ebook img

Pereyra & Magalhães 2002, ApJS 141, 469 PDF

15 Pages·2002·2.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pereyra & Magalhães 2002, ApJS 141, 469

TheAstrophysicalJournalSupplementSeries,141:469–483,2002August E #2002.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. POLARIMETRY TOWARD THE IRAS VELA SHELL. I. THE CATALOG A.Pereyra1 and A.M.Magalha˜es2 InstitutodeAstronomia,Geof´ısicaeCieˆnciasAtmosfe´ricas,UniversidadedeSa˜oPaulo,CaixaPostal3386, Sa˜oPaulo,SP01060-970,Brazil;[email protected],[email protected] Received2001September26;accepted2002March28 ABSTRACT WehaveobtainedlinearpolarizationmeasurementsofstarsalongthewesternsideoftheIRASVelaShell towardHD62542.From16CCDfieldsdistributedalongtheionizationfront(I-front)wehavebuiltacata- logof856objectswithpolarizationsignal-to-noiseratiolargerthan10.Wedetectverysignificantlevelsof polarizationandhenceanappreciablemagneticfieldthroughouttheregion. Compositepolarization maps around the I-front are shown. In some regions the polarization vectors are parallel to the I-front, but a perpendiculartrendisalsoevidentalongpartsofthefront.Inaddition,thepolarizationpatternseemstobe affectedbygasstreaminginsidethecloud. Subjectheadings:catalogs — ISM:clouds — ISM:individual(GumNebula,VelaShell) — ISM:magneticfields — polarization — stars:individual(HD62542) On-linematerial:additionalfigures,machine-readabletable 1. INTRODUCTION The interstellar medium (ISM) toward the Puppis-Vela region shows important, large-scale structures within 1–2 Interstellarshellsandassociatedshockwavesandioniza- kpc from the Sun. Sahu (1992) analyzed the morphology tionfrontsmaybedrivenbysupernovaexplosions,pressure andkinematicsoftheISMinPuppis-Vela(l ¼240(cid:1),(cid:2)275(cid:1), of photoionized gas, stellar winds, and collisions between jbj<20(cid:1)) and identified three main structures, in order of fast-moving clumps of interstellar gas (Draine & McKee decreasingdistancefromtheSun:theVelaMolecularRidge 1993). The interaction between expanding shells and mag- (r(cid:3)1 kpc), the Gum Nebula (GN, r(cid:3)800 pc), and the netic field was examined by Troland & Heiles (1982) using IRASVelaShell(IVS,r(cid:3)450pc).AlsopresentareOBand Zeeman measurements, and they concluded that the mag- Rassociations(VelaOB1,VelaOB2,andVelaR2).Early- netic field severely limits the density enhancement in the typestarsinclude(cid:1) Puppis(O5Iaf),thebrightestOstarin cool, postshock gas. This is indeed expected theoretically the sky, and (cid:2)2 Velorum (WC8+O9I), the brightest and (Spitzer 1978). It is clear that magnetic fields in ionization probablythenearestWolf-Rayetbinary.Agreatnumberof fronts and shocks may be important in the evolution of cometary globules and dark clouds are distributed in the these systems. Magnetic ionization fronts have been region(Hawarden&Brand1976;Sandqvist1976;Zealeyet modeled for parallel (Redman et al. 1998) and oblique al.1983;Reipurth1983). (Williams,Dyson,&Hartquist2000)magneticfields.Inthe TheVelaMolecularRidgeisagiantmolecularcloudthat same way, the structure of shocks in a weakly ionized and sitsbehindboththeGNandtheIVS.Inturn,theGNisan dustless media depends on the orientation of the magnetic enormousstructureofH(cid:3)emissionwithanangulardiame- field with respect to the velocity of the shock (Hartquist, terof(cid:3)36(cid:1)((cid:3)500pc),occupyingagreatpartofPuppisand Pilipp, & Havnes 1997; Pilipp, Hartquist, & Havnes 1990; Vela.Reynolds(1976a,1976b)proposedthattheGNisan