ebook img

Periodic Manifolds, Spectral Gaps, and Eigenvalues in Gaps PDF

101 Pages·2000·0.942 MB·English
by  Post O.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Periodic Manifolds, Spectral Gaps, and Eigenvalues in Gaps

Periodic Manifolds, Spectral Gaps, and Eigenvalues in Gaps @ VomFachbereich fu¨rMathematikundInformatik derTechnischenUniversita¨tBraunschweig genehmigte Dissertation zur ErlangungdesGrades eines DoktorsderNaturwissenschaften (Dr.rer. nat.) von Olaf Post Braunschweig, Juli2000 Eingereicht am 30. Mai 2000 Datum der mu¨ndlichen Pru¨fung: 13. Juli 2000 1. Referent: Prof. Dr. Rainer Hempel 2. Referent: Priv.-Doz. Dr. Norbert Knarr Fu¨r Claudia Contents Introduction 3 1 Preliminaries 11 1.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Operators and quadraticforms . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Spectrum and Min-maxPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Parameter-dependent Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Interchange ofnorm andquadraticform . . . . . . . . . . . . . . . . . . . . . 20 2 Analysisonmanifolds 23 2.1 Spaces ofsquareintegrablefunctions . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Sobolevspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 TheLaplacian on amanifold . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Metricperturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 TheDecompositionPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Floquet theory 39 3.1 Fourieranalysison abeliangroups . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Periodicmanifoldsand vectorbundles . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Floquet decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 PeriodicLaplacian on amanifold . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Harmonicextension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6 Periodiccoverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Construction ofa periodicmanifold 51 4.1 Metricestimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Constructionoftheperiodcell . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Convergence oftheeigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Estimateon thecylindricalends . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Periodicmanifoldjoinedby cylinders 59 5.1 Constructionoftheperiodcell . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Convergence oftheeigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Estimateoftheharmonicextension . . . . . . . . . . . . . . . . . . . . . . . . 62 1 Contents 6 Conformal deformation 65 6.1 Conformaldeformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Lowerboundsfortheeigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3 Upperboundsfortheeigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . 69 7 The two-dimensional case 71 7.1 Whatis differentinthetwo-dimensionalcase? . . . . . . . . . . . . . . . . . . 71 7.2 Limitform intwodimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.4 Mid-degreeforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8 Eigenvalues inspectral gaps 81 8.1 Approximatingproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.2 Eigenvaluecountingfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Bibliography 93 Zusammenfassung 97 2 Introduction We investigatespectral properties of the Laplace operator on a class of non-compact Rieman- nianmanifolds. WeprovethatforagivennumberN wecanconstructaperiodicmanifoldsuch that the essential spectrum of the corresponding Laplacian has at least N open gaps. Further- more, by perturbing the periodic metric of the manifold locally we can prove the existence of eigenvaluesinagapoftheessentialspectrum. Gaps in the spectrum In our context a periodic Riemannian manifold Mper is a non-compact d-dimensional Rie- mannian manifold (d 2) with a properly discontinuous isometricaction of an abelian group G of infinite order such that the orbit space Mper G is compact. As in the case of periodic (cid:21) Schro¨dingeroperatorsonecanapplyFloquettheory=toshowthatthespectrumoftheLaplacian D onMper actingon p-forms(seeDefinition2.3.1)hasbandstructure,i.e.,thespectrum