ebook img

Perfect mirror transport protocol with higher dimensional quantum chains PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Perfect mirror transport protocol with higher dimensional quantum chains

Perfectmirrortransportprotocolwithhigherdimensionalquantumchains Gerardo A. Paz-Silva,1 Stojan Rebic´,1 Jason Twamley,1 and Tim Duty2 1CentreforQuantumComputerTechnology, MacquarieUniversity, Sydney, NSW2109, Australia 2Department of Physics, University of Queensland, St Lucia, QLD 4072, Australia Agloballycontrolledschemeforquantumtransportisproposed.Theschemeworksona1Dchainofnearest neighbor coupled systems of qudits (finite dimension), or qunats (continuous variable), taking any arbitrary initialquantumstateofthechainandproducingafinalquantumstatewhichisperfectlyspatiallymirroredabout themid-pointofthechain. Asaparticularnovelapplication,themethodcanbeusedtotransportcontinuous variablequantumstates. Aphysicalrealizationisproposedwhereitisshownhowthequantumstatesofthe microwavefieldsheldinachainofdrivensuperconductingcoplanarwaveguidescanexperiencequantummirror transportwhencoupledbyswitchableCooperPairBoxes. PACSnumbers:03.67Hk,03.67Lx,05.50.+q 9 0 0 Afundamentalissueinquantuminformationtheoryandthe QED[12], spatiallymirroringa quantumstate ofmicrowave 2 developmentofaquantumcomputersisthetransferofaquan- photons trapped in a chain of coplanar waveguides (CPWs), n tumstatethroughareliable,highfidelity,method.Suchmeth- coupledviaCooperpairboxes(CPBs). a ods are known as quantum wires, or q-wires. Q-wire design Quditmirrortransport. Itwillproveusefultorecallsome J should avoid the detailed control of its components as this basic properties of qudit quantum gates [13, 14]. A qudit is 3 may introduce additional errors which corrupt the transport a state of a d level system described by a d dimensional 2 − − and typically implies challenges in implementation. Ideally Hilbertspace dwithbasis k ; k =0,1, ,d 1 . Gen- nt-ph] stfRieureccectheefinnqdttuelayalningtitynluetamednrerdtesrotgapniinsestpreqaor-tswretoiwsrfheiqstohuuhatlanhdsteubgmmeroicwnianinpmfoacubrommlneasooitdiffoeetnrrxaatwbnelrisytnphaodlnrutceeioantrngotpreteohnrle--. eaζqdrnudaddlii=Zztˆebdda1≡Ps,iasau(cid:80)nilsdiHojdΞˆ=⊕−pie01jria|sjto(cid:105)aζrdsdXjdˆ(cid:104)aijirteZi|ˆo,djnw{e,|fihmwne(cid:105)oireteddhuζvtldhioaeiXdsˆc.adomd≡A·−ms·(cid:80)t·uhftoajdrr=−toi−0oq2onut|bjor}i⊕eftslu1a,tn(cid:105)it(cid:104)iohtjnye| a adventofhigherdimensionalquantumsystems(quditsorCV, d ≡ d d u continuousvariables)ascomponentsinquantumprocessors. XˆjZˆk = ζjkZˆkXˆj and Xˆd = Zˆd = ˆI. In the qudit case d d d d k d d q So far, the only proposals for a mirror transport involved the Hadamard gate is replaced by a Fourier