Pilipp&Hartquist1994;Wardle1998). oldsupernovaremnantheatedbytheionizingUVfluxfrom Polarization maps of background stars shining through (cid:1)Puppisand(cid:2)2Velorum. obscuredregionsmayrevealthemagneticfieldstructureof Sahu (1992), based on IRAS maps of extended emission theregions(forreviewsseeJones1996;Lazarian2000).The andkinematicstudiesoftheionizedgasinPuppis-Velaand directionofthelinearpolarizationwillprovidethedirection proper motions in Vela OB2, discovered the existence of ofthemagneticfieldprojectedontheplaneoftheskyinthe the IVS, a ringlike structure with sections previously mis- classical paramagnetic relaxation alignment (Davis & taken as part of the GN but much closer. The IVS has a Greenstein 1951; Jones & Spitzer 1967), where the average radius of (cid:3)7=5 ((cid:3)60 pc) and is positioned asymmetrically grainprofileisorientedperpendiculartothemagneticfield. (l,bÞ(cid:3)ð263(cid:1),(cid:2)7(cid:1))withrespect totheGNcenter.While (cid:1) Thisisgenerallynotdisputedwhenthevisualabsorptionis Puppis, arunaway fromthe VelaR2association, isindeed not too high (Lazarian, Goodman, & Myers 1997). Other primarilyresponsiblefortheionizationoftheGN,theVela alignment mechanisms, however, may predict grain align- OB2association,whichincludes(cid:2)2Velorum,isresponsible mentparalleltothefield,suchasthoseinvolvingsupersonic fortheformationoftheIVSthroughstellarwindsandradi- flows(Lazarian1994). ationpressure.ThepositionoftheIVSontheskyisshown in Figure 1. A more detailed, 100 lm view is shown in Figure2. TheIVSisinterestingforotherreasons.Thelineofsight 1AlsoatFacultaddeCiencias,UniversidadNacionaldeIngenier´ıa,Av. toHD62542interceptsthewestsideoftheIVS(Figs.2and Tu´pacAmaru210,R´ımac,Casilla31-139,Lima,Peru´. 3).HD62542hasaratheranomalousUVextinctioncurve 2Visiting Astronomer, Cerro Tololo Inter-American Observatory. (Cardelli&Savage1988)withaveryweak2200A˚ extinction CTIOisoperatedbyAURA,Inc.,undercontracttotheNationalScience Foundation. bump. Previous works associated the structure toward 469 470 PEREYRA & MAGALHaA˜˜ ES Vol. 141 Fig.1.—GalacticdistributionmapofdarkcloudsfromFeitzinger&Stu¨ve(1984)withtheIRASVelaShellregionindicated.ThepositionofHD62542is shownbytheasterisk(*). HD 62542 with the GN (Cardelli & Savage 1988), but its (CTIO), Chile. The polarimeter is a modification of the spatialdistributionisinfactmoreconsistentwiththatofthe CTIOdirectCCDcameratoallowforhighprecisionimag- IVS(Sahu1992;Churchwelletal.1996).Theeastborderof ingpolarimetry.Thefirstelementinthebeamisarotatable, the structure (inside the cavity) shows a well-defined achromatic half-wave retarder followed by a Savart plate. ionization front (I-front), seen almost edge-on, with This provides two images of each object in the field, sepa- different curvatures in the north and south sections. The rated by 1 mm (corresponding to about 1800 at that tele- IVS far-infrared dust emission accompanies the morphol- scope’sfocalplane)andwithorthogonalpolarizations.One ogy of the I-front (Sahu 1992), implying that the radiation polarizationmodulationcycleiscoveredforevery90(cid:1)rota- field of Vela OB2 and shocks induced by the expansion of tionofthewaveplate.Thesimultaneousimagingofthetwo theshellmustheatthedust.Ascenarioofanionizationand beams allows observing under nonphotometric conditions shockfront(I/S-front)mightprevailinthisregion(Church- andatthesametimetheskypolarizationispracticallycan- well et al. 1996). Whittet et al. (1993) analyzed the IRAS celed(Magalha˜esetal.1996). sources around HD 62542 and concluded that there is no Figure 3 shows the distribution of CCD fields observed evidence for current or recent star formation along that and Table 1 provides the position of the field centers. The ridge(Fig.3). datawerecollectedin1991Decemberand1992December. Churchwelletal.