2.11.2 PerovskiteSolutionPreparation 80 2.11.3 AntisolventMethod 81 2.11.4 FIRAMethod 81 2.11.5 HTMDepositionandBackContactEvaporation 81 2.11.6 DeviceCharacterization 82 2.11.7 MaterialCharacterization 82 2.11.8 TemperatureMeasurement 83 ListofAbbreviations 83 Acknowledgments 84 References 84 3 PassivationofHybrid/InorganicPerovskiteSolarCells 91 MuhammadAkmalKamarudinandShuziHayase 3.1 Introduction 91 3.1.1 TypesofPassivation 93 3.1.1.1 BulkPassivation 93 3.1.1.2 SurfacePassivation 93 3.1.2 PassivatingMaterials 95 3.1.2.1 MetalHalides 95 3.1.2.2 OrganicAcids(—COOH,—SOOH,and—POOH) 96 3.1.2.3 OrganosulfurCompound 98 3.1.2.4 Amines 98 3.1.2.5 Graphene 100 3.1.2.6 MetalOxides 100 3.1.2.7 OrganicHalides 102 3.1.2.8 QuantumDots 104 3.1.2.9 Polymers 104 3.1.2.10 Zwitterions 107 3.2 Conclusion 107 References 108 4 TuningInterfacialEffectsinHybridPerovskiteSolarCells 113 RafaelS.Sánchez,LionelHirsch,andDarioM.Bassani 4.1 StrategiesforInterfacialDepositionandAnalysis 113 4.1.1 TailoringthePSPropertiesandMicrostructuralInterfaceThrough SolventEngineering 114 4.1.2 TailoringthePSPropertiesandMicrostructuralInterfaceThrough Non-solventMethods 117 4.2 DefectFormationinPSFilmsandInterfaces 118 4.2.1 DefectFormationinthePSBulkandattheSurfaceDuringFilm Crystallization 119 viii Contents 4.2.2 DefectFormationandDynamicsofPSCUnderWorking Conditions 122 4.3 PassivationStrategiesofPS 126 4.4 MeasuringandTuningtheWorkFunctionandSurfacePotentialin PSC 130 4.5 TuningtheWettabilityandCompatibilityBetweenLayers 138 4.6 EffectonDeviceEfficiencyandLifetime 142 4.6.1 MoistureEffectsonPSFilmsandPSC 142 4.6.2 PhotoinducedDegradationofPSFilmsandPSC 146 4.6.3 ThermalDegradationofPSFilmsandPSC 149 4.6.4 OtherSourcesofDegradationinPSC 150 4.7 ConclusionsandProspects 153 References 154 5 All-inorganicPerovskiteSolarCells 175 YaowenLiandYongfangLi 5.1 Introduction 175 5.2 BasicKnowledgeofAll-inorganicPero-SCs 176 5.2.1 CrystallineStructure 176 5.2.2 Stability 177 5.2.2.1 ThermalStability 177 5.2.2.2 PhaseStability 177 5.2.2.3 LightStability 178 5.2.3 WorkingPrinciple 178 5.3 Lead-BasedInorganicPero-SCs 179 5.3.1 CsPbI 179 3 5.3.1.1 AdditiveEngineering 181 5.3.1.2 OrganicCompoundTreatment 181 5.3.1.3 CrystalSizeReductionandMorphologyOptimization 183 5.3.1.4 CurrentDensityIncrease 185 5.3.2 CsPbI Br 185 2 5.3.2.1 FabricationMethods 185 5.3.2.2 IonicIncorporation 189 5.3.2.3 InterfaceEngineering 191 5.3.3 CsPbIBr 193 2 5.3.3.1 CrystalGrowth 194 5.3.3.2 IonicIncorporation 195 5.3.3.3 InterfaceEngineering 196 5.3.4 CsPbBr 196 3 5.3.4.1 FabricationMethod 197 5.3.4.2 IonicIncorporation 199 5.3.4.3 InterfaceEngineering 199 5.4 