gate Fˆ, given [ qubitstates[1]andgenerallyrequiredsignificantresourcesto by Fˆ|a(cid:105) = d−1/2(cid:80)kζka|k(cid:105), and satisfying Fˆ4 = ˆI and 2 achieve useful transport fidelity [2, 3]. In this Letter a new Fˆ2 a = a ( aistakenmodulod). v | (cid:105) |− (cid:105) − protocol is described that for the first time formulates and Basicgatesneededforourprotocolarethequditanalogues 4 solvestheproblemofquantummirroringinchainsconsisting of the CNOT (i.e. SUM), CPHASE and SWAP gates. Sup- 9 1 ofnearestneighborcoupledidenticalquditsystemsorinfinite pressing the dimension d and indicating the (control, target) 0 dimensionalqunat[ContinuousVariable(CV)]systems. Itis quditsassubscripts[13,15], . based on a cellular automata-like scheme for perfect mirror 6 0 transport [4], spatially inverting a quantum state distributed Uˆ = (cid:88)d−1 n n Zˆn =Sˆ , (1a) 8 alongachainviatheapplicationofhomogenoussinglequbit CPHASE | (cid:105)(cid:104) |(1)⊗ (2) (12) 0 pulsesandIsing-likenearestneighborinteractions. n=0 : v Qudits and qunats often lead to features which have cer- Xi tcaoimnpaudtvaatinotnagheassobveeernqsuhboiwtsn[f5o,r6q]u.diFtsau[7lt],toalnedrasnctheqmuaenstufomr Uˆ = (cid:88)d−1 n n Xˆn =Dˆ , (1b) r SUM(12) | (cid:105)(cid:104) |(1)⊗ (2) (12) a trappedionquditquantumcomputationhavebeendeveloped n=0 [8]. One-way quantum computing via qudit cluster states = Fˆ(−2)1UˆCPHASE(12)Fˆ(2) , (1c) is possible, as is the formulation of qudit decoherence free subspaces and topologically protected qudit memories [9]. UˆSWAP = Dˆ(12)Fˆ(21)Dˆ(21)Fˆ(21)Dˆ(12)Fˆ(22) , (1d) Moreover, continuous variable (CV) quantum computation hasbeenwidelystudiedinrecentyears[10],whileCVquan- Aˆ(y) denotingtheoperatorAˆactingonqudity. Decomposi- tumtransporthasalsoattractedrecentinterest[11]. OurCV tions(1d)and(1c)(obtainedusingZˆFˆ =FˆXˆ)areverysim- resultsbelowprovideanalternativemethodforperfectquan- ilarinformtothosefoundforthecorrespondingqubitgates: tumtransportinCVchains. SWAP = CNOT CNOT CNOT and CNOT = 12 21 12 12 Theaimistodevelopaquantummirrortransportprotocol (ˆI Hˆ)CPHASE(ˆI Hˆ). ⊗ ⊗ for qudit and CV systems. The qubit case was considered Fig. 1showsthesimplifiedquditSWAPgatewhenoneof previously [4]. InthisLetteraschemesuitableforquditsand the inputs is 0 . It builds an N qudit perfect mirror circuit | (cid:105) − CVsisdeveloped. Physicalrealizationisproposedinvolving [Fig2(A)]byreplicatingthesimplifiedtwoquditSWAPgate perfect spatial mirroring of continuous variables in Circuit- inFig.1(D)N 1timesandaddingredundantCPHASEand − 2 (A) Ψ F-2 F-2 0 Ψ F-2 0 | ! | ! | ! | ! Ψ F-1 F-1 F-1 F-1 F-1 F+-2 0 (A) (B) | ! | ! 