ApTMper specD is the locally finite union of compact intervals B D , called bands (see ApTMper k ApTMper [Don81] if G is abelian, [BS92] or [Gru98] for certain non-abeli(an groups)G or [RS78] in the Schro¨dingeroperatorcase). Here,werestrictourselvestotheLaplacianonfunctions,i.e.,wesuppose p 0. However, via the Hodge -operator one can show that the spectrum of the Laplacian on f=unctions is the sameasthespectrumoftheLaplacianond-forms. Furthermore,supersymmetryindimension (cid:3) 2 allows us to show that the spectrum of D is the same for p 0, p 1 and p 2. ApTMper Therefore, all our results for the spectrum of the Laplacian on functio=ns rema=in true in t=hese specialcases (seeTheorems2.3.8and 3.4.6and Corollaries 2.3.10and3.4.8). In general, an infinite number of bands B D will overlap as in the case of the k ApTMper Laplacian D (cid:229) d ¶ 2 on d. Here, thespe(ctrumis )0 ¥ . d i 1 i OurfirstRaim=istoc=onstructRclassesof(non-compact)p[e;rio[dicmanifoldsMper withgapsin (cid:0) the essential spectrum of the Laplacian D on Mper acting on functions, i.e., we prove the Mper existenceofnon-voidintervals a b with ] ; [ specD a b 0/ ( ) Mper ] ; [= : \ (cid:3) Toexcludetrivialcaseswesupposethata infessspecD . Notethatfor(abelian-)periodic Mper manifoldsMper wealwayshaveinfessspe>cD 0. Mper We prove the existence of gaps in two differe=nt ways. In both cases the main idea is to analyse a family of periodic manifolds Meper e such that Meper decouples in some sense as e 0. By decouplingwemean that thej(unctio)nbetween twoperiod cells (seeSection 3.2)is geometricallysmall. ! 3 Introduction Ae e Xe Xe X Me Mper e Figure0.1: Construction ofaperiodic manifoldinCaseA. CaseA:Westartwithacompactd-dimensionalRiemannianmanifoldX (withoutboundary forsimplicity). IfG wegluetogether copiesofX modifiedintheneighbourhoodoftwo distinct points in su=chZa way that we havZe two small cylindrical ends. The boundary of the modified manifold Me is a d 1 -dimensional sphere of radius e 0 (see Figure 0.1). The resulting manifold Mper is (-perio)dic. Note that Mper still depends>on e . By Floquet theory, e (cid:0) e theanalysisofthespectrumZofD isreducedtotheanalysisofthespectrumoftheLaplacian Mper e on a period cell Me with q -periodic boundary conditions where q ˆ (see Section 3.4). The dual group Gˆ ˆ 1 is usually identified with 0 2p (see SectionZ3.1). Here, a period cell 2 Me isaclosed=suZbs(cid:24)=etSoftheperiodicmanifoldMepe[r ;such[ thatMeper istheunionofalltranslates of Me and such that MÆe does not intersect any other translate of Me . Note that the spectrum of D q is discrete. We denote the eigenvalues written in increasing order by l q Me counting Me k multiplicities. In thesameway,let l q X denotethespectrumoftheLaplacian(D )on X. k X We provethefollowing(seeTheor(em)4.3.1and Corollary4.3.2): Theorem. Theq -periodiceigenvaluesl q Me convergeuniformlyinq ˆ 1totheeigen- k valuel X ase 0foreveryk . Inp(artic)ular,ifthek-thandthe k Z1=-sSteigenvalueof k 2 (cid:24) the Lapla(ci)an D on X satisfyl XN l X , then there is a gap be(tw+een)the k-th and the X! k2 k 1 k 1 -stbandofD , i.e., ( )< + ( ) Mper ( + ) e B D B D 0/ k Mper k 1 Mper ( e ) ( e )= ; + providede is smallenough. \ Note that the convergence of the eigenvalue l q Me is not uniform in k (see page 8). k Therefore we can prove that an arbitrary finite numb(er o)f gaps occur if e is small enough. We can extend the theorem to the case of an arbitrary finitely generated abelian group G (see Figure0.2). WecanalsoadmitlongthincylindersoffixedlengthL 0betweenthecylindrical ends as in Figure 0.3: TheLaplacian of theresultingperiodicmani>foldMper stillhas gapsif e e issmallenough(cf. Theorem5.2.1and Corrollary5.2.2). Thisresultwasoriginallymotivated by workofC. Anne´ (see[Ann87]and [Ann99]). Case B: In the second class of examples, we start with a G -periodicReiemannian manifold Mper (for simplicity) without boundary. We perturb the metric gper of Mper conformally by a factor r 2, i.e., we set gper : r 2gper and denote the resulting Riemannian manifold by Mper. e e e e Here r e is a family of stri=ctly positivesmooth periodic functions on Mper converging point- wise