ebook img

Performance of the LHC, ATLAS and CMS in 2011 PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Performance of the LHC, ATLAS and CMS in 2011

Performance of the LHC, ATLAS and CMS in 2011 DanielFournier1,a LAL,UnivParis-Sud,CNRS/IN2P3,Orsay,France Abstract. The path taken by the LHC team to reach 3.6 1033 cm 2 s 1 instantaneous luminosity, and to − − deliver5.6fb 1perexperimentissummarized.Themainperformancesofthetwoexperimentsarehighlighted, 2 − inparticularthewaytheymanagedtocopewiththealreadyhighlevelof“pile-up”.SelectedStandardModel 1 andtopphysicsresultsaregiven,andthestatusofthelimitsontheHiggsbosonsearchbyeachexperimentis 0 2 summarized.Abriefoverviewofthesearchforsupersymmetryandexoticphenomenaismadeattheend. n a J 1 LHC running in 2011 - intensity ramp-up with up to 1380 bunches per beam (maximumpossiblewith50nsspacing) 3 2 1.1 Machine performance -emittancereduction -b ∗reductionfrom3.5mdownto1m ] With5.6fb 1ofgoodproton-protondatadeliveredtoAT- AsofearlySeptembera peakluminosityofabout3.6 x LASandCM−Satacentreofmassenergyof7TeV,theper- 1033atthebeginningofafillwasreached,andreproduced e - formanceofthe LHCis consideredbyeveryoneinvolved untiltheendoftheperiod(endOctober),allowingtorecord p asoutstanding.Themachinealsodeliveredabout1.2fb 1 abouthalfofthetotalintegratedluminosityoftheyeardur- − e toLHCband5pb 1toAlice,anintegratedluminositycor- ingthelasttwomonths(Fig.1). h − respondingto the runningconditionschosenby these ex- [ periments. 1 Themainparametersofthemachine,attheendofthe v running period where the instantaneous luminosity was 1 highest,arelistedintable1,togetherwiththerunningpa- 8 rameters at the end of 2010, and in comparison with the 6 nominal parameters at 14 TeV in the centre of mass [1]. 4 . The beam crossing angle at the collision points 1 and 5 1 whereATLAS(respCMS)areinstalledwasof120micro- 0 radians, sufficient to limit long range beam-beam effects 2 forabunchspacingof50ns. 1 : v Table1.ParametersofLHCexploitation,attheendof2010,at Fig.1.Luminosityintegratedbyexperimentsin2011. i X theendof2011,anddesignparametersat14TeVinthecentreof mass. r a Theseexcellentperformanceswereobtaineddespitea Parameter 2010 2011 Nominal number of effects which limited the machine availability N(1011p/b) 1.2 1.5 1.15 and the actual length of most of the fills. Some of these k(n ) 368 1380 2808 effects[2]arebrieflydiscussedbelow: bunches Bunchspacing(ns) 150 50 25 e (m mrad) 2.4-4 1.9-2.3 3.75 -RadiationinducedfailuresofElectronics(SEU).Thecryo- b (m) 3.5 1 0.55 genics and the machine protectionsystems suffered from ∗ L(cm 2s 1) 21032 3.61033 1034 electronicsfailuresduetoradiationeffects,whoseratewas − − showntobenearlyproportionaltotheinstantaneouslumi- Energy(MJ)stored 28 110 360 nosity.Anumberofactionsweretakenduringtheyearto mitigatetheincidenceofsucheffects(relocationorshield- The path from the 2010 parameters to those obtained ingofcriticalelectronics,improvementofredundancy,...). attheendofthisyear,whichrepresentanimprovementby -Beamdumpstriggeredbyhighlosses(UFO).Suddenin- afactor20,wasmadeinsuccessivesteps: crease of beam losses duringstable conditionshave been -restartofthemachinewithtrainsofbunchesseparatedby tentatively associated to “falling objects”. By far not all 150ns these losses trigger a beam dump.While duringinjection -beamscrubbingatinjectionenergyandhighintensityto mostUFOshappeninthevicinityofkickermagnets,losses “clean-up”thesectionspronetoelectron-cloudeffects duringstablebeamaremoreorlessuniformlydistributed -runningwithshorttrainsofbunchesseparatedby50ns aroundthemachine.ItwasobservedthattherateofUFOs tendtodecreaseduringlongperiodsofreproduciblecon- a e-mail:[email protected] ditions. EPJWebofConferences -Vacuumpressureincreases.Verysignificantpressurein- -integratedluminosityoflongphysicsperiods,isthenob- creases (factors 100 or more) appeared when trains of tainedsummingupcountsfromluminositymonitors,suit- bunchesseparatedby50nswereinjectedinthemachine. ablycorrectedforvariouseffects([3],[4]),andnormalized Theywereprincipallylocatedaroundthecollisionpoints, totheVDMscanperiod. attransitionplacesbetweencoldandwarmsectionsofthe AnexampleofVanderMeerscan,takenfromATLAS machine. Dedicated periods at high intensity and injec- isshowninFig.3. tion energy (beam scrubbing) allowed to “clean up” the criticalplaces,withpressurereductionsoftypicallyanor- der of magnitude after 15 hours. Wrapping simple coils around these places furthermore reduced the effect, con- firmingthatthesourcewasdominantly“electron-clouds”. -Heatingofbeamelementsatvariousplaces(beamscreen, kickers, collimators, and -recently discovered- damaged RF-fingers),associatedtotheelectromagneticfieldaccom- panyingthebunches,wasobservedandforcedtolimitthe