(1996)studiedthisregioninCS,andthis CCDexposuresforeachfieldweretakenthroughtheVfil- emission accompaniestheI/S-frontandtheemission from ter with the waveplate rotated through four positions 22=5 dust.TheyfoundthatthekineticenergyoftheCScloudis1 apart.Withthe1024(cid:4)1024CCDused(CTIOTekNo.1), order of magnitude higher than the gravitational potential energy. This indicates that the structure is not gravitation- allyboundandwoulddisperseonveryshorttimescaleswere TABLE 1 itnotfortherampressureoftheexpandingIVS,whichcon- CCDFieldPositions tinuallysweepsupnewinterstellarmatterintothecloud. In summary, the IRAS Vela Shell encloses a cavity that Field R.A.(J2000) Decl.(J2000) Mission appearstohavebeenformedbystarsoftheVelaOB2asso- 01........... 74237.08 (cid:2)421344.66 91 ciation through the effects of stellar winds and supernovae 02........... 74201.22 (cid:2)420702.30 91 explosions (Sahu 1992). In this paper we present a catalog 03........... 74125.31 (cid:2)420202.93 91 ofthelinearpolarizationofstarsseentowardawesternsec- 04........... 74312.93 (cid:2)422025.03 91 tion of the IRAS Vela Shell. Our technique provides good 05........... 73859.84 (cid:2)413655.29 92 qualitydataforarelativelylargenumberofobjects.Wealso 06........... 73932.15 (cid:2)412859.42 92 discuss the general properties of the polarization vectors 07........... 74003.96 (cid:2)413659.53 92 throughout the region. The fact that the structure is seen 08........... 74003.70 (cid:2)414459.52 92 09........... 74035.51 (cid:2)415301.63 92 almost edge-on is indeed helpful to the interpretation of 10........... 74211.43 (cid:2)420106.96 92 polarization measurements. In a forthcoming paper, we 11........... 74210.92 (cid:2)421707.95 92 presentafulleranalysisofthedataandrelatethemtoother 12........... 74242.72 (cid:2)422511.05 92 existingdataontheIVSstructure. 13........... 74210.66 (cid:2)422507.94 92 14........... 74106.41 (cid:2)422903.71 92 15........... 74009.39 (cid:2)425659.98 92 2. OBSERVATIONS AND DATA REDUCTION 16........... 73936.94 (cid:2)430858.84 92 TheobservationsweremadeusingaCCDimagingpolar- Note.—Units of right ascension are hours, minutes, imeter (Magalha˜es et al. 1996) attached to the 1.5 m and seconds, and units of declination are degrees, arc- Telescope of Cerro Tololo Inter-American Observatory minutes,andarcseconds. No. 2, 2002 POLARIMETRY TOWARD THE IRAS VELA SHELL 471 Fig.2.—IRASimagein100lmofthewestsectionoftheIRASVelaShelltowardHD62542,obtainedfromtheSkyViewWebpage(http://skyview.gsfc.- nasa.gov/skyview.html).Thefigurecovers14(cid:1)(cid:4)14(cid:1).The(cid:3)1(cid:1)(cid:4)2(cid:1)boxedregionindicatedhighlightsthesectionoftheIVSwhichwestudiedandwhichis detailedinFig.3.