t(o th)e indicator function of a set Xper. We suppose that Xper is the disjoint union of the 4 Introduction Mper e Figure0.2: Amanifoldperiodicwithrespecttoagroupgeneratedbytwoelements(like 2or ). p Z Z(cid:2)Z Ce Mper Me L Me e Figure 0.3: A periodic manifold with long thin cylinders obtained by taking Me andCe asnew period cellMee . e e translatesofaclosedsubsetX ofMper suchthatthereexistsaperiodcellM withX MÆ. Sup- posefurtherthatnormalcoordinateswithrespectto¶ X aredefinedonM X (seeSection6.1). (cid:26) Thisconditionrestricts thegeometry ofX. For example,a centered sphere in acube as period n cellsatisfiesthiscondition. DenotebyMe themanifoldM withmetricgpeer (seeFigure0.4and Figure 0.5). Our second result is the following (see Theorem 6.1.2 and Corollary 6.1.3, for theDefinitionoftheNeumannLaplacian D N seeDefinition2.3.3): X Theorem. SupposethatMper isofdimensiond 3. Then theq -periodiceigenvaluesl q Me k converge uniformly in q Gˆ to the eigenvalue l N X of the Neumann Laplacian on (X a)s (cid:21) k e 0, for every k . In particular,if the k-th and(the) k 1 -st eigenvalue of the Neumann 2 Laplacian D N on X sNatisfy l N X l N X , then ther(e +is a)gap between the k-th and the ! X 2 k k 1 k 1 -stbandofD provide(de)i<s sm+all(en)ough. Mper ( + ) e The two-dimensional case has to be treated separately. In this case we only prove that at leastan arbitrary finitenumberofgapsexistsifMper isacylinder 1, seeChapter7. R S The proof of the preceding two theorems is based on the Min-Max Principle (see Theo- (cid:2) rem1.3.3). Themaindifficultyherecomesfromthefact thatnotonlythequadraticform(cor- responding to the Laplacian on Me ) but also the L -norm on Me depends on e . We therefore 2 compare the Rayleigh quotients for parameter-dependent Hilbert spaces (see Theorem 1.4.2). This idea is motivated by [Fuk87] and [Ann87], but we prove a slightly different version. One importantingredientin provingthepreceding two theorems is a boundof theL -norm of 2 eigenfunctionsof D q on the cylindricalends (Case A)resp. on M X (Case B) convergingto Me 0 as e 0 (seeTheorem 4.4.1resp. Theorem 6.2.1, theestimatesused there are motivatedby n [Ann94]). ! In both cases gaps occur when there is a period cell Me such that a neighbourhood of the boundary of Me is small in some sense. Note that in Case A and Case B the volume of the e -depending part Ae (resp. Ae Ce in the case of Meper) and Me X converges to 0. It seems that it is important to have a mechanism which “separates” or “decouples” in some sense the [ n differenttranslatesofa periodcell. e 5 Introduction Xper M X Mper Figure0.4: InCaseBthe 2-periodic manifold Mper isgiven. Wechoose aperiodcellM suchthatthe Z periodic subset Xper does notintersect theboundary ofM. Wefurther suppose that normal coordinates withrespect to¶ X aredefinedonM X. n Mper e Figure0.5: An,alasimperfect,attempttopicturetheconformallyperturbedmanifoldMperobtainedby e scalingthemanifoldMper ofFigure0.4outsidethegreyareaXper. Eigenvalues in gaps Asanapplicationofourresultsonspectralgaps,weperturbthemetricoftheperiodicmanifold Mper locally and obtain eigenvalues in a gap of the periodic Laplacian. Suppose that Mper Mper is one of the periodic manifolds with period cell M constructed before with metric gp=er e such that ( ) holds. Since we will apply regularity theory we suppose that ¶ M is smooth (see e.g. the periodic manifold in Figure 0.2). Let l a b . If l is too close to a or b we possibly (cid:3) have to choose a smaller e (see Corollary 8.1.2).]S;up[pose further that r t is a family 2 t 0 ofstrictlypositivesmoothfunctionson Mper such thatr 0 1 and such( th(at))r (cid:21)t isequal to 1 outside a compact set K and such that r t is equal t(o t)=1 on a compact se(t K) KÆ for 1 2 1 all t 0. Suppose further that K and K h(av)e (piecewise)+smooth boundary and non-empty 1 2 (cid:26) interior. We denote by M t (resp. K t and K t ) the manifold Mper (resp. K and K ) (cid:21) 1 2 1 2 with metric g t r t 2g(per)conformal(to)gper. Ro(ug)ly speaking, we blow up thearea K . In 1 particular, the(ar)e=a K(is)scaled bythefactort 1 1(see Figure0.6). 2 + (cid:21) 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.