0 F-2 Ψ 0 Ψ 0 F-1 F-1 F-1 F-1 F-1 F+-2 + | ! | ! | ! | ! | ! Ψ F-1 F-1 F F-1 0 Ψ F-1 + + F-1 F-1 F-1 F-1 F-1 F+-2 |0! | ! | ! | ! (C) (D) 0 F-1 F-1 F-1 F-1 F-1 F+-2 Ψ | ! | ! 0 F F-1 F F-1 Ψ + F-1 Ψ | ! | ! | ! (B) 1 2 a N-a+1 N+1 N+2 Figure 1: Simplification of the qudit SWAP gate when one of the inputsisthe|0(cid:105)state. (A)FullSWAPfrom(1d), (B)shadedgates 1 are redundant for input |0(cid:105) , (C) inserting FˆFˆ−1 on either side of 2 thetargetonCSUMgates,(D)simplificationusing(1c). a Fˆgates,where + =Fˆ+1 0 .Throughtherepeatedapplica- N-a+1 tionsofSF,wi|tht(cid:105)hegloba|lq(cid:105)uditgatesF (cid:81)N Fˆ ,and ≡ j=1 (j) S ≡(cid:81)Nj=−11Sˆ(j,j+1),onecantransporttheunknownquantum N statefromoneendofthequditchaintotheother[21]. Asit N+1 stands,itwouldseemfromFig.2(A)thatperfectmirrorinver- N+1 sionrequirestheparticularinitialstate Ψ 0 + 0 . | (cid:105)⊗| (cid:105)⊗| (cid:105)···⊗| (cid:105) Wenowshowthatthisisnotthecase. Figure2: (A)Perfectmirrorinversioncircuitforqudits. Although It was shown for the qubit case that the transport does particularinputstatesareshown,themirroractionisindependentof not depend on the input states [4]. The proof relies on theinput.(B)EvolutionoftheZˆl(andXˆl)underrepeatedactionsof showing that (HS)N+1Xˆl = Xˆl (HS)N+1 and Fˆ−1S. ThehorizontalaxisgivesthenumberapplicationsofFˆ−1S, (HS)N+1Zˆl = Zˆl (a)(HS)N(N++11w−ah)ich implies that whiletheverticalaxisisthequbitposition.TheZˆl((cid:3))andXˆl((cid:13)) (a) (N+1 a) operatorsevolveaccordingto(4),(blackshapeindicatinganegative anyN qubitdensitymatri−xisspatiallyinvertedaftertheac- powerofthecorrepondingoperator).AfterN+1repetitionstheZˆl − tion of (HS)N+1. For qudits, it suffices to show the analo- operatorhasmovedtoitsmirrorspatialpositionalongthechainbut gousrelations,i.e. has suffered l → −l. Negative exponent is corrected by the final Fˆ−2operation. F±2(F−1S)N+1Xˆl = Xˆl F±2(F−1S)N+1(,2a) F±2(F−1S)N+1Zˆ((laa)) = Zˆ(l(NN++11−−aa))F±2(F−1S)N+1(.2b) a2n(Bd)(]Fˆto−1oSbˆt)aNin+1(ZFˆˆ(l−a1)Sˆ=)NZ+ˆ1(−NXlˆ+(la1) a=)(FˆXˆ−(−N1lSˆ+)1N−+a)1(.FˆI−t1fSˆo)llNow+1s We now develop the basic algebraic relations used to prove [via (3)] that extra final Fˆ 2 cor−rects the exponent l l. ± (2). Theserelationswillbeveryimportantinageneralization Fig. 2(B) shows the evolution of an initial Zˆl operato→r af−ter fromquditstocontinuousvariables,asshowingthattheyalso the consecutive action of Fˆ 1S. It is extended to N +2 so − hold for the CV case immediately verifies the validity of the theevolutionofbothXˆlandZˆlcanbefullyappreciated. Itis mirrorcircuitinthatcase. Tosimplifythenotation,theover- importanttonotethatthepropertyZˆd = ˆI = Xˆd wasnever bar denoting the global pulse is dropped unless stated other- used,thusallowingustousethesamemethodfortheCVcase wise by a subscript i.e. F Fˆ, but