(cid:1)Puppisand(cid:2)Velorumareindicatedbyaplusandanasterisk(*),respectively. each field covers (cid:3)80(cid:4)80. The exposure time at each posi- waveplate position angle ( ) with respect to the expected i tion was typically 300 s. Exceptions are fields 01 (10 s), 02 cos4 curveandarequotedinTable2;theyareconsistent i (180s),03(240s),and04(240s). with the photon noise errors (Magalha˜es, Benedetti, & Afterbiasandflatfieldcorrections,photometrywasper- Roland 1984). A set of specially developed IRAF tasks to formed for both images of stars in each field using the study the polarization data in (eventually crowded) stellar IRAF3DAOPHOT package,agroup ofprocedures which fields(Pereyra2000,PCCDPACKpackage)wasextensively createasetofdatafilesforeachimagefield.Aspecialpur- used.Eachfieldwaspainstakinglycheckedforobjectswith pose FORTRAN routine processed these data files and suspiciouspolarizationthatwereusuallyrelatedtoanover- calculated the normalized linear polarization from a least- lapping image of a nearby object; these objects were squaressolution.Thisyieldsthepercentlinearpolarization removedfromthecompilationpresentedhere. (P),thepolarizationangle(h,measuredfromnorthtoeast), TheinstrumentalQ-andU-valueswereconvertedtothe the Stokes parameters Q and U, as well as the theoretical equatorial system from standard star data obtained in the (i.e.,thephotonnoise)andmeasured((cid:4) )errors.Thelatter samenight.Theinstrumentalpolarizationwasmeasuredto P areobtainedfromtheresidualsoftheobservationsateach belessthan0.03%,andnosuchcorrectionwasapplied.We have not purposely applied any correction for statistical bias(Simmons&Stewart1985)tothepolarizationvaluesin 3IRAFisdistributedbytheNationalOpticalAstronomyObservatory, Table 2, so that others may handle the data more readily. which are operated by the Association of Universities for Research in Astronomy,Inc.,undercooperativeagreementwiththeNationalScience Such correction would be small in any case for the high Foundation. P=(cid:4) -values(x4)ofthecatalog. P 472 PEREYRA & MAGALHaA˜˜ ES Vol. 141 CCDfield.Theunderlyingimagesinthefindingchartswere madefromtheDigitizedSkySurvey(DSS).InTable2,the firstcolumnistheCCDfieldnumber.Thesecondcolumnis the identification number (ID) of the object in each field. Thisnumberlabelsthepositionoftheobjectinthefinding charts.Thefourthandfifthcolumnsaretheequatorialcoor- dinates (2000). The estimated error in the position is less than100.Thesixthandseventhcolumnsarethepolarization valueintheVfilteranditserror.Thepolarizationangleisin theeighth column and the estimated visual magnitude (see below)isinthelastcolumn. Thepositionsoftheobjectswerecalculatedbycomparing objectspresentinbothourCCDfieldsandtheDSS.Inthis waythe(x,y)positionsinpixelsweretransformedto(R.A., decl.) coordinates using the plate parameters available in the digitized image headers. The images used for this con- versionarethesameusedasfindingchartsforeachfield. For a given field the visual magnitudes were calculated usingthefirstofthefourimagesobtained,eachcorrespond- ingtoagivenhalf-waveplateposition.Foragivenobjectwe addedthecountsoftheordinaryandextraordinarybeams within the aperture used in the calculation of the polariza- tion for the object. The instrumental magnitude obtained wasthencorrectedtothestandardsystem.Theadditivecor- rectionwasestimatedineachfieldbyobtaininganaverage difference between the values of the magnitudes of the General Star Catalog (Lasker et al. 1990) (GSC) and our instrumental magnitudes for objects present in both sam- ples. The GSC magnitudes used in this correction corre- spond to that of a Schmidt plate with the combination emulsion/filter=IIIaJ/GG395,centeredin4500A˚ (Lasker et al. 1990) and which were transformed to the V filter by Lasker et al. (1990). These magnitude estimates must be Fig.3.