Peptide Dose, MHC Affinity, and Target Self-Antigen Expression are Critical for Effective Immunotherapy of Nonobese Diabetic Mouse Prediabetes Shawn Winer A thesis submitted in confomity with the requirernents for the degree of Master of Science Graduate Department of Imrnunology University of Toronto O Copyright by Shawn Winer 200 1 I*l National Library Bibliothèque nationale of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON K1A ON4 OttawaON K 1 A W #nada Canada The author has granted a non- L'auteur a accordé une Licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, dismibute or sel reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otheMnse de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Peptide Dose, MHC Affinity, and Target Self-Antigen Expression are Critical for Effective Immunotherapy of Nonobese Diabetie Mouse Prediabetes Shawn W iner Master of Science Department of Immunology University of Toronto Abstract Cross-reactive T cells which recognize both. Tep69- and ABBOS-epitopes in the islet autoantigen. ICA69 and bovine serum albumin (BSA). are routinely generated during human and nonobese diabetic (NOD) mouse prediabetes. Here we analyzed how systemic administration of these peptides affects progressive autoimmunity in adoptively transferred and cyclophosphamide-accelerated NOD mouse diabetrs. Unexpectedly. high dose i.v. ABBOS prevented. while Tep69 exacerbated. disease in both models. Peptide effects required cognate recognition of the endogenous self- antigen. The affinity of ABBOS for NOD I-A~'w as significantly higher than that of Tep69. This explained 1) the expansion of the ABBOS and Tep69 T ce11 pools following i.v. Tep69. 2) long term unresponsiveness of these cells after i.v. ABBOS. and 3) precipitation of disease after low dose i.v. ABBOS. ABBOS or ABBOS- analogs with even higher MHC-affinity may be candidates for experimental intervention strategies in human prediabetes. but the dose translation from NOD mice to humans requires caution. Contributors The data presentrd in the thesis have been published in the Journal of Immunology: Winer. S.. Gunaratnam, L.. Astsatourov, 1.. Cheung, R.K.. Kubiak. V.. Karges. W.. Hammond-McKibben. D.. Gaedigk. R.. Graziano, D.. Trucco. M.. Becker, D.J.. and Dosch, H.-M. 2000. Peptide Dose. MHC Affinity. and Target Self-Antigen Expression Are Critical For the Effective Immunotherapy of Nonobese Diabetic Mouse Prediabetes. J Immunol. 16 54086, Copyrighr 2000. The .-Imerican rlssocinrion of Immunologisrs (.LU). Each author made the following contribution to the paper: Shmvn Winer: 1 was in overall cornrnand of the project and performed and analyzed the bulk of the data. including Figures 1-5. 7-9. The data described in Figure 1 was gathered during my founh year undergraduate research project, when 1 worked with a former MSc. student of the Immunology depanment, Lakshman Gunaratnam. Lakshman Gzinarornam did the initial adoptive transfer experiments. which 1 reproduced and expanded. As a summer student he contributed to data in Figures 1.2A-B. M.7 : Igor Astsatoirror did al1 of the MHC binding experiments (Figure 6): Roger Gaedigk. Violerta Kubiak, lvolfram Karges. Roy K. Chetrng, and Denise Hammond- ICA^^"'" McKibben developed the 129-line mice and generated the NOD congenic ICA69 knockout; Daniel Graziano. Massirno Trucco: taught us MHC binding assays and provided reagents: Dorothy J. Becker: intellectuai input. ) fbC@iVNI: 101251 O; 11 55; 3û1 671 1133 -3 H-U OOSCH OFFICE; #2 $0/45/00 12:00 F M JO1 571 1833 JOURNAL OF IMNNQuI'y THE Shawa Winer lxpammofImmunology 7 hU niversity of T'mm me Hwpital for Sick Cbildren 555 Univenity Avenue. Roam 10126 Toronto, OtiM MSG 1x8 Canada 1. That you &ivep roper medit to the authon and to The JO& oflmmunol., ~ludiriign put citation the volume, date, end page nurnbérs. PWem dsrstmd tbat permission is granted for onctime ase ooly. Permission mmt be mquested sepuatdy for futare cditionq misions, tniasiations, derivative works, and promotionai pi- Pemi9ian is oot grauted for any type of eitxtmnic reprodadbi or distribution. Thank you for your mtercst in nPe Jotond of lmmu1~0Io~. - 9650 RKKvnLE PIKE BEllmbA, MARUND 9uaiemt PHONE 3Ol-507Y8 WX: 301-571-1814 WAfL: I N F O h A l O ~ O R ÇW fB: WWWmRC IV Acknowledgements I would like to thank my supervisor Dr. H.-Michael Dosch for his motivation, contagious optimism. advice. and support throughout the project. 1 thank the members of my thesis cornmittee. Dr. Tania Watts and Dr. Jayne Danska for their patience. guidance and inteliectual discussions of this work. I thank al1 CO-authors for their valuable contributions. 1 would also like to acknowledge al1 of the members of the Dosch lab for their insight at lab meetings and for creating a friendly atmosphere in the lab. 1 also recognize and thank Juan Carlos Ortiz for help in some in vivo experiments. Finally. 1 would like to thank my family for their support throughout the years of rny study. Table of Contents .. Abstract ................................................................................................................ II ... Contributors .............................................................................................................. iii Copyright Statement. The Journal of Immunology ................................................. iv Acknowledgements .................................................................................................... v Table of Contents ...................................................................................................... vi ... List of Figures ......................................................................................................... viit Abbreviations ............................................................................................................ ix . I introduction .......................................................................................................... 