Fˆ(a) Fˆ(a). Direct whichlacksthiscyclicproperty. → → calculationshows Continuous variable mirror transport:- For continuous Fˆ(±a)2Zˆ(la)Fˆ(±a)2 =Zˆ(−al) , (3) voafrtihaeblgeesn[e1r0a]litsheedsPaamueliaorpgeurmateonrstiasreusXeˆd(.q)TheζCVqpˆa,nZaˆl(opg)ues − and Fˆ Xˆl = Zˆl Fˆ . The operator (1a) can be written ζpxˆ where ζ = ei/(cid:126), are non-commutativ≡e, Xˆ(q)Zˆ(p) =≡ (a) (a) (a) (a) ζ qpZˆ(p)Xˆ(q),andhavethefollowingactiononthecompu- asSˆ(m,n) =(cid:80)ijζ−ijZˆ(im)⊗Zˆ(jn),toobtain ta−tionalbasis(positioneigenstatesxˆ q = q q ): Xˆ(q) s = s+q , Zˆ(p) s = ηsp s . By com|b(cid:105)ining|Xˆ(cid:105)(q) and Z|ˆ((cid:105)p), Sˆ(a,a+1)Xˆ(la) = Xˆ(la)Zˆ(la+1)Sˆ(a,a+1) , (4a) |the dis(cid:105)placeme|n(cid:105)t operato|r(cid:105)Dˆ(α) = exp(αaˆ α aˆ) can be † ∗ Sˆ Xˆl = Xˆl Zˆl Sˆ , (4b) formed. Giventhatanyvalidinfinitedimensio−naldensityop- (a,a+1) (a+1) (a+1) (a) (a,a+1) eratorcanbedecomposedintoasumovercoherentstatesvia Sˆ(a,a+1)Zˆ(la) = Zˆ(la)Sˆ(a,a+1) , (4c) theP function[16],ρˆ=(cid:82) d2αP(α) α α,andthat α = ((FFˆˆ−−11SSˆˆ))XZˆˆ((llaa)) == XXˆˆ((llaa−)(1Fˆ)Z−ˆ(−1aSlˆ)X)ˆ(l.a+1)(Fˆ−1Sˆ) , ((44de)) Dacˆab(naαsb)ie−s|0uf(cid:105)os,ertdHhet∞oom.peTirrharoitsorrsashnΞoˆyw(iqsn,itpthi)aalt=sCtXaVˆt-e(mqoi)|frZˆrtoh(cid:105)(rep(cid:104)t)Cr;|aVnq-s,cpphoa∈ritnRp.r2o|tfoo(cid:105)crmol To derive Eqs. (2) a graphical method [4] is used [Fig. Following the literature on CV-gates [10], basic gates are 3 defined using the same notation as in qudit case. The posi- 1.5 1 ttiroannsrfeoprrmesaetinotnatiisonFˆw(σil)l|bxe(cid:105)u=se(dσf√orπa)l−l1op(cid:82)edraytoζr2sx.yT/σh2e|Fyo(cid:105),usraiet-r 1 hhhaaa†††aaaiiiFEHfualfml 0.8 isfyingFˆ4 =ˆIandFˆ2 x = x uponsettingσ =√2. The 0.6 | (cid:105) |− (cid:105) basicgatesneededare 0.4 0.5 UˆS±UM(12) =(cid:90) dx |x(cid:105)(cid:104)x|(1)⊗Xˆ(2)(±x)=C(cid:100)N±(12) (5a) 0 0.20 hhhbbb†††bbbiiiFEHfualfml (cid:90) 0 50 100 150 0 50 100 150 UˆC±PHASE = dx |x(cid:105)(cid:104)x|(1)⊗Zˆ(2)(±x)=Sˆ(±1,2) (5b) τ τ Figure3:QuantumevolutionofthetwoCPWmodesintheadiabatic limit for Hˆ , taking |ψ(τ = 0)(cid:105) = |α = 1,β = 0,1(cid:105), (the two where the identity UˆC±PHASE = Fˆ(2)C(cid:100)N±(12)Fˆ(−2)1 holds modesinco−herentstates|α(cid:105)⊗|β(cid:105)andCPBstateis|1(cid:105)),andtaking again. The mirror circuit can then be built by using the + ω = 15GHz, ω = 3GHz, g = 200MHz, γ = 15MHz, 0 a/b a/b versionofthedefinedgatesandtakingσ =√2. κ = 1MHz. Plotsshowthereducedmodedynamicsofthefull a/b Notethatusingthe+versionofthesegatesallowstodefine masterequation(9b)[Full],theeffectivemasterequation(10a)[Eff], thecircuitindependentofthebasis[17].Withthisinmindthe andsubjectonlytotheeffectiveHamiltonian(10b)[Ham],withτ = ω