—RegionoftheIRASVelaShelltowardHD62542overwhichwe taken just as indicative because of the impossibility of haveperformedtheimagingpolarimetry.Theunderlyingimagesinthisand obtainingappropriatecorrectionstoourdataforthecolor theremainingfiguresarefromtheDigitizedSkySurveyandwereobtained term and the extinction coefficient as usual. The typical eitherthroughtheSkyViewWebpage(Fig.15)oritsCD-ROM(thisfigure and Figs. 5 through 14). The region covers an area of (cid:3)1(cid:1)(cid:4)2(cid:1). The magnitude uncertainty in our catalog is dominated by the numbersindicatethepositionsofeachoneofthe16CCDfieldsobserved. uncertaintyintheGSCmagnitudesandwasestimatedtobe Eachfieldcoversanareaof80(cid:4)80.ThepositionofHD62542coincides 0.33magfromtheresultingrmsdeviations.Ahistogramof withthatofthecenteroffield01. thecalculatedmagnitudesisshowninFigure4. 3. THE CATALOG 4. POLARIZATION MAPS Thepolarimetricdataarepresentedinonelongtablewith In Figure 5 we show a mosaic of the polarization maps the data of the 16 CCD fields (Table 2) and the associated acrossthe(cid:3)1(cid:1)(cid:4)2(cid:1)regionstudied.Inthefigureeachvector finding charts (Figs. 15a–15p, available in the on-line edi- representsanobjectwithpolarizationsignal-to-noiseratio, tionoftheAstrophysicalJournalSupplement),oneforeach P=(cid:4) , larger than 10. As mentioned earlier, data with a P TABLE 2 FieldData P (cid:4) h V V PV Field ID Flag R.A.(J2000.0) Decl.(J2000.0) (%) (%) (deg) (mag) 01....... 9 7 74216.21 (cid:2)421143.30 0.309 0.019 81.9 15.74 01....... 23 7 74220.26 (cid:2)421117.44 0.344 0.029 29.5 15.01 01....... 24 7 74221.96 (cid:2)421543.07 2.088 0.127 122.4 17.04 01....... 30 7 74223.86 (cid:2)421008.11 0.981 0.013 45 14.17 01....... 32 7 74224.56 (cid:2)421124.34 1.948 0.066 62.6 16.42 Notes.—Unitsofrightascensionarehours,minutes,andseconds,andunitsofdeclinationaredegrees, arcminutes,andarcseconds.Table2isavailableinitsentiretyintheelectroniceditionoftheAstrophysical JournalSupplement.Aportionisshownhereforguidanceregardingitsformandcontent. No. 2, 2002 POLARIMETRY TOWARD THE IRAS VELA SHELL 473 lowerS/Nratiomaystillbeusefulbutlesscertainespecially for faint objects where overlapping with the ordinary or extraordinarybeamsofnearbyobjectsmayoccur.Thetotal numberofobjectswithP=(cid:4) >10is856. P Nineteen objects have two independent polarimetric measurements from overlapping fields and are indicated withtheflaginthethirdcolumnandinfootnotesofTable2. AplotofthesemeasurementsisshowninFigure6,whereit can be seen that they are reasonably consistent with one another. The weighted mean value of the differences between the pairs of polarization measurements is 0:24%(cid:5)0:01%, comparable withpthe typical error in the ffiffiffi catalog, (cid:3)0.1%, multiplied by 2. For the polarization angles, the weighted mean value of the differences is 5=2(cid:5)0=1.Atypicalpolarizationvalueinthecatalogis(cid:3)1% which, with the typical error above, gives (cid:3)3(cid:1) as a typical Fig.4.—Histogramofmagnitudesfortheobjectsinthecatalog uncertaintyforthepositionangle,againcomparabletothe weighted mean value of the position angle differences. Of course,polarization,beingapositivedefinitequantity,does notobeynormalstatistics,asopposedto(Q,U)valueswith a good polarimetric signal-to-noise (Simmons & Stewart 1985).Usingthe(Q,U)valuesforthepairsofpolarization measurementsofFigure6weobtainsimilarresults.Inany case,anyaveragingofpolarizationdataforstarsinthecata- logbyusersshouldbedoneusing(Q,U)values. Fromacursorycomparisonbetweentheobservedalign- mentandthemorphologyofthissectionoftheIVS,itisevi- dentfromFigure5thatmorethanonealignmentstructure ofthepolarizationvectorsalongtheI/S-frontprevails.To showthisinmoredetail,wepresentsectionsofthecompo- sitepolarizationmapbygroupingtwoorthreefieldssuper- imposedontheirrespectiveDSSimages.Inthispreliminary analysis, we follow the ridge roughly from north to south andconcentrateonthequalitativepatternsofthepolariza- tion maps. Some fields are shown more than once to help follow the patterns along the front from one figure to the next. Fig.5.