bunchchargeinseveraloccasions. -RFbeamloadingandbeaminstabilitiesleadingtoemit- tanceblow-upswerealsoobservedatseveraloccasions. Fig.3.ExampleofcountingrateduringaVanderMeerscan. As a global consequence of these various effects, the duration of beam fills was in average 6 hours, with large variations,whiletheoptimumwouldhavebeenaround12 Thesizeoftheluminousregionisrelatedtothecount- hours. Another measurement of the impact of the above ingrateRby: limitations,isthroughthemachineavailability,whichwas about50%duringthe“physicsperiods”.Inturnabouthalf (cid:229) = 1 RRx(d )dd (2) ofthistimecorrespondedto“stablebeamcondition”which x √2p Rx(0) coveredthus23%of“physics”time(Fig.2). The accuracy of the method is limited by the bunch chargemeasurementaccuracy,andbynonlinearitiesinthe luminosity monitors. The precision obtained for the first partofthe2011data(untilb wasloweredto1m)is3.7% ∗ forATLASand4.5%forCMS. The reliability of running the machine with beams separated in one direction serves another important pur- pose.Itallowstorunthemachinewith“luminositylevel- ling”inLHCb,around2to31032 cm 2 s 1 asrequested − − bythisexperiment.Fig.4showsanexample,foragivenfill ofhowwellthe instantaneousluminosityiskeptconstant inthisexperiment,whileitsmoothlydecreasesinATLAS andCMSbecauseofprotonlossesandemittanceincrease. Fig.2.Piechartofmachineavailability. 1.2 Luminosity measurement and adjustments Knowingtheluminositywithprecisionisanimportantas- setformany,ifnotallphysicsmeasurements.In2010the Van der Meer method was applied to measure the lumi- nosity with an accuracyof 3.4%in ATLAS[3] and4.0% inCMS[4].In2011thiswasrepeatedtwice.Themethod appliedattheLHCgoesasfollows: Fig.4.ExampleofafillwithluminositylevellinginLHCb. -themachineisrunwithasmallnumberofbunches - the beam current associated to each bunch is measured witha“beamcurrenttransformer”(givingn andn ) 1 2 FinallythelowluminosityinAliceisprovidedbycol- -thesizeoftheluminousregionismeasuredbystudying liding in point 2 a few dedicated bunches added to the thecountingrateasafunctionofbeamseparation,sequen- trains. tially in the horizontal and vertical directions, giving (cid:229) x As a consequence of the complex bunch structure in and(cid:229) .Thismeasurementismadeusingluminositymoni- y eachring,afew“unpairedbunches”crossthenominalcol- tors,whicharealsorunduringhighluminositydatataking. lisionpointsatatimewhenthereisnobunchcomingfrom Lisobtainedas(f istherotationfrequencyofonebunch r the other direction, thus without producing any collision. aroundthering): The data corresponding to these BCIDs (bunch crossing identifiers)arehoweverrecordedandusedtoevaluatethe L=k.f .n .n /(2p (cid:229) (cid:229) ) (1) “non-collision”background,associatedforthelargestpart r 1 2 x y HadronColliderPhysicsSymposium2011 to beam losses in the arcs. Secondaries produced when these lost protonsinteractin the magnetyokes,or muons from the subsequentdecay of the secondaries, eventually reachtheexperimentsandactivatesomelowleveltriggers. Analysing these data shows [5] that, as anticipated, they mostlyconsistofenergydepositslocatedinthe(horizon- tal) machine bending plane. Their rate is very low, con- firmingtheveryhighefficiencyofthecollimationprocess inthemachine.Thisbackgroundneverthelessneedstobe rejectedforsomeanalyseslookingforrareprocesseswith rather weak signatures (jets and missing transverse mo- mentumEmiss forexample). T Fig. 5. Luminosity weighted mean number of interactions per crossing. 1.3 Pile-up -SeveraldaysinSept2011werededicatedtodatataking As will be discussed in the next sections, the occurrence with high b settings (90m) in view of measuring elastic of severalindependent,inelastic, proton-protoncollisions ∗ scatteringwithdedicatedforwarddetectors(ATLAS/ALFA duringonebunchcrossingconstitutesanoise,usuallycalled andTOTEM).Thesedetectorspositionedat240moneach pile-up noise, which degrades to some extent the perfor- sideofthecollisionpoints1and5,arelocatedin“Roman manceofthereconstructionofsomeofthe“objects”used pots” and allow to triggerand recordelastically scattered forphysicsanalysis.Itisthusimportanttobeabletochar- protons with transverse momenta up to about 1.5 GeV/c acterizethepile-upconditionsonaneventbyeventbasis. [6].Thebeamconditionswerecleanenoughthatthedetec- Oneessentialvariableinthisrespectisthenumberofpri- torscouldbebroughtdownto6s fromthebeamsfordata maryverticesreconstructedpercrossing,calledN inthe VX taking. More than 1 million elastic events were recorded following.Sincetheresponseofseveraldetectors(inpar- byeachexperiment.Higherb areplannedin2012(upto ticular the calorimeters) extends over more than the time ∗ 