Tin-BasedInorganicPero-SCs 200 5.4.1 CsSnI 200 3 5.4.1.1 FabricationMethods 201 5.4.1.2 AdditiveEngineering 203 Contents ix 5.4.1.3 SubstrateControl 203 5.4.2 CsSnI Br 204 x 3−x 5.5 OtherInorganicPero-SCs 204 5.5.1 Ge-BasedInorganicPero-SCs 205 5.5.2 Sb-BasedInorganicPero-SCs 205 5.5.3 Bi-BasedInorganicPero-SCs 206 5.5.3.1 A B I Structure 206 3 2 9 5.5.3.2 OtherStructures 207 5.5.4 DoubleBsiteCationPerovskite 207 5.6 Conclusion 209 References 210 6 TinHalidePerovskiteSolarCells 223 ThomasStergiopoulos 6.1 Introduction 223 6.2 WhyTinHalidePerovskites? 223 6.2.1 TinastheSoleViableAlternative 223 6.2.2 FavorableOptoelectronicPropertiesofTinPerovskites 224 6.2.2.1 LowBandgap 224 6.2.2.2 HighChargeCarrierMobility 224 6.2.2.3 SimilarPropertieswithLeadPerovskites 225 6.3 ConcernsAboutTin-BasedPerovskites 225 6.3.1 SevereNon-radiativeRecombination 225 6.3.2 PoorStability 226 6.4 ControlofHoleDoping 227 6.4.1 Sn2+Compensation/NecessityofAddingSnF 227 2 6.4.2 AdditivestoImproveSnF Dispersion 227 2 6.4.3 EliminationofSn4+Impurities 229 6.4.3.1 SnI Purification 229 2 6.4.3.2 ReactionofSnPowderwithSn4+Residuals 229 6.4.3.3 AdditionofReducingAgents 230 6.5 FilmsDeposition 231 6.5.1 CrystallizationTuning 231 6.5.1.1 SolventEngineering 231 6.5.1.2 AdditivestoSlowDownCrystallizationKinetics 232 6.5.2 PosttreatmentStrategies/SurfaceTrapPassivation 233 6.6 Contacts/InterfaceEngineering 234 6.7 OngoingChallenges 235 6.7.1 Efficiency 235 6.7.2 Stability 238 6.7.3 PerformanceovertheS–QLimit/TowardMultijunctionSolarCells 238 6.7.4 Sustainability 241 6.8 Conclusion 241 Acknowledgments 242 References 242 x Contents 7 Low-TemperatureandFacileSolution-Processed Two-DimensionalMaterialsasElectronTransportLayerfor HighlyEfficientPerovskiteSolarCells 247 ShaoHui,NajibH.Ladi,HanPan,YanShen,andMingkuiWang 7.1 Introduction 247 7.2 ChargeTransportinPerovskiteSolarCells 249 7.3 BriefDevelopmentofPerovskiteSolarCells 251 7.4 FunctionsandRequirementsofElectronTransportLayer 253 7.5 FeaturesandAdvantagesofTwo-DimensionalElectronTransport Materials 256 7.6 VanderWaalsHeterojunctions 256 7.7 QuantumConfinementEffectinTwo-DimensionalElectronTransport MaterialsandItsApplication 258 7.8 OtherPhysicalPropertiesofTwo-DimensionalElectronTransport Materials 259 7.9 SynthesisofVariousTwo-DimensionalMaterials 260 7.10 ApplicationofTwo-DimensionalMaterialasanElectronTransport LayerinPerovskiteSolarCells 262 7.11 ConclusionandOutlook 266 ListofAbbreviations 267 References 268 8 MetalOxidesinStableandFlexibleHalidePerovskiteSolar Cells:TowardSelf-PoweredInternetofThings 273 CarlosPereyra,HaibingXie,AmirN.Shandy,VanessaMartínez,Henck Pierre,EliaSantigosa,DanielA.Acuña-Leal,LaiaCapdevila,QuentinBillon, LöisMergny,MaríaRamos-Payán,MónicaGomez,BinduKrishnan,Maria Muñoz,DavidM.Tanenbaum,AndersHagfeldt,andMonicaLira-Cantu 8.1 Introduction 273 8.2 MetalOxidesinNormal(n–i–p),Inverted(p–i–n)and“Oxide-Sandwich” HalidePerovskiteSolarCells 275 8.3 MesoporousMetalOxideBilayersinHighlyStableCarbon-Based PerovskiteSolarCells 277 8.4 Solution-ProcessableMetalOxidesforFlexibleHalidePerovskiteSolar Cells 288 8.5 CharacterizationofPSCbyElectrochemicalImpedanceSpectroscopy (EIS) 294 8.6 Conclusions 299 Acknowledgments 299 References 300 9 ElectronTransportLayersinPerovskiteSolarCells 311 FatemehJafari,MehradAhmadpour,UmKantaAryal,MariamAhmad, MichelaPrete,NaeimehTorabi,VidaTurkovic,Horst-GünterRubahn,Abbas Behjat,andMortenMadsen 9.1 Introduction 311 9.2 RequirementsofIdealElectronTransportLayers(ETL) 312 Contents xi 9.3 OverviewofElectronTransportMaterials 314 9.3.1 MetalOxideElectronTransportMaterials 314 9.3.2 OrganicElectronTransportMaterials 317 9.4 TheArchitecturesofPerovskiteSolarCells 321 9.4.1 MesoscopicPerovskiteSolarCells 321 9.4.2 PlanarPerovskiteSolarCells 323 Acknowledgments 324 References 324 10 Dopant-FreeHole-TransportingMaterialsforPerovskiteSolar Cells 331 MeenakshiPegu,ShahzadaAhmad,andSamranaKazim 10.1 Introduction 331 10.1.1 DeviceStructureofPerovskiteSolarCells 332 10.1.2 ChargeTransportinPerovskiteSolarCellsandRoleofHTM 333 10.2 Hole-TransportingMaterialforPerovskiteSolarCells 334 10.2.1 CharacteristicsofanHTMandInteractionwithPerovskite 334 10.2.2 NatureofHTM:Organometallic,Inorganic,andOrganic(Small MoleculesandPolymers) 336 10.2.3 DopingofHole-TransportingMaterialsinPSCs 337 10.3 Dopant-FreeOrganicHTMsforPerovskiteSolarCells 340 10.3.1 Dopant-FreeOrganicPolymerAsHTM 340 10.3.2 Dopant-FreeSmallMoleculesasHTM 340 10.3.2.1 Triarylamine-BasedHTM 340 10.3.2.2 Carbazole-BasedHTMs 348 10.3.2.3 Thiophene-BasedHTMs 349 10.3.2.4 Acene-BasedHTMs 350 10.3.2.5 Triazatruxene-BasedHTMs 350 10.3.2.6 Tetrathiafulvalene-BasedHTM 353 10.3.2.7 OrganometallicCompoundsandOtherMoleculesasHTM 353 10.4 ConclusionandOutlook 356 Acknowledgments 356 ListofAbbreviations 356 References 359 11 ImpactofMonovalentMetalHalidesontheStructuraland PhotophysicalPropertiesofHalidePerovskite 369 MojtabaAbdi-JalebiandM.IbrahimDar 11.1 Introduction 369 11.2 MetalHalides 369 11.3 MonovalentMetalHalides 370 11.4 ImpactofMonovalentMetalHalidesontheMorphological,Structural andOptoelectronicPropertiesofPerovskites 372 11.5 ImpactofMonovalentMetalHalidesonPhotovoltaicDevice Characterizations 378 References 384

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.