—Mosaicofthepolarizationvectormapsforthe16CCDfields superimposedonaDigitizedSkySurveyimage.Thepolarizationscaleis shownatthetopofthefigure.Eachvectorrepresentsanobjectwithpolar- izationsignal-to-noiseratiolargerthan10.Thetotalnumberofobjectsin Fig.6.—Objectswithtwoindependentpolarimetricmeasurementswith thecatalogandplottedaboveis856. errors.Thedashedlineisjustthe45(cid:1)linetohelpthecomparison. 474 PEREYRA & MAGALHaA˜˜ ES Vol. 141 4.1. CommentsonIndividualRegions nebula, follows closely that of the nebula border. Field 07 also shows higher polarization values than either fields 4.1.1. Fields05,06,and07 05 or 06; given the otherwise very smooth inferred mag- In Figure 7 we show the polarization map of fields 05, netic field structure across the area, this is probably 06, and 07. The area shown is 250(cid:4)180 (3:3(cid:4)2:4 pc, at related to the variation of inclination of the magnetic 450 pc). A very smooth structure of the polarization field to the line of sight from one field to the other. vectors is evident within each CCD field and from one Another possibility is that of field enhancement in the CCD field to the other. It is also interesting to note the compressed postshock gas. This might translate into a apparent alignment of the polarization pattern with the smaller dispersion of position angles for field 05 as com- overall morphology of the I/S-front. The pattern of field pared with that of field 07. Such analysis will be made in 07 in particular, closer to the ridge at that point in the the forthcoming paper. Fig.7.—Polarizationvectormapforfields05,06,and07.Theareacoveredbyeachfieldisoutlinedbyadashedbox.Thepositionsoftheindividualfields areshowninthesmallerframeforclarity.Thepercentpolarizationscaleisshownatthetopofthefigure.Thescalesforeachoftheremainingfiguresare similarlyshown. No. 2, 2002 POLARIMETRY TOWARD THE IRAS VELA SHELL 475 4.1.2. Fields07,08,and09 following the polarization pattern displayed by the denser partsoffield04(seeFig.5). InFigure8weshowthevectorplotsforfields07,08,and 09, spread over an area of 180(cid:4)300 (2:4(cid:4)3:9 pc). The observedpolarizationpatternoffield07followstheborder 4.1.4. Fields02and03 ofthenebularridgeandseemstojoinsmoothlywiththatof InFigure10weshowthecompositepolarizationmapfor field08tothe south. Infield09 thepolarization values are the fields 02 and 03. The area shown covers 180(cid:4)150 low and no dominating pattern is evident. Field 09 covers (2:4(cid:4)2:0pc).Bothfieldsareinsidetheemissionregionand anemissionstructurewhichisseenseparatedfromthemore apatternalmostperpendiculartotheridgeprevails.Never- northernsectionoftheridgewherefields07and08sit. theless, small distortions in this pattern exist and may be correlated withthe uneven observed emission. Inaddition, almostdirectlyeastoffield02(SEoffield03),Churchwellet 4.1.3. Fields10and11 al. (1996) detected a condensation in CS emission (their clumpC)whichseems,intheirownwords,tobe‘‘eroding Fields10and11areshowninFigure9.Theareashownis away’’ due to the expanding nebula. It is possible that the 120(cid:4)280 (1:6(cid:4)3:7 pc). The saturated star near field 11 is polarization pattern in field 02 is just reflecting this swept- HD 62542. Like field 09 to its northwest, field 10 does not upgas.Seealsodiscussiononfield04belowandx4.2. show a clear polarization pattern. We note that field 10 straddles both sides of the well-defined interface of the 4.1.5. Fields01and04 ridge.Theemissionisalsonotuniformoverthefield.Field 11 is farther from the borders of the ridge and is also Figure11showsfields01and04inanareawhichcovers immersedinacirrus-likeemissionthatthepolarizationpat- 160(cid:4)160(2:1(cid:4)2:1pc).Field01,centeredinHD62542(the tern appears to follow. This field issituated downstream of saturated starintheDSSimage),showsfewobjectswitha field04andclumpAofChurchwelletal.(1996);seex4.1.5 polarization S/N ratio larger than 10, since only an 10 s below. The polarization pattern of field 11 may well be integration time per half-waveplate position was used. No Fig.8.—Polarizationvectormapforfields07,08,and09 476 PEREYRA & MAGALHaA˜˜ ES Fig.9.—Polarizationvectormapforfields10and11 general alignment pattern seems evident. Nevertheless, a beswept-upambientgasbytherampressureoftheexpand- careful examination shows that objects near HD 62542 ingnebula.Interestingly,thefieldlinesoffield04,pointing (ID23,73,76,and88infield01ofTable2)presentvaluesof away from the condensation, would seem to be consistent polarizationpositionanglesimilartothestar(Claytonetal. withsuchpicture. 1992,30=8). In field 04, a bimodal alignment pattern exists: one at 4.1.6. Fields11,12,and13 (cid:3)40(cid:1) just east of the ridge and another pattern at (cid:3)100(cid:1) The composite polarization map of fields 11, 12, and toward the denser parts of the nebula. This symmetry 13 is shown in Figure 12. The area shown in this figure resembles that of field 12 discussed in x 4.1.6 below covers 200(cid:4)200 (2:6(cid:4)2:6 pc). In field 11, as pointed out (Fig. 12). It may not be totally unexpected that the denser above, the polarization pattern seems to follow the cir- partsoffield04showneitheraperpendicularnoraparallel rus-like structures seen in emission. The polarization pat- alignmentwiththenearbyridgesincethelatterchangescon- terns of fields 12 and 13 seem to smoothly join that of cavityaroundthatregion,inadditiontotheeffectsofapro- field 11. The pattern of field 12 is very interesting and jection of a three-dimensional surface on the sky. It is, similar in some respects to that of field 04. Northwest of however,alsoofinteresttonotethattheregionsoutheastof field 12 center, the pattern follows (cid:5)(cid:3)115(cid:1) like fields 11 field 04 is coincident with the condensation labeled V12 in and 13. Northeast the field center, another polarization thelistofVilas-Boas,Myers,&Fuller(1994)andclumpA direction seems to prevail. South of the field center, a in the CS study of Churchwell et al. (1996). The latter pattern perpendicular to the southern ridge is observed. authorssuggestthattheCSemissionaroundtheclumpmay Field 12 includes clump B of Churchwell et al. (1996), Fig.10.—Polarizationvectormapforfields03and02 Fig.11.—Polarizationvectormapforfields01and04.ThebrighteststarisHD62542. 478

Description:
ABSTRACT. We have obtained linear polarization measurements of stars along the western side of the IRAS Vela Shell toward HD 62542. From 16
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.