ebook img

performance evaluation of detector for digital radiography PDF

60 Pages·2012·3.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview performance evaluation of detector for digital radiography

Alma Mater Studiorum Universita` di Bologna · Scuola di Scienze Corso di Laurea Magistrale in Fisica PERFORMANCE EVALUATION OF DETECTOR FOR DIGITAL RADIOGRAPHY Relatore: Presentata da: Prof. Maria Celeste Maschio Romano Zannoli Correlatore: Dott. David Bianchini Sessione III Anno Accademico 2013-2014 A BSTRACT Lo scopo di questo lavoro è la caratterizzazione fisica del flat panel PaxScan4030CB Varian, rivelatore di raggi X impiegato in un ampio spettro di applicazioni cliniche, dalla radiografia generale alla radiologia interventistica. Nell’ambito clinico, al fine di una diagnosi accurata, è necessario avere una buona qualità dell’immagine radiologica mantenendo il più basso livello di dose rilasciata al paziente. Elemento fondamentale per ottenere questo risultato è la scelta del rivelatore di radiazione X, che deve garantire prestazioni fisiche (contrasto, risoluzione spaziale e rumore) adeguati alla specifica procedura. Le metriche oggettive che misurano queste caratteristiche sono SNR (Signal-to-Noise Ratio), MTF (Modulation Transfer Function) ed NPS (Noise Power Spectrum), che insieme contribuiscono alla misura della DQE (Detective Quantum Efficiency), il parametro più completo e adatto a stabilire le performance di un sistema di imaging. L’oggettività di queste misure consente anche di mettere a confronto tra loro diversi sistemi di rivelazione. La misura di questi parametri deve essere effettuata seguendo precisi protocolli di fisica medica, che sono stati applicati al rivelatore PaxScan4030CB presente nel laboratorio del Centro di Coordinamento di Fisica Medica, Policlinico S.Orsola. I risultati ottenuti, conformi a quelli dichiarati dal costruttore, sono stati confrontati con successo con alcuni lavori presenti in letteratura e costituiscono la base necessaria per la verifica di procedure di ottimizzazione dell’immagine radiologica attraverso interventi sul processo di emissione dei raggi X e sul trattamento informatico dell’immagine (Digital Subtraction Angiography). ii iii OVERVIEW The present work deals with the physical characterization of the flat panel PaxScan4030CB Varian, which is a part of the fluoroscopic chain present in the laboratory of the Centre of Medical Physics at the Policlinico S.Orsola. The work is structured as follows: in Chapter 1, the main features of the flat panel technology are reported and the basic image quality parameters, such as MTF, NPS and DQE, are described in order to get an overview on the image quality issue. In Chapter 2, the principal characteristics of X-ray source RTM70H and its generator are emphasized; the flat panel is illustrated in detail in its physical (i.e. the scintillator) and electronic constituents, with particular attention to the pre-processing corrections. Then, the main steps in image quality parameters calculation are reported, and the employed dosimeter and phantom are described. In Chapter 3, standard RQA beams are recreated from the RTM70H in order to perform a physical characterization of the PaxScan4030CB. MTF, NPS and DQE are evaluated from the acquired images and then, in conclusion, successfully compared with other results in literature. iv v Contents Chapter 1 Introduction ....................................................................................................... 1 1.1 Digital X-ray imaging systems .................................................................................. 1 1.1.1 Image intensifier and flat panel detector in fluoroscopy ............................. 2 1.2 Image quality and physical characterization ........................................................... 6 1.2.1 Signal-to-noise ratio ........................................................................................... 7 1.2.2 Contrast ............................................................................................................... 8 1.2.3 Modulation Transfer Function ........................................................................ 8 1.2.4 Noise Power Spectrum ................................................................................... 10 1.2.5 Detective Quantum Efficiency ...................................................................... 11 Chapter 2 Materials and methods .................................................................................... 13 2.1 X-ray source RTM70H and generator .................................................................. 13 2.2 Flat panel PaxScan 4030CB Varian ....................................................................... 15 2.2.1 The scintillator ................................................................................................. 16 2.2.2 Receptor, Command Processor and Power Supply.................................... 19 2.2.3 The corrections ................................................................................................ 20 2.3 Algorithms of physical characterization ............................................................... 23 2.4 Barracuda MPD........................................................................................................ 25 2.4.1 Radiation quality: RQA beams ...................................................................... 26 2.5 Low-contrast sensitivity phantom ......................................................................... 27 Chapter 3 Results ............................................................................................................... 29 3.1 RTM70H ................................................................................................................... 29 3.1.1 Experimental establishment of RQA beams ............................................... 29 3.1.2 SpekCalc simulation of RQA beams ............................................................ 30 3.1.3 Linearity and efficiency ................................................................................... 31 3.2 Physical characterization of PaxScan 4030CB ..................................................... 33 3.2.1 Response curve ................................................................................................ 33 3.2.2 Modulation Transfer Function ...................................................................... 34 vi 3.2.3 Noise Power Spectrum .................................................................................... 36 3.2.4 Detective Quantum Efficiency ....................................................................... 38 3.3 Phantoms and contrast ............................................................................................ 40 3.5 Flat panel detectors in literature ............................................................................. 42 Chapter 4 Conclusions ....................................................................................................... 47 Bibliography ............................................................................................................................... 49 vii Chapter 1 Introduction 1.1 Digital X-ray imaging systems The power of X-rays for medical imaging is invaluable, but as a form of ionizing radiation presents a risk to the patient. It is then essential that the benefits to the patient overcome the costs in terms of biological risks. For X-ray imaging procedures, the principle of ALARA (As Low As Reasonable Achievable) is observed and requires that patient equivalent dose be minimized as much as possible without compromising diagnostic benefits of the examination. The statistical nature of X-ray interactions results in image noise when too few X-ray photons are used to create the image. Hence, there is a fundamental trade-off between patient dose (number of quanta) and image quality. The optimal balance strictly depends on X-rays detectors, that have to be designed in order to produce the best image quality for every radiation exposure. When the visualization of small structures and fine lesions is required, not all the X-ray systems provide the optimal balance to the patients [1]. With the evolution of digital imaging, there are new ways of optimizing the X-ray image and reducing the dose to the patient. The most fundamental goal of digital imaging is reached by flat panel detector, a single technology that covers all applications in X-ray diagnostics and interventional techniques, from general radiography to angiography and fluoroscopy. In order to evaluate and describe the performance of a X-ray flat panel detector, it is commonly acknowledged that the detective quantum efficiency (DQE) is the most suitable parameter that describes how close a detector is to the optimal balance of image quality and exposure, combining the spatial resolution (MTF) and image noise (NPS). In this work, we are interested in the performance evaluation of the flat panel that is part of the fluoroscopic chain of our laboratory at the Centre of Medical Physics, Policlinico S.Orsola. This first chapter gives an overview on technological evolution of X-ray imaging and basic image quality parameters. 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.