1km)inviewofreachingtheCoulombinterferenceregion. interval between two successive crossings, it is also im- portanttohaveaviewofthepile-upconditionsinthesur- rounding bunches (so called “out of time” pile-up as op- posedto“in-time”pile-updescribedbyN ).Thevariable 2 ATLAS and CMS status VX usedfordescribingthepile-upconditionsoverallism ,the numberof interactionsper crossing. m is calculated from The structure of each of the two experiments is known thesuitablynormalizedinstantaneouscountofluminosity worldwidealready.ATLAS[7]featuresanaircoretoroid, monitors(L)andtheinelasticcross-sectionas: highgranularity“accordion”lead-liquidargonelectromag- netic calorimetry, complemented by Copper/liquid argon m =L.s inel/k.fr (3) andtungstenliquidargonhadroniccalorimetersinthefor- Summinguptheentriesoveradatatakingperiod,one warddirection,andiron-scintillatingtilesinthecentralre- obtains the histogram of the “luminosity weighted mean gion.Thecentraltracking,insidea2Tmagneticfield,uses numberofinteractionspercrossing”asshowninFig.5for Si-pixelsandSi-stripsintheinnerpart,andstrawtubesat ATLAS. The dispersion reflects the variation of charges largerradius. between bunches, the decrease of instantaneous lumino- InCMS[8]thelargesolenoidof4Tmagneticfieldcon- sityduringeachfill,andthedifferenceofinitialconditions tains the inner detector with pixel and Si-strips, embed- from fill to fill. In particular the change between b ∗ val- dedin a PbWO4 crystalcalorimeter,followedby a brass- uesisstriking,with<m >goingfrom6.3forb =1.5m,to scintillatingtilehadroniccalorimeter.Theforwardcalorime- ∗ 11.6forb =1.0m.InaverageN and<m >areroughly ters are recessedat 8mfromthe collisionpointand use a ∗ VX proportional,with <N > 0.6<m >, the smaller num- steel-quartzfiber(Cerenkov)samplingtechnique.Bothex- VX berofreconstructedvertices∼resultingfromthelimitedde- perimentshaveasophisticated3-leveltriggersystem,mak- tector acceptance, and the minimal conditions set for a ingalargeuseoflepton(electrons,muons,taus),highen- validreconstructedvertex(typicallyatleast3tracksofat ergyjetandEmisssignatures. T least0.5GeV/ctransversemomentum). Up to now, the detectors have notsuffered significant radiationdamage.Oneobserveshoweverthattheleakage current in Si-pixel sensors is increasing, in particular in 1.4 Special runs CMSwhere,fortechnicalreasons,thepixeldetectorisfor thetimebeingoperatedatwarmtemperature.Thetypein- On top of regular “physics runs” in nominal conditions, versionisexpectedtohappensometimein2012. somerunsweretakeninpeculiarconditionstoaddressspe- During the past year about 4 1014 events were pro- cificquestions: cessed by the trigger system of each experiment, sollici- -Dataweretakenwithshorttrainsofbunchesseparatedby tatedatthe20MHzbunchcollisionfrequency.Attheother 25nsinordertoassessthetrigger,datataking,andrecon- end,about300events/s,inaverage,werewrittentoperma- structionperformanceinthefuture“nominal”conditions. nentstoragebyeachexperiment.Itisinstructivetolookat - Fat bunches, of close to twice the nominalcharge were tables2and3whichshowforeachexperiment,at31033 also collided in order to assess the pile-up effects with peak luminosity, how the bandwidth is split between the <m >reachingvaluesofupto40. main trigger/DAQchannels,keepingin mindthatthefull EPJWebofConferences triggermenuhasabout350linesinATLAS,andevenmore Table3.CMStriggerthresholdandratesattheLVL1andafter inCMS. A goodfractionofthemareusedtomonitorthe finalselection. triggeritself byaccepting,ateachlevel, a prescaledfrac- tionoftherejectedevents.Amongthemainsignaturesare thepresenceofoneidentifiedlepton.Onecanobservethat theleptonthresholdsaresomewhatlowerinATLAS,thus taking in comparison a larger fraction of the bandwidth. Given the steep slope of the lepton (and jets) transverse momenta,it is extremelyimportantto have sharp turn-on thresholds to reduce the rate of unwanted signals. As an example,Fig.6showstheturn-oncurveforthecombined muonandhadronictautrigger,asafunctionoftheoffline tau-jettransversemomentum. 3 Physics objects and selection of SM results The new feature of 2011 data was the high level of pile- up,with <m >reachingup to about20 atthe endofthe period.Whilethepile-up“noise”isnotexpectedtoaffect veryhighenergyjets, norleptonreconstruction,noreven b-tagging, it is on the other hand expected to affect seri- ouslyobjectsoflargesizeandlow/mediumtransverseen- ergy,andthereforeinparticular: Fig. 6. Turn-on curve for the combined muon (12 GeV) and hadronictautrigger,inCMS. – lowenergyjets – Emiss T – isolationofleptonsandphotons. Atthe storagelevel, thedata volumeis largerforAT- LAS( 2Mbyte/event)thanforCMS( 0.5Mbyte/event) ∼ ∼ wherezerosuppressioninthecalorimeterisappliedatthe 3.1 Jets and QCD dataacquisitionlevel. In