ebook img

Performance Evaluation and Model Checking of Probabilistic Real-time Actors Ph.D. Dissertation PDF

138 Pages·2016·5.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Performance Evaluation and Model Checking of Probabilistic Real-time Actors Ph.D. Dissertation

Performance Evaluation and Model Checking of Probabilistic Real-time Actors Ali Jafari Doctor of Philosophy April 2016 School of Computer Science Reykjavík University Ph.D. Dissertation ii Performance Evaluation and Model Checking of Probabilistic Real-time Actors by Ali Jafari Dissertation submitted to the School of Computer Science at Reykjav(cid:237)k University in partial ful(cid:28)llment of the requirements for the degree of Doctor of Philosophy April 2016 Thesis Committee: Marjan Sirjani, Supervisor Professor, Reykjav(cid:237)k University, Iceland Holger Hermanns, Professor, Saarland University, Germany Carolyn Talcott, Professor, SRI International, USA Wan Fokkink, Examiner Professor, VU University Amsterdam, Netherlands Copyright Ali Jafari April 2016 iv vi The undersigned hereby grants permission to the Reykjav(cid:237)k University Library to reproduce single copies of this Dissertation entitled Performance Evaluation and Model Checking of Probabilistic Real-time Actors and to lend or sell such copies for private, scholarly or scienti(cid:28)c research purposes only. The author reserves all other publication and other rights in association with the copyright in the Dissertation, and except as herein before provided, neither the Dis- sertation nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author’s prior written permission. date Ali Jafari Doctor of Philosophy viii Performance Evaluation and Model Checking of Probabilistic Real-time Actors Ali Jafari April 2016 Abstract This dissertation is composed of two parts. In the (cid:28)rst part, performance evalua- tion and veri(cid:28)cation of safety properties are provided for real-time actors. Recently, the actor-based language, Timed Rebeca, was introduced to model distributed and asynchronous systems with timing constraints and message passing communication. A toolset was developed for automated translation of Timed Rebeca models to Er- lang [1]. The translated code can be executed using a timed extension of McErlang for model checking and simulation. In the (cid:28)rst part of this dissertation, we induce a new toolset that provides statistical model checking of Timed Rebeca models. Using statistical model checking, we are now able to verify larger models against safety prop- erties comparing to McErlang model checking. We examine the typical case studies of elevators and ticket service to show the e(cid:30)ciency of statistical model checking and applicability of our toolset. In the second part of this dissertation, we enhance our modeling ability and cover more properties by performance evaluation and model checking of probabilistic real- time actors. Distributed systems exhibit probabilistic and nondeterministic behaviors and may have time constraints. Probabilistic Timed Rebeca (PTRebeca) is introduced as a timed and probabilistic actor-based language for modeling distributed real-time systems with asynchronous message passing. The semantics of PTRebeca is a Timed Markov Decision Process (TMDP). We provide SOS rules for PTRebeca, and develop two toolsets for analyzing PTRebeca models. The (cid:28)rst toolset automatically gener- ates a TMDP model from a PTRebeca model in the form of the input language of the PRISM model checker. We use PRISM for performance analysis of PTRebeca models against expected reachability and probabilistic reachability properties. Additionally, we