t/2π,thenominaloscillationperiodoftheCPWmodes. readershouldn’tbesurprisedthattherelations a TheHamiltonianandtheresultingmasterequationforthe Fˆ±2Zˆ(s)Fˆ±2 =Zˆ(−s), FˆZˆ(s)=Xˆ(−s)Fˆ, FˆXˆ(s)=Zˆ(s)Fˆ twoCVmodes(operatorsaˆ,ˆb)andCPB(σ operators)oper- Fˆ−1Xˆ(s)=Zˆ( s)Fˆ−1, Fˆ−1Zˆ(s)=Xˆ(s)Fˆ−1 (6) atingatthechargedegeneracypointare[12±] − are also valid in this CV case. Since the algebraic rela- Hˆ /(cid:126)=ω aˆ aˆ+ω ˆb ˆb a † b † tions(4d),(4e)arethesame,thesameproofusedforthequdit ± ω (cid:104) (cid:105) + 0σˆ g (aˆ+aˆ ) g (ˆb+ˆb ) (σˆ +σˆ ), (9a) case is valid in the CV case. Alternatively, we can use the 2 z− a † ± b † + − traditional representations of SUM and Fourier transform in i (cid:16)γ κ κ (cid:17) ρ˜˙ = [Hˆ ,ρ˜]+ (σˆ )+ a (aˆ)+ b (ˆb) ρ˜ (9b) CV [17], i.e. without using the representation (5b), where (cid:126) ± 2L − 2 L 2 L theSUMgatecanberepresentedasUˆSUM(12) = C(cid:100)N(12) = exp( iqˆ pˆ ),whichhasthefollowingactions: where Hˆ is the dynamics for the case of sum or difference 1 2 − ⊗ bias cond±itions, ω are the mode frequencies of the res- a/b C(cid:100)N(12) :Xˆ1(x) 12 Xˆ1(x) Xˆ2(x) , (7a) onators, ga/b are the couplings between the CPB and each ⊗ → ⊗ Zˆ (p) Zˆ (p), Xˆ (x) Xˆ (x) , (7b) CPW,ω0 istheCPBsplitting, γ,κa/b arethedecayratesfor 1 → 1 2 → 2 theCPBandtwoCPWs,and (Aˆ)ρ˜ 2Aˆρ˜Aˆ Aˆ Aˆ,ρ˜ . 1i⊗Zˆj(p)→Zˆi−1(p)⊗Zˆj(p) , (7c) Assuming that CPB dynaLmics d≡ominate†a−ll {oth†er tim}e Fˆ :Xˆ →Zˆ, Zˆ →Xˆ−1 . (7d) scales in (9), i.e. ω0 > ωa/b,ga/b, and γ > κa/b, the fast dynamics of the CPB can be eliminated [18]. The equation WarriitvhethatesreelaantidonFsa≡na(cid:81)loNjg=o1usFˆt(oj)(,4adn)daSnd=(4(cid:81)e)NjF=−1−11SˆS(j:,jX+ˆ1(a),)we CfoVrρm=odeTsrCisP(Bfo{rρ˜g}a, d=esgcbr)ibingdynamicsofthetwocoupled → Xˆ(a−1)Zˆ(−a1)Xˆ(a+1)andZˆ(a) →Xˆ(a),so ρ˙ = i/(cid:126)[Hˆeff,ρ]+ (cid:88) κj (j)ρ+η (sˆ)ρ , (10a) − L L F2(F−1S)N+1 :Xˆ(q)(a) Xˆ(q)(N+1 a) j=aˆ,ˆb → − Hˆ =(cid:126)ω aˆ aˆ+(cid:126)ω ˆb ˆb+(cid:126)χsˆ2 , (10b) Zˆ(p) Zˆ(p) (8) eff a † b † (a) (N+1 a) → − where sˆ = Xˆ Xˆ and Xˆ are the position operators asdesired.Thus(8)provesthatthecircuitshowninFig.2(A), a ± b a/b of the two CV modes χ = g2ω /[(γ/2)2 + ω2], and η = with the analogous CV gates performs perfect quantum mir- 0 0 (γ/2)/[(γ/2)2+ω2]. Fig. 3showsthatthisapproximationis roringonachainofCVsystems. 0 validforseveralhundredoscillatorperiods. Circuit-QEDquantummirroring:-TheaboveCVquantum To generate the unitary operator Uˆ , consider mirrortransportcanberealisedinCircuit-QED[12].Thegoal PHASE(12) the effective Hamiltonian (10b), with the mode frequencies is to spatially mirror quantum state of N CV modes held − and effective coupling strengths time dependent ω (t) = in chain of superconducting coplanar waveguides (CPWs), a