the high transverse momentum (p ) range, the critical T quantitiesforjetsaretheenergyscaleandthelinearity.In Table2.ATLAStriggerthresholdandratesattheLVL1andafter ATLASjetsare reconstructedwith the anti-kTalgorithm, finalselection. withasizeparameterR=0.6(R=0.4isalsousedforcom- plex final states). Jets are built as vectorial sums of clus- tersofcalorimetercells,correctedforhadronictoelectro- magneticresponse,anddeadmateriallosses.Insitumeth- odsare usedto checkthe p scale up to 1 TeV or above: T photon-jetbalance,multi-jetbalance,track-jets,.. In 2010 the energy scale systematic uncertainty was 2.5%inawidekinematicrange.Thelargedatasetof2011 mayallowtoimprovethisuncertainty.TheATLASinclu- sivep spectrum,with1.9fb 1integratedluminosity,also T − including2010dataonthelowerp part,isshowninFig. T 7.ThedataiswellreproducedbyaPYTHIAsimulationin whichthePDFarecorrectedforNLOeffects[9].Jetswith p upto1.9TeVhavebeenobserved! T InCMSjetsarereconstructedfrom“Particleflow”clus- ters, using the anti-kT algorithm with R=0.5. A certain level of cluster merging (“jet grooming”) is made before The combined efficiency of data acquisition and data goingtophysicsdistributions.Asanillustration,theinvari- qualityselection in eachexperimentis ata high level,al- antmassspectrumofthetwojetsofhigherp isshownin T lowingtofindcloseto90%ofthedeliveredluminosityin Fig.8,comparedtoPYHTIAsimulation(withCTEQ6L1) thephysicsplots. scaledupbyafactor1.33.Theagreementisverygood,and The fraction of channels alive is also on a high stan- allowstoruleoutexcitedquarksmithmassessmallerthan dard,beingforexample99%ormoreforeachofthetwo 2.49 TeV (2.68 expected limit), Axigluons with masses electromagnetic calorimeters, and about 97% for each of lowerthan2.47TeV(2.66expected),andW’withmasses thetwopixelsystems. smallerthan1.51TeV(1.40expected). HadronColliderPhysicsSymposium2011 width approximately doubles when N goes from 1 to VX 12,meaningthattheunderlyingeventofZ0 productionis morebusythanforarandomevent. Fig.7.Inclusivejetp distributioninATLAS. T Fig.9.MuonisolationinATLAS. - Emiss. Obtained as the negativevector sum of the trans- T versemomentumofall“objects”inanevent,theEmissisa T prioriquitesensitivetopile-up.Thisdependenceislimited ifoneretainsonlyjetsaboveaminimump .Asanexam- T ple of performance, for a rather complex final state, Fig. 10showsEmiss inCMS(firstpartof2011data)forevents T with 2 leptons of opposite charge and identical flavor, in theZ0 massrange,plus2jets.Oneobservesthatthepeak of Z+ jets events remains rather narrow, and that the tail athighEmiss (greaterthanabout70GeV)isdominatedby T physicalprocesses,essentiallytt¯pairs. Fig.8.InvariantmassofleadingjetsinCMS. 3.2 Impact of pile-up on sensitive quantities - Jet energyresolution.The p balancebetween photons, T insensitivetopile-upgiventheirsmallsize,andjetsallows to control the jet energy scale and resolution. In ATLAS it was found,in the first part of the data (<m >=6), that thejetenergyresolutionisworsenedby10%inthelowest p range (30 GeV). In CMS the effects of “in time pile- T up” and of “out of time pile-up” were separated showing Fig.10.EmissdistributionforZ+2jetseventsinCMS. T that(forN =8)thelattercontributesabout5GeVrmsto VX thecomponentperpendiculartothephotondirectionwhile the former contributes about 2 times more. These figures 3.3 W&Z Physics correspondtothepresentstatus,withoutanycorrectionto mitigatetheobservedworsening. Thisphysicsisentirelydonewiththeleptonicdecaymodes. -Leptonandphotonisolation.Inordertoreducetheback- Thefull2011datasetrepresentsineachexperimentabout ground of fake muons coming from heavy quark decays 3millionsofZdecaysinelectronpairsormuonpairs,and insidejets,anisolationcutisoftenapplied.Itconsistsei- 10 times more W decays in electron-neutrino or muon- therofatrackisolationcut(sumoftransversemomentaof neutrino. The decays to t come on top of this, with sig- tracksfallinginsidea coneofsizeD R aroundthemuon), nificantlysmaller statistics dueto thereducedtriggerand or a transverse energy cut (sum of all calorimeter trans- reconstruction efficiencies. Given the low level of back- verseenergies)oracombinationofboth.Fig.9showsthe groundunderthepeak,Zdecaysareusedtoestablishwith spectrumofthecalorimetertransverseenergyinaconeof the“tag-and-probe”methodthetriggerandreconstruction D R=0.4 around muon tracks from Z0 decays in ATLAS, efficienciesindataandinMonte-Carlosimulations.They for two pile-up conditions corresponding to N =4 and arealsousedtosettheelectronandthemuonenergyscales, VX N =8.Withhigherpile-uponeobservesabroadeningof andwherenecessaryto improvethe energy(electrons)or VX the distribution, and a shift of the mean value. The lat- themomentum(muons)reconstruction. ter