develop another toolset to automatically generate a Markov Automaton from a PTRebeca model in the form of the input language of the Interactive Markov Chain Analyzer (IMCA). The IMCA can be used as the back-end model checker for perfor- mance analysis of PTRebeca models against expected reachability and probabilistic reachability properties. We present the needed time for the analysis of di(cid:27)erent case studies using PRISM-based and IMCA-based approaches. The IMCA-based approach needs considerably less time, and so has the ability of analyzing signi(cid:28)cantly larger models. We show the applicability of both approaches and the e(cid:30)ciency of our tools by analyzing a few case studies and experimental results. Mat Æ frammist(cid:246)(cid:240)u og athugun Æ l(cid:237)k(cid:246)num (cid:237) l(cid:237)kindafr(cid:230)(cid:240)ilegum raunt(cid:237)ma leikurum Ali Jafari apr(cid:237)l 2016 (cid:218)tdrÆttur (cid:222)essi ritger(cid:240) er tv(cid:237)skipt. ˝ fyrri hlutanum er fari(cid:240) (cid:237) mat og sannpr(cid:243)fun Æ eiginleikum (cid:246)ryggis (cid:237) raunt(cid:237)mal(cid:237)k(cid:246)num. Fyrir stuttu s(cid:237)(cid:240)an var leikendabygg(cid:240)a mÆli(cid:240), Timed Re- beca, nota(cid:240) vi(cid:240) l(cid:237)kana drei(cid:28)ngu og (cid:243)samstillt ker(cid:28) me(cid:240) t(cid:237)mastillingu og samskipti (cid:237) skilabo(cid:240)um. Bœi(cid:240) var til verkf(cid:230)rasett fyrir sjÆlfvirka (cid:254)(cid:253)(cid:240)ingu Æ Timed Rebeca l(cid:237)k(cid:246)n y(cid:28)r (cid:237) Erlang. H(cid:230)gt er a(cid:240) nota (cid:254)(cid:253)dda k(cid:243)(cid:240)ann me(cid:240) (cid:254)v(cid:237) a(cid:240) nota t(cid:237)mastillta framlengingu af McErlang fyrir l(cid:237)kanapr(cid:243)fun og hermun. ˝ fyrri hluta (cid:254)essarar ritger(cid:240)ar, (cid:230)tlum vi(cid:240) a(cid:240) kynna verkf(cid:230)rasetti(cid:240) sem veitir t(cid:246)lfr(cid:230)(cid:240)ilega pr(cid:243)fun Æ l(cid:237)k(cid:246)n Æ Timed Rebeca l(cid:237)k(cid:246)n. Me(cid:240) (cid:254)v(cid:237) a(cid:240) nota t(cid:246)lfr(cid:230)(cid:240)ileg pr(cid:243)f Æ l(cid:237)k(cid:246)n er nœna h(cid:230)gt a(cid:240) sannreyna st(cid:230)rri l(cid:237)k(cid:246)n eins og (cid:237) (cid:246)ryggiskr(cid:246)fum McErlang. Vi(cid:240) ranns(cid:246)kum d(cid:230)miger(cid:240)ar ferilsathuganir af lyftum og mi(cid:240)as(cid:246)lu til a(cid:240) s(cid:253)na fram Æ skilvirkni t(cid:246)lfr(cid:230)(cid:240)ilegra l(cid:237)kana og beitingu verkf(cid:230)rasettsins okkar. ˝ seinni hluta (cid:254)essarar ritger(cid:240)ar aukum vi(cid:240) vi(cid:240) getu l(cid:237)kanager(cid:240)arinnar og vi(cid:240) nÆum y(cid:28)r (cid:29)eiri eiginleika me(cid:240) mati Æ framkv(cid:230)md og pr(cid:243)funum Æ l(cid:237)k(cid:246)num Æ l(cid:237)kinda raunt(cid:237)ma leikara. Dreif(cid:240) ker(cid:28) s(cid:253)na l(cid:237)kindi og brig(cid:240)genga heg(cid:240)un sem kunna a(cid:240) hafa t(cid:237)mam(cid:246)rk. Probabilistic Timed Rebeca (PTRebeca) er kynnt sem t(cid:237)mastillt og l(cid:237)kinda leikara- byggt mÆl l(cid:237)kindadreif(cid:240)ra raunt(cid:237)makerfa me(cid:240) (cid:243)samstillta sendingu skilabo(cid:240)a. Merk- ingarfr(cid:230)(cid:240)i PTRebeca er Timed Markov Decision Process (TMDP). Vi(cid:240) ver(cid:240)um me(cid:240) SOS reglur fyrir PTRebeca, og (cid:254)r(cid:243)um tv(cid:246) verkf(cid:230)rasett til a(cid:240) greina PTRebeca l(cid:237)k(cid:246)n. x

Description:
Performance Evaluation and Model Checking of Probabilistic. Real-time Actors by. Ali Jafari. Dissertation submitted to the School of Computer Science.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.