ω (t). Such rapid tuning of the resonator frequencies is nearest-neighbour-coupled by switchable Cooper Pair Boxes b achievable [19]. The canonical transformation Hˆ (t) = (CPBs). Tothisend,F andSoughttobeexecuted,wherefor (cid:48) eff TˆHˆ (t)Tˆ generatedbyTˆ(a,b) exp( π[aˆ ˆb ˆb aˆ]/4) S,transformationexp( iqˆ qˆ )needstobegenerated. We eff † † † 1 2 ≡ − − − ⊗ decouples(10b)intotwoseparateharmonicsystems. There- consider the arrangement where the CPB coupling adjacent sulting Hamiltonian is Hˆ (t) = ω (t)(aˆ aˆ +ˆb ˆb) + 1/4-waveCPWscanbeswitchedbetweenbeingbiasedbythe e(cid:48)ff + (cid:48)† (cid:48) (cid:48)† (cid:48) differenceorthesumofthevoltagesofthetwoCVmodes. 2χ(t)Xˆa2(cid:48)/b(cid:48), where ω+(t) = ωa(t) with either Xˆa2(cid:48) for sum 4 0 capability will allow the quantum transport of entire entan- 3 − gledquditorCVquantumstatesviaquantummirroring. The 0 1 protocol uses only global applications of higher dimensional × −20 ) versionsoftheHadamardandCPHASEgates. Weanticipate τ (1 that CV universal quantum computation can be achieved if C theprotocolisaugumentedwiththecapabilityofperforming −40 0 1 2 3 4 5 aconditionalphasegatebetweentheendtwoCVqubitsinthe τ/2π chain. Thiswouldrequirealargecross-Kerrnonlinearinter- actionbetweentheseCVsystems. Finally,itwasshownhow 0.2 toimplementCVquantummirroringinCircuit-QED. 0 We thank European Commission FP6 IST FET QIPC ) τ project QAP Contract No. 015848, DEST ISL Grant (2−0.2 C CG090188 (SR & JT) and Mazda Foundation for Arts and −0.4 Science(GAPS). 0 1 2 3 4 5 τ/2π [1] S.Bose,Phys.Rev.Lett.91,207901(2003). [2] M.Christandletal.,Phys.Rev.Lett.92,187902(2004). Figure4: PulsetrainstoeffectUˆ¯a(cid:48) ≡ exp(iXˆa2(cid:48)/10)forparameters [3] D.BurgarthandS.Bose,Phys.Rev.A71,052315(2005). q q of Fig. 3 to an accuracy of F = |Tr(Uˆ†Uˆ¯(cid:48))|/ Tr(Uˆ¯(cid:48)†Uˆ¯(cid:48)) = [4] J. Fitzsimons and J. Twamley, Phys. Rev. Lett. 97, 090502 a a a (2006). 99.9%[20]. TotaltimetoeffectdesiredunitaryoperatorU(cid:48) isthus a [5] H. Bechmann-Pasquinucci and W. Tittel, Phys. Rev. A 61, 50oscillatorcycles. 062308(2000). [6] G.Molina-Terrizaetal.,Phys.Rev.Lett.94,(2005). voltage biasing in (9b) or Xˆ2 for difference voltage biasing. [7] D.Gottesman,ChaosSolitonFract.10,1749(1999). b(cid:48) Under this canonical transformation the operator Uˆ [8] A.Klimovetal.,Phys.Rev.A67,062313(2003);D.M.Hugh CPHASE also separates Uˆ = exp(iXˆ2)exp( iXˆ2). Fur- andJ.Twamley,NewJ.Phys.7,174(2005). C(cid:48)PHASE a(cid:48) − b(cid:48) [9] C.A.BishopandM.S.Byrd,Phys.Rev.A77,012314(2008); ther,theFouriergatesappliedhomogeneouslytobothmodes S.S.BullockandG.K.Brennen,J.Phys.A-Math.Theor.40, aˆ and ˆb transform to homogeneously applied Fourier gates 3481(2007). on the modes aˆ(cid:48) and ˆb(cid:48). This gate is achieved via the natu- [10] S. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 ralevolutionoftheuncoupledCPWresonators. Wedescribe (2005). how to generate the Uˆ by showing how to generate [11] M.Plenioetal.,NewJ.Phys.6,36(2004);J.Eisertetal.,Phys. C(cid:48)PHASE the first component Uˆ = exp(iXˆ2): (i) numerically find Rev.Lett.93,190402(2004). a(cid:48) a(cid:48) [12] A.Blaisetal.,Phys.Rev.A69,062320(2004). time dependencies for ω (t) and χ(t), resulting in genera- + [13] J.Daboul,X.Wang,andB.Sanders,J.Phys.A36,2525(2003). tion of Uˆa(cid:48) while simultaneously ˆb(cid:48) acquires a known rota- [14] J.Schwinger,Proc.Natl.Acad.Sci.U.S.A.46,570(1960). tion exp( iθˆb ˆb); (ii) Switch to difference voltage bias- [15] X.Wang,B.Sanders,andD.Berry,Phys.Rev.A67,042323 (cid:48)† (cid:48) ing, evolv−ing via a similar set of pulses, to effect Uˆ , while (2003). b(cid:48) aˆ acquiresanidenticalknownrotation. Theseextrarotations [16] M.Hilleryetal.,Phys.Rep.106,122(1984). (cid:48) [17] X.Wang,J.Phys.A34,9577(2001). are then absorbed into the preceding and succeeding Fourier [18] C. W. Gardiner, Handbook of Stochastic Methods (Springer- gatesintheoverallapplicationoftheFig.2(A).Toderivethe Verlag,1983). required time dependent pulse we focus on the aˆ(cid:48) dynamics [19] M.Sandberg,C.M.Wilsonetal.(2008),arXiv:0801.2479. in Hˆe(cid:48)ff and move to a new time variable τ = ω¯t, where [20] N.Khanejaetal.,J.Mag.Res.172,296(2005). ω (t)=ω¯(1+C (t)/50),χ(t)=χ¯(1+C (t)/50),andwrite [21] Although the circuit thus obtained does not need the final se- + 1 2 Hˆ¯ (τ) = [1+C (τ)/50]aˆ aˆ +[(cid:15)+C (τ)/50]Xˆ2. C (τ) quenceSFˆ−1Fˆ±2,thisextrasegmentisrequiredtomirrorin- a(cid:48) 1 (cid:48)† (cid:48) 2 a(cid:48) 1 vertforarbitraryinputs. andC (τ)arecontrolfunctionsand(cid:15)=2χ¯/ω¯ 1 10 3for 2 ∼ × − [22] Matlab code to show pulse and degree of fi- theparametersofFig. 3. Toobtainpulsesequenceswhichat- delity to target unitary operator can be found on tain99.9%accuracyinsimulatingUa(cid:48),weuseGRAPE-based http://www.quantumscience.info/node/346. numerical optimization algorithms [20] in 50 cycles of the oscillator and with a Fock state truncation of 70 [22]. The pulses,displayedinFig.4,requiretuningtheCPWresonators by2.4MHzandtheCPBby150MHz.Itisclearthatifonecan generatelargerdetuningsoftheoscillatorsandCPB,thetime required to accurately simulate U can be even shorter, thus a(cid:48) allowingseveralmirroriteratestobeexecutedbeforetheres- onatordecaydegradesthedynamics. In summary aprotocol for perfect quantummirroring of a chain of coupled qudits or CV systems was proposed. Such

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.