can be subtracted from an estimate of the “ambient” Earlyphysicsresultswereobtainedwiththe2010data, pile-up level, but the broadening of course will stay. The illustrated by Fig. 11 which shows the W and Z fiducial EPJWebofConferences cross-sectionsinATLAS[10],comparedtocalculationsat is an importantasset for manyphysicsobjectives.Indeed theNNLOusingdifferentPDFsets.Alsoparticularlysen- a worsening of missing momentumresolutionwill some- sitiveto thePDFsisthe chargeasymmetryofleptonicW whatdegradethesituation.Thet performancesinATLAS decays. The variation of this asymmetry with the lepton aresimilartoCMS. pseudo rapidity(see Fig. 12) reflects combinedeffectsof PDFs,WpolarizationandV-AdecayoftheW.Thesignin- versionaround h =3.0,whichfallsintotheacceptanceof | | theLHCbexperimentisnicelyreproducedbysimulations. Largerdata sets, as now available, will certainly improve theknowledgeofPDFs. Fig.13.Zdecaysreconstructedinthelepton-hadrondecaymode (CMS). 3.4 B-tagging and top physics EfficientB-taggingisakeytotopphysics,tosomeHiggs Fig.11.WandZfiducialcross-sectionsinATLAS,comparedto channels,... Already commissioned with 2010 data, “ad- NNLOsimulations. vancedtaggingmethods”werevalidatedwiththe2011data set. AmongthemATLASusesacombinationofthetrack impact parameter in 3D (IP3D) and of a fit of secondary vertices(SV1).At60%efficiency,thiscombinedapproach has a rejection 4 times larger than the early “SV0” algo- rithm[12].Fig.14illustratesthisperformancebyshowing thefractionofjetssatisfyingtheb-taggingcutat60%ef- ficiency,comparedtoMonte-Carlosimulation.Theagree- mentissatisfactory,andshowsthat,around100GeV,50% oftheeventspassingthecutaregenuineb-jetswhile60% oftheremainingonesareactuallycharmedjets. Fig.12.LeptonicchargeasymmetryinWdecays(ATLAS,CMS, LHCb)comparedtoNLOsimulations. Zproductionisthebestpossibleplacetoassesstheef- ficiencyandtheaccuracyoft decaysreconstruction.The triggerefficiencyisthefirstproblemtobeovercome,given the large fraction of transverse momentum taken by the neutrinosinthefinalstate.Toreachlowenoughthresholds, doubleconditionsarerequired,likeillustratedforexample inFig.6forthem -hadfinalstate.Thehadronic“t -jets”are Fig.14.Fractionofb-jetstaggedby“IP3D+SV1”inATLAS. separated fromelectron showersand from jets by a com- bination of criteria on chargedtracks (1 or 3), on shower Theproductionoftt¯pairswas alreadymeasuredwith shapes in the electromagnetic and hadronic calorimeters, 2010 data, both in the single lepton and in the dilepton and on isolation. Finally to isolate Z decays, a minimum modes,withandwithoutb-tagging.Withthefirst0.7fb 1 Emiss isrequired.Fig. 13showsthespectrumobtainedby − T of 2011 data, ATLAS measured the cross section using CMS [11] in the muon-hadron channel, still with 2010 bothmodes[13]. data.Thecleanlinessofthesignal,togetherwithaZcross- sectioninthett mode(s .BR=1.0 0.05(stat) 0.08(syst) 0.04(lumi) nb) which matches±the other le±ptonic de- s tt¯ =179.0 3.9(stat) 9(syst) 6.6(lumi) pb ±caymodesdemonstratethatt decaysaremastered,which ATLAS ± ± ± (4) HadronColliderPhysicsSymposium2011 TopphysicsisalsoanimportantpartoftheCMSpro- channel [17] are shown below as an example, CMS hav- gram.Theexperimentmeasuredthecross-section[14] ing similar performances. Events are triggered by either anelectronoramuonofhightransversemomentum.The analysis requires 4 leptons of p >15 GeV. At least two T s tt¯ =166 2.2(stat) 11(syst) 8(lumi) pb (5) pairs of opposite charge need to fall in the Z mass win- CMS ± ± ± dow(66<Ml+l <116GeV).Inthefirst1.02fb−1of2011 These values, about 20 times larger than at the Teva- data,12events−wereobserved(2/4e,8/4m ,and2/em )while tron, are to be compared to the calculated NNLO cross- 0.3 events were expected from background(see Fig. 16). sectionof164.6 13pb. The correspondingfiducialcross-sectionwas extractedto ± The top mass measurementsin ATLAS and CMS are be[17] affected by systematic uncertainties (final state radiation, b-jetenergyscale) which are still largerthanat the Teva- tron.However,inthesingleleptonchannel,comparingpos- s =19+6(stat.) 1(syst.) 1(lumi.) fb (8) 5 ± ± itive an negativemuon decays, CMS measured with 1.09 − fb 1 of 2011 data, the top-antitopmass differencewith a andthechannelcross-section: − reducedsystematicuncertainty[15]: s ZZ =8.5+2.7(stat.)+0.4(syst.) 0.3(lumi.) pb (9) ATLAS 2.3 0.3 ± D m= 1.20 1.21(stat) 0.47(syst)GeV (6) − − − ± ± tobecomparedwith[18] whichisthemostprecisevaluesofar. Observing“singletop”productionattheTevatronwas s ZZ =3.8+1.5(stat.) 0.2(syst.) 0.2(lumi.)pb (10) arealchallengeforseveralyears.Thankstothehighercen- CMS 1.2 ± ± − treofmassenergy,bothexperimentsattheLHCreported and6.5+0.3pbfromNLOpredictions. singletopobservationwith2010dataalready.Moreaccu- 0.2 − rateresultswiththefirstpartofthe2011datawerealready madepublicbyATLAS[16].The“t-channel”analysis(ex- changeofaWbosoninthetchannel)requires1lepton,1b- jetand1or2morejets,andEmissinthefinalstate.Aclear T signal was observed (see Fig. 15), and the cross-section wasmeasuredtobe[16]: s t =90 9(stat)+31(syst) pb (7) ATLAS ± 20 − tobecomparedwiththe“approximateNNLO”prediction of64.6 3pb. ± Fig.16.LeptonpairsinvariantmassesforZZeventsinATLAS. Given that the ZZZ and the ZZg couplings are for- bidden in the standardmodel, ATLASextracted fromthe cross-sectionmeasurementthebestlimittodateonthecor- respondingf4andf5anomalouscouplings[17]. Asasummaryofstandardmodelanalysesalreadymade byATLASandCMS,Fig.17showsacomparisonofmea- Fig.15.Lepton-neutrino-bjetmassspectruminATLAS. sured and predicted cross-sections in the case of CMS. ThefigurealsoincludestheinformationconcerningVector bosons+Njets,notdiscussedhere. Production in the s-channel, and associated t-W pro- duction were also searched for by both experiments. See P.Haefner’spresentationatthisConference. 4 Higgs search: Status and forecast 3.5 Di-boson production OneoftheeventsatthisConferenceisthepresentation(see talk by L. Rolandi) of the combinedsearch for the Higgs Di-boson production provides stringent tests of the stan- boson by the two collaborations,with up to about2 fb−1 dardmodel(measurementoftriple-gaugebosoncouplings), for eachof them.The individualresultshadalreadybeen andrepresentsatthesametimebenchmarkreactionstoas- presentedbefore,andaresummarizedbelow: sessseveralimportantmodesfortheHiggsbosonsearch. - ATLASexcludesat 95%CL (CLs limits) thatthe Stan- MostrepresentativeofbothoftheseaspectsistheZZ dard Model Higgs boson be between 145 and 466 GeV, production. Results obtained by ATLAS in the 4-lepton with the exception of two narrow bands (232 to 256 and EPJWebofConferences 4.1 Two-photon final state in ATLAS The huge backgroundfrom jet-jet and g -jet final states is mostly rejected by shower-shape cuts which take advan- tageofthehighgranularityofthe“accordion”liquidargon electromagnetic calorimeter, featuring in particular three samplingsindepth,andnarrowstrips(dh =0.008 df =0.1) × inthefirstsamplingwhichprovideadditionalrejectionagainst jetsfragmentingwithaleadingp 0.Anadditionalhandleis providedbycalorimetricphotonisolation(atypicalcutisa transverseenergycutof5GeVinaconeofD R=0.4).Iso- Fig.17.Standardmodelcross-sectionsinCMS. lationprovidesawaytoestimatethepurityoftheselected sample, foundto be (for mgg > 100 GeV) 75%prompt gg and 25% g -jets, with much smaller co∼ntributions of jet-jetan∼dDrell-Yane+e pairs. − Thankstothesamplingsindepth,electromagneticcalo- rimeterdataaloneallowtomeasurethepolarangleofeach photon, and the space angle q between the two photons. Theaccuracyofthismeasurementisillustratedbythedif- ference in the longitudinalposition of the primary vertex found by intersecting the beam line successively by each of the two photon’sdirection. This differencehas an rms of30mm,thuscorrespondingtoaprimaryvertexaccuracy Fig.18.95%CLupperlimitsfor“combined”Higgssearchesin of 15mm, well below the longitudinal spread of primary ATLAS. vertices(about56mm),andaccurateenoughtogiveacon- tributiontothemgg resolutionnegligiblecomparedtothe 282 to 296 GeV). See Fig. 18 for the expected (131-447 effectofthephotonenergiesresolution.Whenoneorboth GeVintheabsenceofaSMHiggssignal)andtheobserved ofthephotonsareconvertedintheinnerdetectorvolume, limits. the coordinate of this conversion point is used, with the - CMS excludes at 95% CL that the SM Higgs boson be shower barycentre,to give an even more accurate photon between145and400GeV,withtheexceptionoftwonar- direction. row bands, different from the ATLAS ones, (216 to 226 GeV and 288 to 310 GeV). See Fig. 19 for the expected limits(130-440GeV)andtheobservedones. Fig.19.95%CLupperlimitsfor“combined”Higgssearchesin Fig.20.ATLASgg massspectrumandassociatedlimit. CMS. The main message from these two results is that the Theenergyresponseofthecalorimeteriscalibratedus- best motivated low mass region (the EW fits give ingZ0 decaysine+e pairs.Monte-Carlosimulationsare − m <161 GeV at 95% CL) is still open to exploration, used to take into account the small differences in H whileawide“medium/high”massrangeisexcluded. response between electrons, converted photons, and un- Whilethehighmassrange(above 450GeV)should converted photons. With the available statistics, the cali- notbeprematurelydiscarded,itisclea∼rthatthelargestef- bration was made by bins of dh =0.1, without any subdi- fortintheshorttermwillbedevotedtothelowmassregion vision in azimuth.By comparingthe width of the Z0 line (m < 145 GeV), where the main channels are shape toMonte-Carlosimulations,thisprocedurealso al- H H gg , H tt , H ZZ 4l, H WW llnn lows to estimate the “constant term” of the energy ∗ ∗ and→VH, H →bb¯,V →ll,ln or→nn . → → resolution,which,forthedatasetconsideredforthisopti- Giventh→eextreme→importanceofthesechannels,andin mization(2010dataworth36pb 1)was1.1 0.5%inthe − particularofthefirstthreewhichcangiverisetoanarrow barrel(h < 1.37)and1.8 0.6%in the en±d-caps(1.52 masspeak,ashortreviewoftheexpectedperformanceof < h <| 2|.37).The estimate±d averagegg mass resolution | | theexperimentsisgivenbelow. isabout1.7GeVformgg =130GeV. HadronColliderPhysicsSymposium2011 The gg spectrum obtained with 1.08 fb 1 of data is counttakenoftherelativeamountofdataanalyzedbyeach − showninfig.20.The95%CLlimit,normalizedtotheSM experimentatthetimeoftheConference. Higgscross-section,timesthe branchingratioto thetwo- photonfinal state, is givenin a small insert, showingthat wabiothuTtthh4eistmimaamiensoetufhnfeotrSotMfondHaAtiTagLgthsAecSreopxsepsre-fsroeirmcmteiaonnntc.wesarseslaetnesdittiovethtios 2)2 GeV/c678000000 BR(H()pb)σ×→γγ95%CL0000...00234...455523CsM =S 7 p TreelVim Li n=a 1ry.66 fb-1 ±±OOM bbe12σσssd eeiEEarrxnxvvpp eeEeddexcc CBptteeeLaddcys te CCeLsLdLiimas sCnitL Lsi mLiimtit D212 appfatrrakooemm γpptt γγ 1 fake γ codhlautaatniotnhnea,lnpisuasrtoteidciuminlaptrrhloyevcienutrhtrheeencteoZnnd0s-tlcainanpetssth.eraWmpietohofp1tt0him0eitezinmaeteirogsnym,rioetrsies- vents / (450000 00..001.5501110 115 120 125 130 135 140 m1H4 (5GeV/c12)5015××σσSSMM Drell-Yan E CMS preliminary hopedthatthenominal0.7%constanttermwillbereached. 300 s = 7 TeV L = 1.66 fb-1 Theeffectofhigherpile-up(inparticularonisolation-see 200 section3.2)alsoneedstobeassessed. Theuseofadditionalvariables(transversemomentum 100 ofthegg system,presenceofadditionaljets,decayangles 0 80 90 100 110 120 130 140 150 160 170 180 inthegg system)arealsobeinginvestigated. m (GeV/c2) γγ Fig.21.CMSgg massspectrumandassociatedlimit. 4.2 Two-photon final state in CMS The absence of longitudinal segmentation in the PbWO4 4.3 Four-lepton final state in ATLAS crystal calorimeter of CMS imposes to combine the in- teraction vertex position with the shower positions in the The ZZ 4l final state combines low background and calorimetertodeterminethespaceanglebetweenthetwo ∗ → precision mass reconstruction, the main drawback being photons.Thevertexisselectedonthebasisofthesumof thep2 ofthetracksassociatedtoeachreconstructedvertex, thesmallbranchingratio.NonresonantZZproductionas T consideredinsection2.5isanirreduciblebackground,while combinedwiththep balancebetweenthetracksandthe two-photon system. FTor <m >=6.5 correspondingto the Zbb¯andtt¯arethemainotherbackgrounds,reducedbyiso- lation and impact parameter requirements. The key point analyzeddataset,itwasestimatedbyMonte-Carlosimula- whenaddressingthelowHiggsbosonmassrangeisthere- tionthatin83%ofthecases,theselectedvertexiswithin constructionandidentificationefficienciesofleptons,and 10mmof the true vertex,a distance small enoughto give in particular electrons of transverse momenta down to 5 a negligible contributionto the invariantmass resolution. to 7 GeV. In an extended sample as compared to section Photonidentificationisbasedonshowersizeandisolation. 3.5 (up to 2.28 fb 1), 27 events were selected (6ee, 9em Asopposedto ATLAS,the sum oftracksp in the isola- − tioncone(D R=0.3)isusedonitsown,andcTombinedwith and12mm )withoneZmassrequirement(76to106GeV) while28 4wereexpected.Oneeventonlyhadamassbe- thetransverseenergyintheelectromagneticcalorimeteras ± low140GeV,asshowninFig.22. discriminatingvariable.Thecutvaluesareadjustedtogive thebestS/Bratioforaparticularsignalphotonefficiency. Intheend,thesamplepurityissimilartoATLAS. Inordertoeliminatecrystaltransparencyvariationsas a function of the luminosity integrated in the preceding fewhours/days,correctionfactorsaredeterminedfromthe crystalresponsetolaserpulsesdistributedoverthecalorime- terduringpartofthecyclewithoutcollisions(“abortgap” inparticular)[21].Thecorrectionsrangewasuptoabout 10% for the analysed data set. As in ATLAS, the Z0 line shape is used to set the energy scale, improve the cali- bration,anddeterminetheconstantterm.Theresolutionis then transported by Monte-Carlo to the two-photon final state. It ranges from less than 1.5 GeV for barrel-barrel eventstoabout3GeVforbarrel-endcapevents. The resulting gg spectrum is shown in Fig. 21. The 95%CLlimit,normalizedtotheSMHiggscross-section, timesthebranchingratiotothegg finalstateisgivenina smallinsert,showingthatwith1.70fb 1ofdatatheexper- Fig.22.ATLAS4lmassspectrum. − imentwassensitivetoabout3timestheSM Higgscross- section.Intermsofdetectorperformance,CMSismaking abigefforttoreachthenominalconstanttermwhichhad The main performanceeffortforthis channel,bothin beensetto0.5%. ATLASand CMS, is towardsimprovingthe efficiencyof Comparingthetwoexperimentsonecanseethat,com- soft leptons. On the analysis point of view the very low biningefficiency,backgroundrejection,accuracyinenergy mass range(below 140 GeV) may benefitfrom consider- andangularmeasurements,theirsensitivitiesareatpresent ingeventswherethetwo Z areoffmassshell,an attempt quitesimilar,asillustratedbytheexpectedCLslimits,ac- alreadymadebyCMS(seetalksatthisConference). EPJWebofConferences 4.4 Higgs tt in CMS 5.1 B mm s → → Thisdecaymodeisaveryusefulcomplementtogg inthe IntheStandardModelthischannel,whichhassimilarities withthehistoricallyfamousK mm decay,ispredicted lowmassrange,andakeychannelfortheMSSMHiggsfor L apulabrlgicer[a2n2g]eaonfaMnaAlyansidstwanitbhv1a.l6uefsb.R1ecoefndtlayt,aC, MusSinmgathdee mtoehtrayveisarbearalinzcehdinagsirnattihoeoMf(S3S.2M→±,0w.2it)h1l0ar−g9e.Iefnsouupgehrstaynmb- − e-m ,e-hadandm -hadfinalstates,triggeredbyeitheralep- values, the branching ratio can significantly be increased tonoraleptonplusat -jet(seesection3.3).Thet -jetsare bythecontributionofadditionalparticlesintheloops(see Fig.24)whichgoesliketanb 6. reconstructed using particle flow and identified as briefly describedin3.3.OneofthemainbackgroundsisW+jets, where the W decay leptonically, and the jet is misidenti- fied as a t -jet. This backgroundis rejected by cutting on theEmiss projectedontothebisectorofthetwot “visible” T decay products. The analysis is made using the invariant massofthetwot visibledecayproducts. ThesensitivitytotheSMHiggsisenhancedbytreating separatelyeventswith2additionaljetsinthefinalstate,in aconfigurationcompatiblewithHiggsproductionbyVec- torBosonFusion(Dh >3.5andMjj>350GeV).No jj | | significantexcessoverbackgroundisseen,allowingtoput a95%CLlimitat 10timestheSMHiggscross-section ∼ forM =130GeV,whiletheexpectedvaluerangedfrom H around7at110GeVuptoabout9at140GeV. The sensitivity to the MSSM is enhanced by treating separatelyeventswithatleastoneb-taggedjet.Noexcess Fig.24.SUSYdiagramscontributingtoBs mm . → overbackgroundisseen,allowingtoruleout,at95%CL,a largefractionoftheMSSMspace,asshowninFig.23.Itis interestingtonotethatforM <130GeVthewholetanb In CMS the analysisrequirestwo muonsof pT larger A than 4 GeV, isolated and with a highly significant flight rangeisalreadyruledout.ThesuperiorityofLHCoverthe path (L/s > 15 (barrel) or >20 (End-Caps)). Events are Tevatroninthischannelisalsoexemplifiedbycomparing countedinawindowof 75MeVaroundthenominalB the CMS limit to the D0 limit obtainedwith a more than s ± mass. The event count was found compatible with back- fourtimeslargerdataset. ground only, leading to an upper limit on the branching ratioof1.910 8atthe95%CL,foradatasetof1.14fb 1 − − [23].AsimilaranalysisinLHCb[24]ledtoalimitof1.5 10 8. With the additionof the data sets notyetanalyzed, − andimprovedanalysis,thestandardmodellimitisbecom- ingatargetsoonwithinreach. 5.2 Search for s-quarks and gluinos Searchforsupersymmetricparticleswasoneoftheprior- ity topics when data at the LHC became available. In the R-parityconservingscenarios,standardsearchesrequirea large Emiss together with several jets. Different channels T canbeaddresseddependingonthepresenceofoneormore Fig.23.ExcludedMSSMparameterspaceinCMS,usingthet leptonsin the final state, of the same sign, or of opposite t channel. − sign. A summary of the limits obtained by CMS [25] with Themain effortfor the tt final state, both in ATLAS up to 1.1fb−1 ofdata, is shownin Fig. 25. One observes (no results shown here) and CMS will be to maintain the thatthemorestringentlimitsaregivenbythe“Jets+EmTiss” performancewithvaluesof<m >reaching20andabove. channel, for which the limit is slightly above 1 TeV for bothsquarksandgluinos,ifoneassumestheyhavesimilar masses. The limit by ATLAS (1.07 TeV) is similar. The gainofsensitivitywithrespecttotheTevatronisstriking. 5 Search for new Physics Future searches will address more exclusive final states, like s-tops,... until the energy of the LHC is significantly Thesearchforexcitedquarkstates,axigluons,andW’was increased. already mentioned in section 3.1. Only two examples of searchesforSUSYeffects,eitherdirectorindirectarebriefly describedbelow (beyondthe MSSM Higgsconsideredin 5.3 Search for heavy vector bosons (Z’) 4.4)toillustratethepresentsituation,andthestatusofthe searchforZ’inleptonpairsisgiven.Inallcases,formore Dilepton final states (ee or mm ) provide easy trigger and recentupdates,seededicatedtalksattheConference. cleansignaturesforthesearchofheavyrecurrencesofthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.