1 1.1. Autoimmune Diabetes: A Clinical Perspective ................................... 1 1.11. Epidemiology .......................................................................................... -7 1.111. GeneticsofHumanTlDM .............................................. I N. The NOD Mouse: A Brief Introduction ........................... I.V. Pathogenesis ................................................................... [.VI. Cow Milk and Diabetes: Does Bovine Serum Aibumin P ay a Role? ...... 11 I.VI 1. Antigen-Based Immunotherapy .............................................................. 15 . 11 Sudy Objectives .................................................................................................... 16 III . Materials and Methods ....................................................................................... 17 Mice ....................................................................................................... 17 Peptides .................................................................................................. 17 E 12.3 T ce11 Hybridoma ......................................................................... -18 Adoptive Trans fer .................................................................................. -19 C y clophosphamide-Accelerated Diabetes ............................................... 19 Histology ................................................................................................ 19 Tolerance Induction and Proliferation Recall Assay ................................'O LA'' Purification and Affini ty Studies ................................................... 20 1II.IX. Statistics ................................................................................................ .7--3 . IV Results .............................................................. 33 ................................................... 1V.I. BSA- and ICA69-S~ecificR eactivity in Cloned T ce11 Hvbridomas ........ 22 IV.11. Irnmunotherapy with Tep69 and ABBOS has Opposite Outcornes ..........2 5 IV.111. Peptide Effects Require Expression of Cognate Self-Antigen .................. j0 IV.IV. ABBOS and Tep69 Differ in MHC Affinity ........................................... -32 1V.V. Tolerance Induction Following i.v. Peptide Treatment ............................ 34 . V Discussion ............................................................................................................ -39 . VI Future StudieslSynopsis ..................................................................................... 44 . VI1 References .......................................................................................................... 46 vii List of Figures/Tables Table 1. Linear Sequence Homology Behveen ABBOS and Tep69 Peptides ............. 13 Figure 1. Cross-reactivity between Tep69 and ABBOS in the E 12.3 hybridoma and NOD splenocytes .. . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . , . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .X Figure 2. Tep69 and ABBOS peptides have opposing effects on adoptively transferred IDD .... .. .... .. . .. ... .. . . . . . . .. . ..... .. . .. . . . . ... .. . .... .. .... .. . .. .. ....... .... .. ........ ...... ....... .. ......... .. ... .. .. .. . .. .. . .- 26 Figure 3.1. v. Tep69 exacerbates and i.v. ABBOS protects from cyclophosphamide-induced IDD ............................................................................................................................ 28 Figure 4. High dose i.v. ABBOS reduces insulitis ......... ...... ..... ....... .. ......... .. .............. 29 Figure 5. Peptide-mediated modification of adoptively transferred IDD requires expression of the cognate self-antigen .. ....... ... ... .. ... .. .. ....... .. . .. .. . .......... . . . . .. . .....3 1 Figure 6. Tep69 and ABBOS have different affnity for MHC ............. .... ....... ......... ... 3 3 xi Figure 7. Short and long terrn unresponsiveness following i.v. peptide treatments ......3 5 Figure 8. High dose i.v. Tep69 expands ABBOS and Tep69 cross-reactive T cells in adoptive transfer recipients .. ...... ... .. .. ......... .... ... .... ... . .. .. .. . . ..-....... *.... . ..... .. . ....... ... ........ 3 7 Figure 9. Low dose i.v. ABBOS exacerbates prediabetes. ....... .................. .. ............... .3 8 Figure 10. Proposed role of mimicry peptides in diabetes development ...................... 43 viii Abbreviations aa: Amino acid ABBOS: An irnmunodominant epitope in BSA ALA: Alanine APC: htigen Presenting Ceil BB: BioBreeding BCG: Bacillus Calmette-Guerin BS.4: Bovine Serum Albumin CFA: Complete Freund's Adjuvant CY: Cyclophosphamide DPT-1:D iabetes Prevention Trial 1 EBV: Epstein-Barr Virus FDR: First Degree Relative FITC: Fluoroscein Isothiocyanate GAD65i67: Glutamic Acid Decarboqlase (65 or 67 kD isoform) HPLC: Hi& Performance Liquid Chromatography HLA: Human Leukocye Antigen HSP6O: Heat Shock Protein (60 kD) 142: A protein tyrosine-phosphatase I-A~~M:H C class II molecule in NOD mice ICA: lslet Ce11 Antibodies ICA69: Islet Cell Antigen (69 kD) IDD(iM): Insulin Dependent Diabetes (Mellitus)
Description: