REVIEWARTICLE published:10January2013 doi:10.3389/fnins.2012.00191 Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus MichaelC.Andresen*,JessicaA.Fawley andMackenzieE.Hofmann DepartmentofPhysiologyandPharmacology,OregonHealthandScienceUniversity,Portland,OR,USA Editedby: The brainstem nucleus of the solitary tract (NTS) holds the first central neurons in major KevinW.Williams,TheUniversityof homeostatic reflex pathways.These homeostatic reflexes regulate and coordinate multi- TexasSouthwesternMedicalCenter, pleorgansystemsfromgastrointestinaltocardiopulmonaryfunctions.Thecoreofmanyof USA thesepathwaysarisefromcranialvisceralafferentneuronsthatenterthebrainasthesoli- Reviewedby: KazuhiroNakamura,KyotoUniversity, tarytract(ST)withmorethantwo-thirdsarisingfromthegastrointestinalsystem.Aboutone Japan quarterofSTafferentshavemyelinatedaxonsbutthemajorityareclassedasunmyelinated BretN.Smith,UniversityofKentucky C-fibers.AllSTafferentsreleasethefastneurotransmitterglutamatewithremarkablysimi- CollegeofMedicine,USA lar,high-probabilityreleasecharacteristics.SecondorderNTSneuronsreceivesurprisingly *Correspondence: limitedprimaryafferentinformationwithoneortwoindividualinputsconvergingonsingle MichaelC.Andresen,Departmentof PhysiologyandPharmacology, secondorderNTSneurons.A-andC-fiberafferentsnevermixatNTSsecondorderneurons. OregonHealthandScience Manytransmittersmodifythebasicglutamatergicexcitatorypostsynapticcurrentoftenby University,3181SWSamJackson reducing glutamate release or interrupting terminal depolarization.Thus, a distinguishing ParkRoad,Portland,OR,USA. feature of ST transmission is presynaptic expression of G-protein coupled receptors for e-mail:[email protected] peptides common to peripheral or forebrain (e.g., hypothalamus) neuron sources. Presy- napticreceptorsforangiotensin(AT1),vasopressin(V1a),oxytocin,opioid(MOR),ghrelin (GHSR1),andcholecystokinindifferentiallycontrolglutamatereleaseonparticularsubsets ofneuronswithmostotherSTafferentsunaffected.Lastly,lipid-likesignalsaretransduced bytwokeySTpresynapticreceptors,thetransientreceptorpotentialvanilloidtype1and the cannabinoid receptor that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central termi- nalstocontrolexcitationandaremajorsitesofsignalintegrationofperipheralandcentral inputsparticularlyfromthehypothalamus. Keywords:solitarytractnucleus,neuropeptides,capsaicin,TRPV1,vagalafferents Thenervoussystemmakesauniquecontributiontotheregula- For example, chronic aerobic fitness training often restructures tory mechanisms that help to preserve homeostatic integrity in the heart so that the resting stroke volume is increased but this the face of constantly changing demands. The central nervous new state requires complementary changes in neural regulation system (CNS) serves as a key integrator and coordinator across aroundanew,lowerrestingheartrate(Jacksonetal.,2005;Higa- multiple organ systems and tissues. The CNS and its peripheral Taniguchi et al., 2009; Cavalleri et al., 2011). All circumstances neural partners are not only capable of rapidly responding over requirehomeostaticallysimilaroutcomesthatprovideaconsistent greatdistancestocoordinateorganfunctionbuttheyalsohavethe cellularmilieuofbloodgases,nutrients,andwasteremoval.How- capacity to remodel chronically. By orchestrating visceral organ ever,frankdysregulationincreasinglyisrecognizedasanintegral functions,the CNS helps to foster effective system-wide control partof pathologicalstatessuchasmetabolicsyndromeinwhich overtheconditionsmaintainingcellularhomeostasis.Thehome- multiplesystemsbecomecompromisedorevenfail(Albertietal., ostaticpalateofregulated“states”spansvitalenergy,temperature, 2005,2006;Perez-Tilveetal.,2006).Theaimof thereviewisto ionic,andmetabolicstatus(Schwartzetal.,2000;Nakamuraand focusonthebuildingblocksofneuralsynaptictransmissionthat Morrison,2008;Dallman,2010;GrillandHayes,2012).Organism- determineandmodifytheperformanceoftheseneuralpathways. widebalancematchescriticalprocessesmediatingenvironmental One fundamental aspect essential to understanding homeo- exchange (at the skin, lung, and gastrointestinal tract) with the static and pathologic complexities is an appreciation of normal appropriate transportation (cardiorespiratory and gastrointesti- regulationandtheframeworkandstructureofinteractionsacross nal).Theregulatorychallenge,ofcourse,isdynamicinthatacute organsystems.Thegoalof thischapteristofocusontheneural changesinorganconditionsrequirespeedyadjustmentsbutlong signalinginterfacebetweenincominginformationaboutvisceral term,chronicchangesrequirethecapacitytoadapttosustained statusandtheinitiationof CNSregulatoryresponses.Fororgan changes.Eveninnormalphysiologicalcircumstances,anewstate regulation,thisafferent-CNSinterconnectionoccurslargelyatthe can require adjustments in the performance characteristics of caudalthirdofthenucleusofthesolitarytract(NTS).TheNTSisa neuralcontrolpathwaystoaccommodatethesenormalchanges. majorgatewayforcranialvisceralafferentinformation(Andresen www.frontiersin.org January2013|Volume6|Article191|1 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS and Kunze, 1994; Andresen and Paton, 2011) and, as such, is a NTSsubregionsandsomesynapticterminalsfromvagalafferents uniquefocusofvisceralorganinformationintheCNS.Thisreview directlycontactDMNcellprocesses(Rinamanetal.,1989). summarizesthefundamentalbuildingblocksfortheprocessingof afferentsignalsattheNTSaspartofoverallintegrationandillus- AFFERENTCONNECTIONSATNTS tratesthatinformationprocessingatthissitegoeswellbeyonda The physical wiring pathways for neural regulation begin with simple relay and broadcast of visceral signals. Recent work sug- thevisceralprimaryafferentsofcranialnervesandtheirphysical gests that, across multiple organ systems, all circuits involving contacts on NTS second order sensory neurons (Andresen and the NTS appear to utilize similar basic communication mecha- Kunze,1994;Craig,2002;Andresen and Paton,2011). However, nisms–mechanismsincommon.Incontrast,however,otheraspects inmostvitalorgans,visceralsensoryprimaryafferentsarisefrom offermechanismsofdistinctionsuchasligand-gatedionchannels dual sources.Cranialvisceralafferentshavecellbodieschieflyin andG-proteincoupledreceptor(GPCR)-basedsystemsthatmay thenodoseandpetrosalgangliaandsendtheirafferentaxonsinto distinguishparticularpathways. theNTS.Asecondafferentsourcearisesfromspinalvisceralaffer- entswhichhavecellbodieslocatedinthedorsalrootgangliabut INDISTINCTNEIGHBORHOODS their axons enter the CNS at the spinal cord dorsal horn. Both Overall, the NTS is quite diverse. Structurally, the NTS has cranial and spinal visceral sensory neurons include myelinated regions distinguished cytoarchitecturally by morphological fea- (mostlyAδ)andunmyelinatedsubtypesand,formostorgans,the tures(LoewyandBurton,1978;KaliaandSullivan,1982).How- slowlyconductingC-typeafferentsgreatlyoutnumberthemyeli- ever, the distribution of cranial visceral afferent axons and ter- nated class of afferents by 8–10-fold regardless of their cranial minations poorly conform to this cytoarchitectural topography, orspinaldestination(Agostonietal.,1957;Andresenetal.,1978; particularly rostro-caudally. Thus,despite input fibers that arise Sant’Ambrogio,1987;KubinandDavies,1995).Thiscranialinfor- fromdistinctlydifferentvisceralorgans(e.g.,gastrointestinalsys- mationflowsmostlythroughtheIXthandXthcranialnervesto tem,heart,bloodvessels,lung,orairways),thesevariousafferents formthefirststepofpathwayswhicharelargelyconcentratedinthe distributebroadlywithinNTSandareindistinctinlocationand brainstem.Thesebrainstempathwayshaveastructurethatfeeds morphology.Thisdiversityandambiguityofdistributionextends backtoregulatetheorgansfromwhichthoseafferentsoriginated. to neurochemical phenotypes of NTS neurons – glutamatergic, Spinal visceral primary afferents often follow sympathetic nerve γamino-butyricacid(GABA)synthesizing,catecholamine(CA) trunks to reach their cell bodies within the dorsal root ganglia. synthesizing,pro-opiomelanocortin (POMC),and other unique Thisspinalinformationmaycontributetonociceptivesignaling neurons(AndresenandKunze,1994;Andresenetal.,2007a;Wan withinthespinalcordandlessdirectlyinfluencesvisceralorgan et al., 2008). One early idea held that particular afferent inputs regulation (Foreman, 1999, 2000; Gamboa-Esteves et al., 2001). mightspecificallycontacthistologicallydefinedsubnucleiwithin Thesynapsesfromcranialvisceralprimaryafferentsdefinesecond thecaudalNTS(KaliaandMesulam,1980).Acrossstudieshow- orderafferentneuronswithintheNTS,butthefinalprojections ever,multiplemethodsoftracingmarkersofcranialafferentsfrom of theaxonsof mostsecondorderNTSneuronsarelesscertain. visceralorganstotheirdestinationsintheNTSproduced“cloud”- Infact,itisquitelikelythatmanysecondorderNTSneuronshave likemapsthatcrossedmorphologicalsubregionsand,inaddition, multi-functionalaxonarchitecturesinwhichbranchesfromsin- functional approaches using physiological activation generated gleneuronsservelocalinterneuronfunctionsandotherbranches regional overlays that were similarly indistinct (Andresen and projecttotargetsoutsideoftheNTS.Manyofthesepathwaysmay Paton, 2011). Thus, cardiovascular investigators produced dia- be relatively inactive under normal circumstances since C-fiber grams representing locations of NTS neurons involved in car- afferent have high thresholds for sensory activation and do not diovascular regulation (Ciriello and Calaresu, 1981; Donoghue contributetorestingcontrolinautonomicregulationandsatiety et al., 1981b; Chan and Sawchenko, 1998; Corbett et al., 2005). (Aarsetal.,1978;Ritter,2004). Respiratory (Kubin et al., 1991; Haxhiu and Loewy, 1996) or gastrointestinal(Altschuleretal.,1991;Babicetal.,2009)inves- LIMITEDAFFERENTCONVERGENCE tigatorsalsodiagrammedassociatedfunctionalzones.Theresults Earlyworkestablishedthatcranialvisceralafferentresponsiveneu- ofthesetargeteddistributions,however,areremarkablysimilarto ronswerelocatedincommonsubregionswithintheNTS.Given eachother,andtheresemblancesuggeststhattheseafferent-linked thecloseproximityofdifferentafferentterminals,akeyquestion functionalregionslargelyoverlapandcorrespondtoanatomicsub waswhetherafferentinformationfrommultipleorgansimpinged regions with fuzzy boundaries and co-mingled neurons of dif- onsingleNTSneurons.Thecervicalvagusnervecontainsmostly ferent functions. Such global maps are further confounded by a afferentaxons.Despiteits>10,000cranialvisceralafferentsaxons, commoncellularfeatureofNTSneurons–thedendritesofindi- maximalelectricalactivationofthevagaltrunkgenerallytriggered vidualNTSneuronsextendtoreachacrossconsiderabledistances responsesconsistentwithasingleinputactivatingNTSneurons (Deucharsetal.,2000;Patonetal.,2000;Kubinetal.,2006).Thus, (Agostonietal.,1957).Multipleassessmentsof thepotentialfor thesynapticlocaleofsingleneuronsisambiguousandoftenbest convergenceofafferentsfromseparatenervesontosingleneurons attributedtomultipleanatomicalsubnuclei.Thisaspectofcellular suggested that <15% of individual NTS neurons have multiple anatomyfurtherblursthespatialboundariesforfunctionalgroups afferentinputs(Donoghueetal.,1981b,1985;Paton,1998).Even (e.g.,baroreceptivevs.gastrointestinalregions)aspharmacolog- underintensestimulation,arterialbaroreceptoractivationdidnot ical targets. Lastly, important motor neurons within the dorsal trigger responses by converging onto NTS neurons activated by motornucleus(DMN)spreaddendritesintoanatomicallydefined cardiacafferents(Silva-Carvalhoetal.,1998;Seagardetal.,1999). FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article191|2 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS Testsinunitrecordingswithmultipleconverginginputsshowed The counterbalance to excitation lies largely in the GABAer- thattheadditionalinputsarrivedviapolysynapticpaths–thatis, gic neurons that are interspersed throughout the NTS (Izzo indirectrelaysratherthandirectterminationsofmultipledifferent etal.,1992;ChanandSawchenko,1998;StornettaandGuyenet, afferentsonsinglesecondorderNTSneurons(ZhangandMifflin, 1999; Fong et al., 2005) that express the key isoforms of syn- 1995;Mifflin,1996).Anotherremarkablefeatureof convergence thetic enzymes, glutamate decarboxylases (GAD), GAD65 and isthatafferentinputsaresegregatedbytheiraxonfibertype.NTS GAD67. GABAergic NTS neurons play well-established,specific neuronsreceivingC-fiberinputsdonotalsodirectlyreceivemyeli- roles in respiratory and gastrointestinal regulation. In respira- natedafferentinputs(Donoghueetal.,1981a;Doyleetal.,2002; tion,GABAergicpumpcellsaresecondorderNTSneuronswhich Jin et al.,2004b;Andresen and Peters,2008).As outlined below projectfromNTStotheventrolateralmedullaandtheponsbut oneofthekeyphenotypicmarkersfortheunmyelinatedafferent these also serve as local interneurons via recurrent collaterals axonsistheTransientreceptorpotentialvanilloidtype1(TRPV1). within the commissural nucleus to inhibit other second order TRPV1+afferentsdonotmixwithTRPV1−afferentsatmedial NTSneuronsthatreceiverapidlyadaptingstretchreceptorinputs NTSneuronssothatTRPV1afferentsare–amechanismofdistinc- (Daviesetal.,1987;EzureandTanaka,1996;Kubinetal.,2006). tion(Petersetal.,2010,2011;Shoudaietal.,2010)andwethuswill Forgastrointestinalpathways,GABAergicinhibitoryNTSneurons refertothereceivingNTSneuronsasTRPV1+.Overlappingglobal tonicallyinhibittheDMNof thevagus(BrowningandTravagli, afferentdistributionmapsdispeltheearliestnotionsofdedicated 2010).Regardlessofthefunctionalpathway,GABAergicNTSneu- physicallocalitiesascentersofdedicatedfunctionandinsteadsug- rons are nearly exclusively second order neurons (Glatzer et al., gestthatthereisaclosephysicalproximityofverydifferentafferent 2007; Bailey et al., 2008) and 70% receive a single cranial vis- circuits destined to regulate very different functions (e.g., gas- ceralafferent(Baileyetal.,2008).However,thedensityofGABA trointestinaladjacenttoairwayafferentreceivingneurons).Atthe releasingcontactsfromsingleaxonsisquitelimitedatNTSneu- levelofindividualneurons,theresultsdemonstratehighlyfocused rons(McDougallandAndresen,2012).Sustainedvisceralafferent organizationof pathwaysthattravelnearbybutareseparatedby stimulation activated Fos expression in substantial numbers of discrete synaptic connections – a mechanism of distinction. This GABAergicneuronsinvivo(ChanandSawchenko,1998;Weston separationimportantlypreservesfunctionallyseparatebutparal- et al.,2003). Not surprisingly,blockade of GABAergic signaling lelneuralpathways.Recognitionofthesefundamentalstructural intheNTSbroadlyimpactedcardiovascular,respiratory,andgas- features may guide our understanding of the basic mechanisms trointestinalregulation(AndresenandMendelowitz,1996;Kubin thatunderlietheneuralregulationofvisceralorgansandmayhelp etal.,2006;Travaglietal.,2006;Kenny,2011). optimizetherapeuticapproachesduringongoingdysregulationor Although GABA is an important neurochemical phenotype, pathology. substantialnumbersofNTSneuronsfeatureuniqueneurochem- ical phenotypes that represent smaller, diverse sub populations. NTSCELLULARDIVERSITYACROSSCIRCUITROLES Forexample,20–35%oftheNTSneuronsinthecaudal-postremal Iftheafferent-NTSinterfaceisrelativelysimplebutisolatedfrom regionexpressthekeyCAsyntheticenzymetyrosinehydroxylase others, what features distinguish different functional pathways? (Austgen et al., 2009). A subset of CA-NTS neurons (10–20%) The NTS is well known for its phenotypic diversity. One major maybedevotedtocardiovascularregulation(Korner,2007).CA difference is reflected in the neurotransmitter synthesis capacity neurons were the focus of considerable work in the early 1960s or neurochemical characteristics of these neurons – a form of (Dahlstrom and Fuxe, 1964) as members of “slow neurotrans- cellular phenotype. The neurotransmitters themselves of course mitter” neurons hypothesized to be key to long term regula- areonemajorcellulardifference.Atthebasicsof signaling,cen- tory processes (Korner, 2007). CA-NTS neurons consist of A 2 tralreflexcircuitsconstantlybalanceexcitationwithinhibitionin noradrenergicneuronsandC adrenergicneuronsandCA-NTS 2 propagatingsignalsthroughnetworks(SabatiniandRegehr,1999; neurons were among the first central CA neurons recognized Abbott and Regehr, 2004; Semyanov et al., 2004). As elsewhere (Dahlstrom and Fuxe, 1964). The A /C groups of NTS neu- 2 2 intheCNS,excitationreliesmostimportantlyonglutamateasa ronsbroadlyimpacthomeostaticregulation(Hollisetal.,2004) neurotransmitterwhiletheprimaryinhibitoryneurotransmitter includingcardiovascular,respiratory,andgastrointestinalsystems isGABA. (AndresenandKunze,1994;Saper,2002).Variousafferentstimuli Therelayofexcitationfromcranialvisceralafferentsrequires activateCA-NTSneuronswhichthenprojectextensivelytoareas NTS neurons of an excitatory neurochemical phenotype. The includingthehypothalamus,amygdala,nucleusaccumbens,and evidence for excitatory glutamate includes the expression of the DMN of the vagus (Riche et al.,1990; Travagli et al.,2006). C 2 vesicularglutamatetransporterinNTSneuronsincludingvGlut2 neuronshavemarkedlyheterogeneousresponses(ChanandSaw- as part of their neurochemical profile (Stornetta et al., 2002; chenko,1994)andsomerequireratherintenseafferentchallenges Moechars et al., 2006; Affleck et al., 2012). A selective knock- toproduceactivationof FOSexpression(ChanandSawchenko, out of vGlut2 is perinatal lethal with suggestions of respiratory 1998),circumstancesreminiscentofC-fiberrecruitment.Unlikein failureandsuchearlyfatalityisconsistentwithanabsoluterequire- manyotherareasoftheCNS,CA-NTSneuronsdonotsynthesize ment for this key glutamatergic mechanism (Moechars et al., GABA(StornettaandGuyenet,1999). 2006). NTS projection neurons convey afferent information to key targets beyond NTS including the paraventricular nucleus PEPTIDERGICSIGNALINGINNTS of thehypothalamus(PVN)viaglutamaterelease(Afflecketal., Although much of the signaling within the NTS utilizes release 2012). ofaminoacidorbiogenicaminesastransmitters(Andresenand www.frontiersin.org January2013|Volume6|Article191|3 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS Kunze,1994;Jordan,2005;Kubinetal.,2006),thebroadimpact earlyattentiontothepresenceofCAneuronswithintheNTS,the ofpeptideneurotransmittersisunmistakablewithmorethantwo mechanismsofpeptideaction,andinteractionremainimprecisely dozenpeptidesand/ortheirreceptorslongimplicated(Lawrence known. andJarrott,1996;Zhuoetal.,1997;Chaudhrietal.,2008;Michelini Glucagon-likepeptide-1(GLP-1)isincreasinglyrecognizedas and Stern,2009). Peptides offer another layer of signal integra- animportantsignalingpartnermoleculethatispresentperipher- tionsincetheirreceptorsoftentargetionchannels,frequentlyare allyaswellasintheNTS.GLP-1isreleasedfromboththegastroin- presynaptic on afferent terminals and affect the release of other testinal tract and from a limited population of preproglucagon neurotransmitters. The µ-opiate receptor is particularly wide- (PPG)NTSneurons(Larsenetal.,1997).GLP-1affectsenergybal- spread in the NTS (Dashwood et al.,1988). Far more restricted ance(lowersbloodglucoseandstimulatesinsulinsecretion)and examplesarevasopressin(AVP;Baileyetal.,2006b)andoxytocin influencesthermogenesis,hunger,andsatiety(Kenny,2011).PPG (OT;Petersetal.,2008)receptorswhicharestronglylinkedtothe neuroncellbodiesarelocatedinthecaudalNTSadjacenttoarea hypothalamus. These two peptide receptors oppositely regulate postrema(Llewellyn-Smithetal.,2011).GLP-1receptorblockade thereleaseofglutamatefromsolitarytract(ST)afferentterminals increases food intake (Alhadeff et al.,2012). Despite this strong (OTfacilitatesreleaseandAVPinhibitsrelease)onlimitednum- connectiontofeedingbehaviorsandthemesolimbicrewardsys- bersofneuronswithintheNTS.Thesereceptorstohypothalamic tem,injectionsoftheGLP-1analogexendin-4alsoincreasesheart neuropeptides represent one of the most common schemes for rateandbloodpressurewhendeliveredperipherallyorcentrally differentialpathwaycontrolofNTSneurons.Inthehypothalamic withsubstantialevidenceforactivationofTHneuronswithinthe pattern,AVPorOTreceptorsresidepresynapticallyondifferent NTSandelsewhere(Yamamotoetal.,2002).Activationof GLP- sets of cranial afferent terminals and have been linked to plas- 1inmanypancreas-projectingvagalmotoneuronsevokesaction ticchangesbroughtonbyexerciseconditioningthatchangesthe potentialsandisimplicatedastargetingpotassiumandGABAer- reflexperformanceinspecificpathwaysthroughNTS(Michelini giccurrents(Wanetal.,2007).Onerelativelyrarerbutimportant andMorris,1999;Michelini,2007;MicheliniandStern,2009;Stern neurochemical phenotypes of NTS neurons is the POMC neu- et al., 2012). Another peptide, angiotensin, facilitates glutamate ron group linked to feeding behavior (Appleyard et al., 2005; releasefromSTafferentterminalsactingthroughAT1receptors Kenny,2011). Mutated forms of the POMC and melanocortin- (Barnes et al., 2003) but is much more widespread including 4 receptor genes are associated with severe, early onset obesity postsynapticNTSneuronmembranesbutalsopresynapticallyat (Clement et al., 2002). The POMC NTS neurons together with symmetricsynapsesthatarepresumablyGABAergic(Huangetal., POMC neurons within the arcuate nucleus of the hypothala- 2003). mus help to regulate energy homeostasis through widespread CA-NTS neurons contain subsets of peptide receptors for limbic,motor,andautonomicprojectionsandaremodulatedby cholecystokinin(CCK),ghrelin,andopioids,apatternfoundin appetite-regulatinghormonessuchasleptinandglucose(Spiegel- otherNTSneuronsubsets,andthesepeptidesmodifythebehavior manandFlier,2001;Cone,2005;Rotheretal.,2008;Grill,2010; ofspecificpathways.Thus,peptideneurotransmissionappearsto Mountjoy,2010;Kenny,2011).POMCNTSneuronswerewidely bekeymechanismofdifferentialcontrol.Glutamatereleaseonto dispersed but CCK activated FOS expression in a dose graded CA-NTSneuronswithingastrointestinalpathwaysismodifiedby fashion (Appleyard et al., 2005). POMC NTS neurons received peptides acting presynaptically on ST afferents to modify trans- direct ST excitatory inputs which were often facilitated by CCK mission and manage pathway outcomes (Appleyard et al.,2007; orinhibitedbymet-enkephalin,bothpresynapticactions.Given Cui et al., 2011, 2012a). Ghrelin and opioids strongly inhibited the gastrointestinal focus of much of this work, it is less clear thepresynapticprocessofreleaseofafferentglutamateontomany whetherthesepeptidesignalsalsomayberepresentedinthesig- CA-NTSneurons(Cuietal.,2011,2012a).AlthoughCA-NTSneu- naling of other neighboring pathways such as cardiorespiratory ronsoftenreceivedmultiplecranialafferentinputs,itisnotclear control. whethertheserepresentdifferent,convergingsensorymodalities, A recurring theme in peptide signaling is the discovery of a i.e., mixed modality inputs or simply multiple similar ST affer- peptide through its actions on a peripheral end organ followed ents;Appleyardet al.,2007). The STafferent inputsto CA-NTS by evidence for the same peptide within the CNS including the neuronswereoftenCCKsensitiveandthesesecondorderneurons NTS(Chaudhrietal.,2008;Simpsonetal.,2012).Suchdualrep- hadprominentexpressionofA-typepotassiumcurrentsthatsup- resentationatdisparatesites(e.g.,opioids,somatostatin,orCCK) pressedactionpotentialgenerationinatimedependentfashion has generated substantial discussion about whether peripherally andthusprovidedpostsynapticattenuationofafferenttransmis- released peptides influence reflex control solely via peripheral sion(Appleyardetal.,2007).Themulti-systemaspectofCA-NTS actionsonprimaryafferentsorwhetherthosepeptidesmightpen- neurons may offer targets in common that reach across other- etrate the CNS (Herbert and Saper,1990;Baptista et al.,2005b, wisefunctionallydiscretepathwaystoalterchronichomeostatic, 2007). Similar discussions arise concerning peptides with the behavioral, or metabolic states during obesity, hypertension, or potentialfordualdeliverymechanisms–hormonalsecretioninto stress(Kenny,2011).Co-localizationofmorethanoneneuropep- thebloodstreamorneuralsignalsdeliveredthroughspecificfiber tide receptor as well as localization at pre- and/or postsynaptic contacts.With respect to the caudal NTS,the local blood–brain elements may differentiate control of information to particular barrierisrelativelyporousviafenestratedvascularendothelialcells targets and increases the combinations for signal crosstalk, e.g., (Grossetal.,1990,1991;BroadwellandSofroniew,1993;Huang betweenopioidsandCAs(Sumaletal.,1983;Pickeletal.,1989; etal.,2003).Theimportantimplicationsdemandquitechalleng- Velleyetal.,1991;Nirenbergetal.,1995).Thusdespiterelatively ing,additionalcomprehensiveworktoresolvethesemechanisms, FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article191|4 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS especially with regard to pathway performance changes during MECHANISMINCOMMON–SYNCHRONOUSGLUTAMATE pathophysiologicalstates. TRANSMISSION A-andC-typeprimaryafferentshavesubstantiallydifferentaction potentialsandbiophysicalexcitability(Schildetal.,1994;Schild DESTINATIONS andKunze,2012).Centrally,actionpotentialsactivatefastsynap- Cellular themes of neurotransmission appear to be commonly tictransmissionbytriggeringvoltage-activatedcalciumchannels. repeatedacrossdifferentneurochemicalphenotypesofNTSsec- Thiscalciumentrymediatesfast,synchronizedfusionofglutamate ond order neurons. The nature of the functional outcome of vesicles.Despitecharacteristicdifferencesinafferentexcitability, actionsatNTSneurons,however,willbedeterminedbythedes- fast glutamate transmission is remarkably uniform across all ST tinationof itsaxon.Anterogradeandretrogradelabelingstudies afferents (Bailey et al.,2006b;Andresen and Peters,2008;Peters indicatesubstantialconnectivity,oftenbidirectional,betweenthe etal.,2008;Jinetal.,2010).ActivationofasingleSTafferentaxon caudal NTS and most of the CNS (Herbert et al., 1990; Spyer, reliablytriggersahighlysynchronousreleaseofglutamatevesicles 1990;Hermes et al.,2006;Geerling et al.,2010;Rinaman,2010; fromallSTafferentswithnearlyzerofailures.Thissynchronous Alheidetal.,2011;Alhadeff etal.,2012).Suchprojectionsoften glutamateactivatesexcitatorypostsynapticcurrents(EPSCs)via are part of bidirectional communication with other CNS inte- postsynapticAMPAreceptors(Hermesetal.,2008).Antagonists grative regions including the paraventricular and lateral nuclei tonon-NMDAreceptorsfullyblockedSTevokedEPSCsinintra- of thehypothalamus,rostralventrolateralmedulla,caudalraphe cellularrecordingsfromsecondorderNTSneuronsandNMDA nuclei,theA5 cell group,and the area postrema (Loewy,1990). antagonistsalonewerewithouteffect(AndresenandYang,1990; Thiscontrastswiththerelativelydiscretepatternsofaxonstoand Doyle et al., 2002; Kline et al., 2007; Zhang and Mifflin, 2007). fromPVNneuronsofthehypothalamusorthecaudalventrolat- These ST-EPSCs arrive at very consistent latencies measured as eralmedulla(EllacottandCone,2004;Benarroch,2005;Andresen low jitter (SD of latency of <200µs) that indicate monosynap- etal.,2007a;Rinaman,2007;Ulrich-LaiandHerman,2009).Dif- ticconnections(DoyleandAndresen,2001;AndresenandPeters, ferentprojectionneuronsfeaturefrankexcitabilitydifferencesin 2008).Incorporationofafferentdyelabelinginsuchexperiments their ion channel expression which differently tune their action show that dye placed on peripheral cranial afferent axon trunks potentialoutputsalongthepathway(Baileyetal.,2007)andthese was transported centrally and appeared as multiple fluorescent ionchannelsoftenmaybethepostsynaptictargetsofneurotrans- puncta contacting NTS neurons and identifying them anatomi- mitter regulation through metabotropic receptors (see below). callyassecondorderneurons(Mendelowitzetal.,1992;Balkowiec AlthoughsomeoftheseNTSprojectionneuronsaresecondorder, etal.,2000;DoyleandAndresen,2001;Klineetal.,2002;Chenand some belong to a relatively rare class, higher order neurons in Bonham, 2005; Zhang and Mifflin, 2007; Andresen and Peters, theNTSthatlackdirectSTcontacts(Baileyetal.,2006a,2007). 2008).Suchdyeidentifiedneuronsshowedafferentboutonsonor Whethersecondorderorhigherorder,ultimatelytheflowofcra- near the cell body (a somatodendritic pattern) and when tested nialvisceralafferentinformationresultsinautonomicregulatory inbrainslicesevokedsimilarlylowjitterEPSCresponses.Remote pathways of the sympathetic and parasympathetic nervous sys- ST activation rarely activates NMDA receptors even using rapid tems.AsshortasmanypathwaysthroughNTScanbe,itisclear bursts of ST shocks in low magnesium conditions (Jin et al., that key integration occurs at the first synapse, i.e., the afferent 2003).IntransverseNTSslices,NMDAreceptormediatedsynap- synapse. ticresponseswerereportedin3–4-week-oldanimals(Aylwinetal., 1997;Baptistaetal.,2005a)orasubsetofsecondorder,adultNTS PRESYNAPTICCRANIALAFFERENTTERMINALS neuronswithmyelinatedafferents(Jinetal.,2003).Intransverse Over75%ofallneuronsinthemedialNTSaresecondorderneu- slices,theSTandrecipientneuronsareincloseproximity(often rons(McDougalletal.,2009;Andresenetal.,2012;McDougalland 200–300µm)butthecontributionsofthespreadoftheelectrical Andresen,2012).SincetheA/Caxondistinctionextendstocentral stimulusbeyondtheSTorthedevelopmentalstateoftheanimals synapseswithintheNTS,>80%ofallvagalafferentterminalsare are difficult to assess. Certainly, NMDA receptors were present likelyC-type(Aicheretal.,1999;Andresenetal.,2012).TRPV1 onsomeneuronssinceexogenousNMDAselectiveagonistsacti- reliably marks C-type ST afferent inputs but is never expressed vated small inward currents (Drewe et al., 1990) but, in many postsynaptically,i.e.,withintheNTSneuron(Doyleetal.,2002; neurons,neitherNMDAnormassiveglutamatereleasewithcap- Jinetal.,2004b;Andresenetal.,2007b,2012;AndresenandPeters, saicinevokedcurrentsundernon-NMDAblockade(Doyleetal., 2008). Nodose neurons share similar biophysical distinctions in 2002). Thus, the participation of NMDA receptors in ST affer- ion channels and excitability as occur in dorsal root ganglion enttransmissionhasbeencomplicatedandcontroversial(Baude neurons.C-typeTRPV1+nodoseneuronsexpressTTX-resistant etal.,2009).TogetherthesefindingssuggestedthatNMDArecep- sodium channels and have characteristically prolonged action torswerelocatedextrasynapticallyandoutofreachofsynaptically potentialsintheircellbodiesalongwithsubstantialotherdiffer- released glutamate on second order NTS neurons (Doyle et al., encesinionchannelbiologycomparedtoA-typenodoseafferent 2002).Thissuggestionissupportedbyultrastructuralstudiesthat neuronsincludingpotassiumchannels(Schildetal.,1994;Schild showedNMDAreceptorsmostlylocalizedtoextrasynapticmem- andKunze,1997;LiandSchild,2007;Lietal.,2007,2011;Zhou branesratherthanwithinasymmetricalsynapsesadjacenttovagal et al.,2010).As a result,C-type neurons display much stronger afferent terminals (Aicher et al.,1999). Interestingly,these same frequency dependent action potential broadening which limits structuralstudiesindicatedthecommonpresenceofpresynaptic repetitiveexcitation. NMDAreceptorsonvagalafferentterminals(Aicheretal.,1999), www.frontiersin.org January2013|Volume6|Article191|5 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS although no functional studies have indicated their role. Thus, TRPV1−secondorderNTSneuronsregardingadifferentmode fast synaptic transmission generates large reliable EPSCs for all of glutamate release – basal or spontaneous glutamate events. STafferentfiberswithsimilarfrequencydependentdepressionfor Spontaneous release has long been thought to result from sto- bothTRPV1+andTRPV1−afferents.Thisfrequencydependent chastic,rarespontaneousfusionsfromthereadilyreleasablepool depressionresultstosomedegreefromvesicledepletionaswellas of vesicles – that is vesicles staged and primed for release (Katz, otherautoreceptorfeedbackmechanisms. 1971;ChungandKavalali,2006;Kavalalietal.,2011;Ramirezand Onedifferenceinfastglutamatergictransmissionthatroutinely Kavalali, 2011). The similarities in fast glutamatergic excitatory distinguishedC-fibersSTtransmissionwastheirstrongtendency transmissionbetweenA-andC-typeSTafferentinputsmayhave to fail in a use-dependent manner. TRPV1−, A-type ST affer- delayedrecognitionofwhatinhindsightshouldhavebeenobvi- entsrarelyfailed.Onasingleshockof activation,TRPV1+and ous(Petersetal.,2010,2011;Shoudaietal.,2010).NTSneurons TRPV1−afferentsfailedonaveragelessthan1%oftrials.Athigh withC-typeafferentsexperienceda5–10-foldhigherspontaneous frequenciesofactivation,failurerates(missingEPSCsperstimulus rate of EPSC activity. These high rates of EPSCs in TRPV1+ shock)approachedratesof30%forC-typeafferentswhileremain- NTS neurons were unrelated to afferent activity since they per- ing below 5% forA-type afferents (Andresen and Peters,2008). sistedwhenactionpotentialswereblockedbyTTX.Infact,high Thus,thebasicmechanismsofsynchronousglutamatetransmis- rates of action potential driven activity caused depressed syn- sionaresimilarbutitmaybethationchanneldifferencesimpact chronousreleasebutspontaneousreleasewaselevatedsuggesting the invasion of terminals or their central conduction that fails thattwopoolsofdifferentvesicleswereresponsible(Petersetal., moreofteninC-typeafferentsthanA-typeafferents.Thedynam- 2010, 2011; Shoudai et al., 2010). Antagonism of TRPV1 (e.g., ics of synaptic failures may indicate successful invasion of the SB-366791)decreasedspontaneousreleaseatNTSneuronswith synapticterminalandmayoccurdistallyandoutsideoftheelec- TRPV1+STafferentswithoutalteringtheamplitudeofsynchro- trotonicinfluenceoftheterminal(Baileyetal.,2006b;McDougall nousEPSCs.Inaddition,thespontaneousorminiature(inTTX) etal.,2009).Sincethetwoafferentfibertypesandtheirexcitability release rate closely followed changes in temperature between 30 areintrinsicallydistinctinmanyways,theuse-dependentfailures and37˚Csuggestingthattemperatureeffectivelygatedpresynap- mostlikelyreflectsthebehaviorofthoseionchannelsinregener- ticTRPV1receptors.Thus,TRPV1inSTterminalsactivelydrove ativespikegeneration(Schildetal.,1994;SchildandKunze,1997; thereleaseofglutamatevesiclesatphysiologicaltemperaturesand Li and Schild, 2007; Li et al., 2007). These differences between violates the canonical view that TRPV1 receptors have thermal conduction and vesicle release are important to understanding gatingthresholdsof>43˚C(JuliusandBasbaum,2001).Prelimi- receptormediatedmechanismsandsitesofmodulation. naryworkindicatesthatbothasynchronousreleaseandthermally Detailed analyses of low jitter ST-EPSCs indicated that they evoked release are attenuated in TRPV1 knockout mice (Peters, arosefromanaverageof18–25activecontactsthatformtheEPSC 2011). Activation of TRPV1 may depolarize synaptic terminals (Baileyetal.,2006b;AndresenandPeters,2008;Petersetal.,2008). through its cation selectivity and inward current,a process that Suchafunctioningarrayof multiplecontactsisquiteconsistent can activate voltage-activated calcium channels to release gluta- with labeling studies of ST afferents which showed varicosities mate.ThecationselectivityofTRPV1constitutesadirectpathway resembling multiple release sites distributed along single axons fortheinfluxofcalciumionsintotheseterminals(Caterinaetal., (Anders et al.,1993;Kubin et al.,2006). The redundant contact 1997).Blockadeof voltage-activatedcalciumchannelswithcad- patternrequiresreleasesitesformedbyenpassantcontactsfrom mium did not alter spontaneous rates of EPSCs but blocked ST eachafferentaxonandthemultiplereleasesitesgeneratethevery evokedsynchronousEPSCssuggestingthatTRPV1providedthe largeandreliablesafetyfactoroftransmissionbetweensingleaffer- calcium for spontaneous vesicle release (Fawley et al.,2011). In entsandthesecondorderneuron.Theprobabilityofsynchronous the presence of cadmium, thermally evoked increases in mEP- glutamate vesicle release from a readily releasable pool averaged SCs persisted (Fawley et al., 2011). Overall, ST TRPV1 is quite a surprisingly high 90% in an external calcium concentration activewithinarangeofphysiologicallyrelevanttemperaturesand of 2mM.However,theamplitudesof theseST-EPSCsdecreased TRPV1-operated glutamate release represents a novel and tonic substantially when activation frequencies were above 50Hz – a signaling mechanism that releases neurotransmitter even in the physiologically modest frequency for naturally activated myeli- absenceofafferentactionpotentials.Itisparticularlyinteresting natedafferentsbutanearmaximalfrequencyfortypicalC-fiber thattwootherligand-gatedionchannelsareexpressedonSTter- afferents. Remarkably however,the key features of fast synchro- minals–theserotoningatedchannel,5-HT3,andthepurinergic nous glutamate transmission were indistinguishable betweenA- P2X3 channel – and in many respects these channels resemble andC-typecranialafferents.Thissynchronousglutamatemecha- TRPV1 signaling in being permeable to calcium and capable of nismreliablyevokesactionpotentialsinthepostsynapticneuron influencingvesicularneurotransmitterrelease(Glaumetal.,1992; andpresumablyconductsthisinformationbeyondtheNTSupto Doucetetal.,2000;Jinetal.,2004b;Mazdaetal.,2004;Wanand frequenciesofabout20HzbeforetheEPSCdepressestobecome Browning,2008;Cuietal.,2012b).However,neither5-HT3nor lessreliableathigherfrequencies(AndresenandYang,1995;Schild P2X3appearstoinfluencebasalreleasetonically,apointwhichfur- etal.,1995;Liuetal.,1998). therdistinguishesTRPV1asatonicsignalthatdoesnotrequire neuralactivation. MECHANISMOFDISTINCTION–TRPV1-OPERATED A-type cranial visceral afferents generate synchronous EPSCs GLUTAMATERELEASE buthaveverylowbasalspontaneousglutamaterelease.Incontrast, Given the fundamental similarities in synchronous glutamate C-typeafferentshavesimilarsynchronousEPSCs,butreleasesub- release,asurprisingdifferencehasemergedbetweenTRPV1+and stantialnumbersof glutamatevesiclesspontaneously.Activation FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article191|6 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS of action potential driven synchronous EPSCs enhanced the theirmyelination.LittleisknownabouttheaccessoftheseGPCR TRPV1-operatedvesiclereleaseforaperiodofsecondsandpro- signal transduction to the TRPV1-operated mode of glutamate ducedasynchronousreleasesufficienttotriggeradditionalaction release. potentials in the postsynaptic neuron (Peters et al., 2010, 2011; McDougallandAndresen,2013)inbasalconditionsthatareincre- NOVELNTS-TRPV1SIGNALING mented even higher in an asynchronous mode of release. The FatandmembranelipidmetabolitesarenewlyappreciatedasCNS physiological meaning of the TRPV1-operated pool of vesicles signaling molecules (Pingle et al., 2007; Scherer and Buettner, is only beginning to be appreciated. This TRPV1-operated pool 2009;DiPatrizioandPiomelli,2012).Lipoproteinsandmetabo- hasbeenimplicatedaspotentiallyplayingaroleinthelaryngeal litesincludinganandamide(AEA)likelyactasendocannabinoid chemoreflexandtheexaggeratedapneainanimalmodelsofSud- and/orendovanilloidsignalingmoleculesthatalterreflexfunction denInfantDeathSyndrome(Curranetal.,2005;Xiaetal.,2007, when introduced into the NTS (Geraghty and Mazzone, 2002; 2008,2010,2011).Morecomprehensiveinvestigationsareneeded Brozoski et al., 2005, 2009; Seagard et al., 2005). Co-expression tofullyevaluatethisnewformof afferentsynaptictransmission of the cannabinoid receptor (CB1) and TRPV1 is common in anditsimplicationsinmulti-systemhomeostaticregulation. dorsal root ganglion neurons (Amaya et al.,2006; Binzen et al., 2006). CB1 and TRPV1 interact with lipid derived mediators METABOTROPICSIGNALING such as arachidonate, 2-arachidonoylglycerol,AEA, eicosanoids, Ionotropic receptors for glutamate and GABA are the mainstay epoxyeicosanoids, and prostaglandins. AEA was detected in the for excitatory and inhibitory transmission (respectively),within dorsalvagalcomplexsampleswhichincludedtheNTS(Seagard the NTS. Integration, however, even at second order neurons et al.,2004;Chen et al.,2009) and theAEA content in the NTS is highly differentiated through both homo- and heterosynaptic regionincreasedwhenbloodpressurewasraised(Seagardetal., interactionsbyglutamateandGABA.Withmultiple“accessory” 2004).However,thebiochemicalpathwaysforgenesisofpotential transmitterspresentintheNTS(especiallypeptides,seeabove),the lipidmediatorsarecomplexandinterconnectedsothattheulti- interactionpotentialblossomsandassessmentsrequirequiteelab- mate active compounds and cellular signaling are often difficult oratetestingtoestablishcauseandeffect.Muchofthisinteraction to establish (Buczynski and Parsons, 2010; Katona and Freund, utilizes metabotropic receptors which employ second messen- 2012).DepolarizationofNTSneuronsreleasedanendocannabi- ger signaling (Conn, 2003). Metabotropic glutamate receptors, noid that controlled GABA release via CB1 (Chen et al.,2010). mGluRs,powerfullymodulatebothSTafferentglutamaterelease Although CB1 generally inhibits neurons and neurotransmitter aswellasGABAreleasebypresynapticmechanisms(Glaumand release (Derbenev et al., 2004), AEA not only inhibited gluta- Miller,1993;Foleyetal.,1999;Hayetal.,1999;HoangandHay, mate release via CB1 activation but also enhanced release via 2001; Chen et al., 2002; Jin et al., 2004a; Browning et al., 2006; TRPV1activation–dualopposingactionsonacommonbiological Browning and Travagli, 2007; Austgen et al., 2009; Fernandes process(Tognettoetal.,2001).Experimentaluseofplantderived et al., 2011). These presynaptic effects are heterogeneous and, agonists and endogenous ligands may be confounded by this depending on the subunit composition,can be negative or pos- TRPV1-CB1interaction.N-Arachidonoyl-dopamine(NADA)is itiveregulatorsofneurotransmitterreleaseevenacrossotherwise anendogenous“capsaicin-like”substancethatcanactatTRPV1 similarsecondorderNTSneurons.Inaddition,mGluRscanmod- (Huangetal.,2002).Suchparadoxicalactionsofsubstanceswhich ifypostsynapticcurrenttoalterNTSneuronexcitability(Sekizawa crossovertoactivatebothCB1andTRPV1arenotwellunderstood andBonham,2006).Littlesystemspecificinformationexistsfor especially in systems in which these receptors are co-localized theseinteractionsintheNTSparticularlyregardingwhichvisceral including primary afferents (Ahluwalia et al., 2000; Price et al., afferents are involved or the specific destinations of projections 2004). Lipids together with various inflammatory cytokines are outof theNTS.TheTRPV1-operatedpoolpresentsanewchal- linkedtotheNTSandcorrelatedtothedevelopmentof chronic lengesincepharmacologicalassaysof spontaneousorminiature hypertensionandobesityinhumans(Chaeetal.,2001;Katagiri glutamate events may not be representative of synchronous or etal.,2007)andinanimalmodels(Wakietal.,2008;Wangand afferent driven mechanisms (Fawley et al.,2011). Because these Wang,2009;Takagishietal.,2010).Forexample,systemicinjection receptors are present in multiple pathways, functionally impor- oflipopolysaccharideorinterleukin-1βtriggeredsustainedgluta- tant interactions may be triggered during drug interventions in matereleasefromtheNTSthatwaspreventedbyTTX(Mascarucci theNTS.Therefore,differentialexpressionofspecificGPCRsmay etal.,1998).ProstaglandinE2depressesonlyTRPV1+STevoked helptospecificallytuneindividualpathways.PresynapticmGluRs EPSCs in NTS neurons (Laaris and Weinreich,2007). Cannabi- arecommonGPCRsintheNTS(Hayetal.,1999;Jinetal.,2004a; noids are implicated in central plasticity and in cyclooxygenase Fernandesetal.,2011)andpresynapticexpressionofGPCRsfor metabolismtoprostaglandins(YangandChen,2008;Heifetsand peptidescommontoperipheralorforebrain(e.g.,hypothalamus) Castillo,2009).Thus,thepotentialforsignalingcrossoverbetween neuron sources distinguishes ST transmission at many neurons. CB1andTRPV1isconsiderable,complex,andpoorlyunderstood. These peptide GPCRs are primarily presynaptic on ST afferents TRPV1-operatedglutamatemechanismoffersanewfocalpoint butgenerallyhavemuchmorelimitedrepresentations.GPCRsfor for the integration of multiple signals with substantial clinical angiotensin(AT1),vasopressin(V1a),OT,opioid(MOR),ghrelin importance. Intriguing clinical and basic observations point to (GHSR1),andCCKdifferentiallycontrolglutamatereleaseonlim- multipleriskfactorsformulti-organsystempathologythatrelate itedsubsetsofneurons.Noclearassociationshavebeenestablished directly or indirectly to cranial afferents, TRPV1 and NTS sig- between particular GPCRs and different afferent modalities or nal processing. One extrapolation of these complex correlations www.frontiersin.org January2013|Volume6|Article191|7 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS concerns inflammation, a well recognized co-factor in multi- is reported in neurogenic hypertensive rats (Waki et al., 2008). ple diseaseprocesses that impacthomeostatic systems. In spinal Interestingly,inflammatorycytokineresponsesininduceddietary dorsalhorn,TRPV1ispartofachronicpathologicaltransforma- saltlinkedformsofhypertensionaremodifiedinTRPV1knock- tion of afferent signaling (allodynia/hyperalgesia; Holzer, 2004) out mice (TRPV1−/−;Wang andWang,2009). TRPV1−/− mice butwhetheranalogouschangesoccurintheNTSareunknown. are reported to be resistant to obesity from high fat diets that Markersofinflammation,e.g.,interleukin-6,arepositivelycorre- induce low level inflammation (Motter and Ahern,2008). Such latedwithincreasesinbloodpressure(Chaeetal.,2001),stress, associationsandrolesforperipheralvs.centralTRPV1receptors andhypothalamic-pituitary-adrenalaxisactivation(Serratsetal., arepoorlyunderstood.Thus,thedeficitininformationregarding 2010)withelevatedmorbidity(Katagirietal.,2007)andTRPV1 C-fibersandTRPV1intheNTShasbroadpotentialimplications targeteddrugshavebeentoutedasanti-inflammatoryagents(Tsuji thatarecriticaltounderstandingpathophysiology(Szallasietal., etal.,2010).InflammationwithincardiovascularareasoftheNTS 2007;WongandGavva,2009). REFERENCES Alheid, G. F., Jiao, W., and McCrim- Physiol.Regul.Integr.Comp.Physiol. tract nucleus. J. Neurosci. 27, Aars, H., Myhre, L., and Haswell, B. mon, D. R. (2011). Caudal nuclei 303,R1207–R1216. 13292–13302. (1978).Thefunctionofbarorecep- of the rat nucleus of the solitary Andresen, M. C., Krauhs, J. M., and Austgen,J.R.,Fong,A.Y.,Foley,C.M., tor C fibres in the rabbit’s aor- tractdifferentiallyinnervaterespira- Brown,A.M.(1978).Relationshipof Mueller,P.J.,Kline,D.D.,Heesch, ticnerve.ActaPhysiol.Scand.102, torycompartmentswithintheven- aortic wall baroreceptor properties C. M., et al. (2009). Expression 84–93. trolateralmedulla.Neuroscience190, during development in normoten- ofGroupImetabotropicglutamate Abbott,L.F.,andRegehr,W.G.(2004). 207–227. siveandspontaneouslyhypertensive receptors on phenotypically differ- Synapticcomputation.Nature 431, Altschuler,S.M.,Ferenci,D.A.,Lynn, rats.Circ.Res.43,728–738. entcellswithinthenucleusof the 796–803. R. B., and Miselis, R. R. (1991). Andresen, M. C., and Kunze, D. solitarytractintherat.Neuroscience Affleck,V.S.,Coote,J.H.,andPyner,S. Representationofthececuminthe L. (1994). Nucleus tractus soli- 159,701–716. (2012).Theprojectionandsynaptic lateraldorsalmotornucleusofthe tarius: gateway to neural circula- Aylwin,M.L.,Horowitz,J.M.,andBon- organisation of NTS afferent con- vagusnerveandcommissuralsub- torycontrol.Annu.Rev.Physiol.56, ham,A.C.(1997).NMDAreceptors nectionswithpresympatheticneu- nucleusofthenucleustractussoli- 93–116. contributetoprimaryvisceralaffer- rons, GABA and nNOS neurons tarii in rat. J. Comp. Neurol. 304, Andresen,M.C.,andMendelowitz,D. enttransmissioninthenucleusof in the paraventricular nucleus of 261–274. (1996).Sensoryafferentneurotrans- thesolitarytract.J.Neurophysiol.77, thehypothalamus.Neuroscience219, Amaya, F., Shimosato, G., Kawasaki, mission in caudal nucleus tractus 2539–2548. 48–61. Y.,Hashimoto,S.,Tanaka,Y.,Ji,R. solitarius–commondenominators. Babic,T.,Townsend,R.L.,Patterson,L. Agostoni,E.,Chinnock,J.E.,De,Burgh R.,etal.(2006).InductionofCB1 Chem.Senses21,387–395. M.,Sutton,G.M.,Zheng,H.,and Daly,M.,andMurray,J.G.(1957). cannabinoidreceptorbyinflamma- Andresen,M.C.,andPaton,J.F.(2011). Berthoud,H.R.(2009).Phenotype Functionalandhistologicalstudies tion in primary afferent neurons “The nucleus of the solitary tract: ofneuronsinthenucleusofthesoli- ofthevagusnerveanditsbranchesto facilitatesantihyperalgesiceffectof processing information from vis- tarytractthatexpressCCK-induced theheart,lungsandabdominalvis- peripheral CB1 agonist. Pain 124, cerosensory afferents,” in Central activationoftheERKsignalingpath- cerainthecat.J.Physiol.(Lond.)135, 175–183. Regulation of Autonomic Functions, way. Am. J. Physiol. Regul. Integr. 182–205. Anders,K.,Ohndorf,W.,Dermietzel,R., eds I. J. Llewellyn-Smith andA. J. Comp.Physiol.296,R845–R854. Ahluwalia, J., Urban, L., Capogna, andRichter,D.W.(1993).Synapses Verberne(London:Oxford),23–46. Bailey,T.W.,Appleyard,S.M.,Jin,Y. M.,Bevan,S.,andNagy,I.(2000). betweenslowlyadaptinglungstretch Andresen, M. C., and Peters, J. H. H., and Andresen, M. C. (2008). Cannabinoid 1 receptors are receptor afferents and inspiratory (2008). Comparison of barorecep- Organization and properties of expressed in nociceptive primary beta-neuronsinthenucleusofthe tivetootherafferentsynaptictrans- GABAergicneuronsinsolitarytract sensoryneurons.Neuroscience 100, solitarytractofcats:alightandelec- missiontothesolitarytractnucleus. nucleus(NTS).J.Neurophysiol.99, 685–688. tronmicroscopicanalysis.J.Comp. Am. J. Physiol. Heart Circ. Physiol. 1712–1722. Aicher,S.A.,Sharma,S.,andPickel,V. Neurol.335,163–172. 295,H2032–H2042. Bailey,T.W.,Hermes,S.M.,Aicher,S.A., M. (1999). N-methyl-D-aspartate Andresen,M.C.,Bailey,T.W.,Jin,Y.- Andresen,M.C.,andYang,M.(1990). andAndresen,M.C.(2007).Target- receptors are present in vagal H., McDougall, S. J., Peters, J. H., Non-NMDAreceptorsmediatesen- specific,dynamicpathwaytuningby afferents and their dendritic and Aicher, S. A. (2007a). Cellu- sory afferent synaptic transmis- A-typepotassiumchannelsinsoli- targets in the nucleus trac- lar heterogeneity within the soli- sion in medial nucleus tractus tary tract nucleus: cranial visceral tus solitarius. Neuroscience 91, tarytractnucleusandvisceralaffer- solitarius. Am. J. Physiol. 259, afferent pathways to caudal ven- 119–132. ent processing – electrophysiologi- H1307–H1311. trolateralmedullaorparaventricu- Alberti,K.G.,Zimmet,P.,andShaw,J. cal approaches to discerning path- Andresen,M.C.,andYang,M.(1995). lar hypothalamus. J. Physiol. 582, (2005).Themetabolicsyndrome– wayperformance.TzuChiMed.J.19, Dynamicsofsensoryafferentsynap- 613–628. anewworldwidedefinition.Lancet 181–185. tictransmissioninaorticbarorecep- Bailey,T.W.,Hermes,S.M.,Andresen, 366,1059–1062. Andresen, M. C., Doyle, M. W., Bai- torregionsofnucleustractussolitar- M. C., and Aicher, S. A. (2006a). Alberti, K. G., Zimmet, P., and Shaw, ley, T. W., and Jin,Y.-H. (2007b). ius.J.Neurophysiol.74,1518–1528. Cranial visceral afferent pathways J. (2006). Metabolic syndrome – a “TRPV1 in central cardiovascular Appleyard,S.M.,Bailey,T.W.,Doyle,M. through the nucleus of the soli- newworld-widedefinition.Acon- control:discerningtheC-fiberaffer- W.,Jin,Y.-H.,Smart,J.L.,Low,M.J., tary tract to caudal ventrolateral sensusstatementfromtheInterna- ent pathway,”in Molecular Sensors etal.(2005).Proopiomelanocortin medulla or paraventricular hypo- tionalDiabetesFederation.Diabet. for Cardiovascular Homeostasis,ed. neurons in nucleus tractus solitar- thalamus: target-specific synaptic Med.23,469–480. D.H.Wang(NewYork:Springer), iusareactivatedbyvisceralafferents: reliabilityandconvergencepatterns. Alhadeff,A. L.,Rupprecht,L. E.,and 93–109. regulation by cholecystokinin and J.Neurosci.26,11893–11902. Hayes, M. R. (2012). GLP-1 neu- Andresen,M.C.,Hofmann,M.E.,and opioids.J.Neurosci.25,3578–3585. Bailey,T.W.,Jin,Y.-H.,Doyle,M.W., rons in the nucleus of the solitary Fawley,J.A.(2012).Invitedreview: Appleyard,S.M.,Marks,D.,Kobayashi, Smith,S.M.,andAndresen,M.C. tractprojectdirectlytotheventral the un-silent majority – TRPV1 K., Okano, H., Low, M. J., and (2006b).Vasopressininhibitsgluta- tegmentalareaandnucleusaccum- drives “spontaneous” transmission Andresen, M. C. (2007). Vis- matereleaseviatwodistinctmodes bens to control for food intake. of unmyelinated primary afferents ceralafferentsdirectlyactivatecat- in the brainstem. J. Neurosci. 26, Endocrinology153,647–658. withincardiorespiratoryNTS.Am.J. echolamineneuronsinthesolitary 6131–6142. FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article191|8 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS Balkowiec,A.,Kunze,D.L.,andKatz, function.Neurogastroenterol.Motil. Chen, C. Y., Bonham, A. C., Dean, neuronsinthesolitarytractnucleus. D. M. (2000). Brain-derived neu- 22,1154–1163. C.,Hopp,F.A.,Hillard,C. J.,and Neuroscience222,181–190. rotrophic factor acutely inhibits Browning, K. N., Zheng, Z., Gettys, Seagard, J. L. (2010). Retrograde Cui, R. J., Roberts, B. L., Zhao, H., AMPA-mediatedcurrentsindevel- T. W., and Travagli, R. A. (2006). releaseofendocannabinoidsinhibits Zhu, M., and Appleyard, S. M. opingsensoryrelayneurons.J.Neu- Vagal afferent control of opioider- presynapticGABAreleasetosecond- (2012b). Serotonin activates cate- rosci.20,1904–1911. giceffectsinratbrainstemcircuits. orderbaroreceptiveneuronsinNTS. cholamine neurons in the solitary Baptista, V., Browning, K. N., and J.Physiol.575,761–776. Auton.Neurosci.158,44–50. tractnucleusbyincreasingsponta- Travagli, R. A. (2007). Effects of Brozoski, D. T., Dean, C., Hopp, Chen,C.Y.,Ling,Eh,E.H.,Horowitz, neousglutamateinputs.J.Neurosci. cholecystokinin-8s in the nucleus F. A., Hillard, C. J., and Sea- J. M., and Bonham,A. C. (2002). 32,16530–16538. tractussolitariusofvagallydeaffer- gard, J. L. (2009). Differential Synaptic transmission in nucleus Curran,A.K.,Xia,L.,Leiter,J.C.,and ented rats. Am. J. Physiol. Regul. endocannabinoid regulation of tractus solitarius is depressed by Bartlett,D.Jr.(2005).Elevatedbody Integr. Comp. Physiol. 292,R1092– baroreflex-evoked sympathoin- Group II and III but not Group temperatureenhancesthelaryngeal R1100. hibition in normotensive versus I presynaptic metabotropic gluta- chemoreflexindecerebratepiglets.J. Baptista,V.,Ogawa,W.N.,Aguiar,J.F., hypertensive rats. Auton. Neurosci. matereceptorsinrats.J.Physiol.538, Appl.Physiol.98,780–786. andVaranda,W.A.(2005a).Electro- 150,82–93. 773–786. Dahlstrom, A., and Fuxe, K. (1964). physiologicalevidenceforthepres- Brozoski,D.T.,Dean,C.,Hopp,F.A., Chen,J.,Paudel,K.S.,Derbenev,A.V., Evidence for the existence of enceofNR2CsubunitsofN-methyl- and Seagard, J. L. (2005). Uptake Smith, B. N., and Stinchcomb, A. monoamine-containingneuronsin D-aspartate receptors in rat neu- blockade of endocannabinoids in L.(2009).Simultaneousquantifica- the central nervous system I. ronsofthenucleustractussolitarius. the NTS modulates baroreflex- tionofanandamideandotherendo- Demonstration of monoamines in Braz.J.Med.Biol.Res.38,105–110. evoked sympathoinhibition. Brain cannabinoids in dorsal vagal com- the cell bodies of brain stem neu- Baptista,V.,Zheng,Z.L.,Coleman,F. Res.1059,197–202. plex of rat brainstem by LC-MS. rons.ActaPhysiol.Scand.62,1–79. H.,Rogers,R.C.,andTravagli,R.A. Buczynski, M. W., and Parsons, L. Chromatographia69,1–7. Dallman,M.F.(2010).Stress-induced (2005b). Cholecystokinin octapep- H. (2010). Quantification of brain Chung,C.,andKavalali,E.T.(2006). obesityandtheemotionalnervous tide increases spontaneous gluta- endocannabinoid levels: methods, Seekingafunctionforspontaneous system. Trends Endocrinol. Metab. matergic synaptic transmission to interpretations and pitfalls. Br .J. neurotransmission.Nat.Neurosci.9, 21,159–165. neuronsofthenucleustractussoli- Pharmacol.160,423–442. 989–990. Dashwood, M. R., Muddle, J. R., and tariuscentralis.J.Neurophysiol.94, Caterina, M. J., Schumacher, M. A., Ciriello,J.,andCalaresu,F.R.(1981). Spyer,K.M.(1988).Opiaterecep- 2763–2771. Tominaga,M.,Rosen,T.A.,Levine, Projections from buffer nerves to tor subtypes in the nucleus trac- Barnes, K. L., DeWeese, D. M., J.D.,andJulius,D.(1997).Thecap- thenucleusofthesolitarytract:an tussolitariiofthecat:theeffectof and Andresen, M. C. (2003). saicinreceptor:aheat-activatedion anatomicalandelectrophysiological vagalsection.Eur.J.Pharmacol.155, Angiotensin potentiates excitatory channelinthepainpathway.Nature studyinthecat.J.Auton.Nerv.Syst. 85–92. synaptictransmissiontomedialsoli- 389,816–824. 3,299–310. Davies,R.O.,Kubin,L.,andPack,A. tary tract nucleus neurons. Am. J. Cavalleri,M.T.,Burgi,K.,Cruz,J.S., Clement,K.,Vega,N.,Laville,M.,Pel- I.(1987).Pulmonarystretchrecep- Physiol.Regul.Integr.Comp.Physiol. Jordao,M.T.,Ceroni,A.,andMiche- loux,V.,Guy-Grand,B.,Basdevant, torrelayneuronesofthecat:location 284,R1340–R1353. lini,L.C.(2011).Afferentsignaling A.,etal.(2002).Adiposetissuegene andcontralateralmedullaryprojec- Baude,A.,Strube,C.,Tell,F.,andKessler, drives oxytocinergic preautonomic expression in patients with a loss tions.J.Physiol.383,571–585. J. P. (2009). Glutamatergic neuro- neurons and mediates training- of functionmutationintheleptin Derbenev,A.V.,Stuart,T.C.,andSmith, transmissioninthenucleustractus induced plasticity. Am. J. Physiol. receptor.Int.J.Obes.Relat.Metab. B.N.(2004).Cannabinoidssuppress solitarii: structural and functional Regul. Integr. Comp. Physiol. 301, Disord.26,1533–1538. synapticinputtoneuronesoftherat characteristics.J.Chem.Neuroanat. R958–R966. Cone,R.D.(2005).Anatomyandreg- dorsal motor nucleus of the vagus 38,145–153. Chae,C.U.,Lee,R.T.,Rifai,N.,andRid- ulationofthecentralmelanocortin nerve.J.Physiol.559,923–938. Benarroch,E.E.(2005).Paraventricular ker,P.M.(2001).Bloodpressureand system.Nat.Neurosci.8,571–578. Deuchars,J.,Li,Y.W.,Kasparov,S.,and nucleus,stressresponse,andcardio- inflammationinapparentlyhealthy Conn, P. J. (2003). Physiological Paton,J.F.R.(2000).Morphological vasculardisease.Clin.Auton.Res.15, men.Hypertension38,399–403. roles and therapeutic potential of and electrophysiological properties 254–263. Chan, R. K., and Sawchenko, P. E. metabotropic glutamate receptors. ofneuronesinthedorsalvagalcom- Binzen,U.,Greffrath,W.,Hennessy,S., (1994).Spatiallyandtemporallydif- Ann.N.Y.Acad.Sci.1003,12–21. plexoftheratactivatedbyarterial Bausen,M.,Saaler-Reinhardt,S.,and ferentiatedpatternsofc-fosexpres- Corbett,E.K.,Sinfield,J.K.,McWilliam, baroreceptors.J.Comp.Neurol.417, Treede,R.D.(2006).Co-expression sioninbrainstemcatecholaminergic P. N., Deuchars, J., and Batten, T. 233–249. of the voltage-gated potassium cellgroupsinducedbycardiovascu- F. (2005). Differential expression DiPatrizio, N. V., and Piomelli, D. channelKv1.4withtransientrecep- lar challenges in the rat. J. Comp. of vesicularglutamatetransporters (2012). The thrifty lipids: endo- torpotentialchannels(TRPV1and Neurol.348,433–460. by vagal afferent terminals in rat cannabinoids and the neural con- TRPV2)andthecannabinoidrecep- Chan,R.K.W.,andSawchenko,P.E. nucleusofthesolitarytract:projec- trolofenergyconservation.Trends tor CB1 in rat dorsal root gan- (1998).Organizationandtransmit- tions from the heart preferentially Neurosci.35,403–411. glion neurons. Neuroscience 142, terspecificityofmedullaryneurons express vesicular glutamate trans- Donoghue,S.,Felder,R.B.,Gilbey,M.P., 527–539. activated by sustained hyperten- porter1.Neuroscience135,133–145. Jordan,D.,andSpyer,K.M.(1985). Broadwell,R.D.,andSofroniew,M.V. sion: implications for understand- Craig,A.D.(2002).Howdoyoufeel? Post-synapticactivityevokedinthe (1993). Serum proteins bypass the ing baroreceptor reflex circuitry. J. Interoception:thesenseofthephys- nucleustractussolitariusbycarotid blood–brain barriers for extracel- Neurosci.18,371–387. iologicalconditionofthebody.Nat. sinus and aortic nerve afferents in lular entry to the central nervous Chaudhri,O.B.,Salem,V.,andMurphy, Rev.Neurosci.3,655–666. thecat.J.Physiol.360,261–273. system.Exp.Neurol.120,245–263. K.G.,Bloom,S.R.(2008).Gastroin- Cui, R. J., Li, X., and Appleyard, S. Donoghue, S., Fox, R. E., Kidd, C., Browning, K. N., and Travagli, R. A. testinal satiety signals. Annu. Rev. M.(2011).Ghrelininhibitsvisceral andKoley,B.N.(1981a).Thedis- (2007). Functional organization of Physiol.70,239–255. afferentactivationofcatecholamine tribution in the cat brain stem of presynapticmetabotropicglutamate Chen,C.Y.,andBonham,A.C.(2005). neuronsinthesolitarytractnucleus. neurones activated by vagal non- receptorsinvagalbrainstemcircuits. GlutamatesuppressesGABArelease J.Neurosci.31,3484–3492. myelinatedfibresfromtheheartand J.Neurosci.27,8979–8988. via presynaptic metabotropic glu- Cui, R. J., Roberts, B. L., Zhao, H., lungs.Q.J.Exp.Physiol.Cogn.Med. Browning, K. N., and Travagli, R. A. tamate receptors at baroreceptor Andresen,M.C.,andAppleyard,S. Sci.66,391–404. (2010).Plasticityofvagalbrainstem neurones in rats. J. Physiol. 562, M.(2012a).Opioidsinhibitvisceral Donoghue, S., Fox, R. E., Kidd, C., circuits in the control of gastric 535–551. afferentactivationofcatecholamine andMcWilliam,P.N.(1981b).The www.frontiersin.org January2013|Volume6|Article191|9 Andresenetal. Co-transmittermodulationofafferentglutamateinNTS terminations and secondary pro- spinal level. Prog. Brain Res. 122, in autonomic cell groups of the Fezza,F.,etal.(2002).DiMarzo,V. jections of myelinated and non- 209–221. medulla oblongata of the rat. J. Anendogenouscapsaicin-likesub- myelinatedfibresoftheaorticnerve Gamboa-Esteves, F. O., Tavares, Comp.Neurol.403,486–501. stancewithhighpotencyatrecombi- inthecat.Q.J.Exp.Physiol.Cogn. I., Almeida, A., Batten, T. F., Heifets, B. D., and Castillo, P. E. nantandnativevanilloidVR1recep- Med.Sci.66,405–422. McWilliam, P. N., and Lima, D. (2009).Endocannabinoidsignaling tors.Proc.Natl.Acad.Sci.U.S.A99, Doucet,E.,Miquel,M.C.,Nosjean,A., (2001). Projection sites of super- and long-term synaptic plasticity. 8400–8405. Verge,D.,Hamon,M.,andEmerit, ficial and deep spinal dorsal horn Annu.Rev.Physiol71,283–306. Izzo,P.N.,Sykes,R.M.,andSpyer,K.M. M. B. (2000). Immunolabeling of cellsinthenucleustractussolitarii Herbert, H., Moga, M. M., and (1992).Gamma-aminobutyricacid theratcentralnervoussystemwith oftherat.BrainRes.921,195–205. Saper,C.B.(1990).Connectionsof immunoreactive structures in the antibodiespartiallyselectiveof the Geerling,J.C.,Shin,J.W.,Chimenti,P. the parabrachial nucleus with the nucleustractussolitarius:alightand shortformof the5-HT3receptor. C., and Loewy,A. D. (2010). Par- nucleusofthesolitarytractandthe electron microscopic study. Brain Neuroscience95,881–892. aventricular hypothalamic nucleus: medullaryreticularformationinthe Res.591,69–78. Doyle, M. W., and Andresen, M. C. axonalprojectionstothebrainstem. rat.J.Comp.Neurol.293,540–580. Jackson, K., Silva, H. M., Zhang, W., (2001). Reliability of monosynap- J.Comp.Neurol.518,1460–1499. Herbert, H., and Saper, C. B. (1990). Michelini, L. C., and Stern, J. E. tictransmissioninbrainstemneu- Geraghty, D. P., and Mazzone, S. B. Cholecystokinin-, galanin-, and (2005). Exercise training differen- rons in vitro. J. Neurophysiol. 85, (2002).Respiratoryactionsofvanil- corticotropin-releasing factor-like tially affects intrinsic excitability 2213–2223. loidreceptoragonistsinthenucleus immunoreactive projections from of autonomic and neuroendocrine Doyle,M.W.,Bailey,T.W.,Jin,Y.-H., of the solitary tract: comparison thenucleusof thesolitarytractto neurons in the hypothalamic par- andAndresen,M.C.(2002).Vanil- ofresiniferatoxinwithnon-pungent theparabrachialnucleusintherat. aventricular nucleus. J. Neurophys- loidreceptorspresynapticallymod- agentsandanandamide.Br.J.Phar- J.Comp.Neurol.293,581–598. iol.94,3211–3220. ulatevisceralafferentsynaptictrans- macol.137,919–927. Hermes, S. M., Mitchell, J. L., and Jin,Y.-H.,Bailey,T.W.,andAndresen, missioninnucleustractussolitarius. Glatzer, N. R., Derbenev, A. V., Ban- Aicher,S.A.(2006).Mostneurons M. C. (2004a). Cranial afferent J.Neurosci.22,8222–8229. field,B.W.,andSmith,B.N.(2007). inthenucleustractussolitariidonot glutamate heterosynaptically mod- Drewe,J.A.,Miles,R.,andKunze,D.L. Endomorphin-1modulatesintrinsic send collateral projections to mul- ulates GABA release onto second (1990).Excitatoryaminoacidrecep- inhibitioninthedorsalvagalcom- tiple autonomic targets in the rat order neurons via distinctly seg- tors of guinea pig medial nucleus plex.J.Neurophysiol.98,1591–1599. brain.Exp.Neurol.198,539–551. regated mGluRs. J. Neurosci. 24, tractus solitarius neurons. Am. J. Glaum, S. R., Brooks, P. A., Spyer, Hermes,S.M.,Mitchell,J.L.,Silverman, 9332–9340. Physiol.259,H1389–H1395. K. M., and Miller, R. J. (1992). M.B.,Lynch,P.J.,McKee,B.L.,Bai- Jin,Y.-H.,Bailey,T.W.,Li,B.Y.,Schild, Ellacott, K. L., and Cone, R. D. 5-Hydroxytryptamine-3 receptors ley, T. W., et al. (2008). Sustained J.H.,andAndresen,M.C.(2004b). (2004). The central melanocortin modulatesynapticactivityintherat hypertensionincreasesthedensityof Purinergic and vanilloid receptor systemandtheintegrationofshort- nucleus tractus solitarius in vitro. AMPAreceptorsubunit,GluR1,in activation releases glutamate from andlong-termregulatorsofenergy BrainRes.589,62–68. baroreceptiveregionsofthenucleus separatecranialafferentterminals.J. homeostasis.RecentProg.Horm.Res. Glaum,S.R.,andMiller,R.J.(1993). tractussolitariioftherat.BrainRes. Neurosci.24,4709–4717. 59,395–408. Metabotropic glutamate receptors 1187,125–136. Jin,Y.-H.,Bailey,T.W.,Doyle,M.W., Ezure,K.,andTanaka,I.(1996).Pump depressafferentexcitatorytransmis- Higa-Taniguchi,K.T.,Felix,J.V.,and Li,B.Y.,Chang,K.S.K.,Schild,J. neuronsofthenucleusofthesolitary sionintheratnucleustractussoli- Michelini,L. C. (2009). Brainstem H.,etal.(2003).Ketaminedifferen- tractprojectwidelytothemedulla. tarii.J.Neurophysiol.70,2669–2672. oxytocinergic modulation of heart tiallyblockssensoryafferentsynap- Neurosci.Lett.215,123–126. Grill, H. J. (2010). Leptin and the ratecontrolinrats:effectsofhyper- tic transmission in medial nucleus Fawley,J.A.,Peters,J.H.,andAndresen, systems neuroscience of meal size tension and exercise training. Exp. tractussolitarius(mNTS).Anesthe- M. C. (2011). GABAB-mediated control.Front.Neuroendocrinol.31, Physiol94,1103–1113. siology98,121–132. inhibitionofmultiplemodesofglu- 61–78. Hoang, C. J., and Hay, M. (2001). Jin,Y. H.,Cahill,E.A.,Fernandes,L. tamatereleaseinthenucleusofthe Grill,H. J.,and Hayes,M. R. (2012). Expression of metabotropic gluta- G.,Wang, X., Chen,W., Smith, S. solitary tract. J. Neurophysiol. 106, Hindbrain neurons as an essential mate receptors in nodose ganglia M., et al. (2010). Optical tracking 1833–1840. hub in the neuroanatomically dis- andthenucleusofthesolitarytract. ofphenotypicallydiverseindividual Fernandes, L. G., Jin, Y. H., and tributedcontrolofenergybalance. Am. J. Physiol. Heart Circ. Physiol. synapses on solitary tract nucleus Andresen,M.C.(2011).Heterosy- CellMetab.16,296–309. 281,H457–H462. neurons.BrainRes.1312,54–66. naptic crosstalk: GABA-glutamate Gross, P. M., Wall, K. M., Pang, J. Hollis,J.H.,Lightman,S.L.,andLowry, Jordan, D. (2005). Vagal control of metabotropicreceptorsinteractively J.,Shaver,S.W.,andWainman,D. C.A.(2004).Integrationofsystemic the heart: central serotonergic (5- controlglutamatereleaseinsolitary S.(1990).Microvascularspecializa- and visceral sensory information HT)mechanisms.Exp.Physiol.90, tractnucleus.Neuroscience174,1–9. tions promoting rapid interstitial bymedullarycatecholaminergicsys- 175–181. Foley,C.M.,Vogl,H.W.,Mueller,P.J., solute dispersion in nucleus trac- tems during peripheral inflamma- Julius,D.,andBasbaum,A.I.(2001). Hay,M.,andHasser,E.M.(1999). tus solitarius. Am. J. Physiol. 259, tion. Ann. N. Y. Acad. Sci. 1018, Molecularmechanismsofnocicep- Cardiovascular response to group R1131–R1138. 71–75. tion.Nature413,203–210. I metabotropic glutamate receptor Gross,P.M.,Wall,K.M.,Wainman,D. Holzer, P. (2004). TRPV1 and the Kalia,M.,andMesulam,M.M.(1980). activation in NTS. Am. J. Physiol. S.,andShaver,S.W.(1991).Subre- gut: from a tasty receptor for a Brain stem projections of sensory 276,R1469–R1478. gional topography of capillaries in painfulvanilloidtoakeyplayerin andmotorcomponentsofthevagus Fong,A.Y.,Stornetta,R.L.,Foley,C.M., the dorsal vagal complex of rats: hyperalgesia.Eur.J.Pharmacol.500, complexinthecat:I.Thecervical andPotts,J.T.(2005).Immunohis- II.Physiologicalproperties.J.Comp. 231–241. vagusandnodoseganglion.J.Comp. tochemicallocalizationof GAD67- Neurol.306,83–94. Huang,J.,Hara,Y.,Anrather,J.,Speth, Neurol.193,435–465. expressingneuronsandprocessesin Haxhiu,M.A.,andLoewy,A.D.(1996). R.C.,Iadecola,C.,andPickel,V.M. Kalia, M., and Sullivan, J. M. (1982). theratbrainstem:subregionaldistri- Central connections of the motor (2003). Angiotensin II subtype 1A Brainstem projections of sensory butioninthenucleustractussolitar- andsensoryvagalsystemsinnervat- (AT1A)receptorsintheratsensory andmotorcomponentsofthevagus ius.J.Comp.Neurol.493,274–290. ingthetrachea.J.Auton.Nerv.Syst. vagalcomplex:subcellularlocaliza- nerveintherat.J.Comp.Neurol.211, Foreman,R.D.(1999).Mechanismsof 57,49–56. tion and association with endoge- 248–264. cardiacpain.Annu.Rev.Physiol.61, Hay, M., McKenzie, H., Lindsley, K., nousangiotensin.Neuroscience122, Katagiri, H., Yamada, T., and Oka, 143–167. Dietz, N., Bradley, S. R., Conn, P. 21–36. Y. (2007). Adiposity and cardio- Foreman,R.D.(2000).Integrationof J., et al. (1999). Heterogeneity of Huang, S. M., Bisogno, T., Trevisani, vascular disorders: disturbance of viscerosomaticsensoryinputatthe metabotropic glutamate receptors M.,Al,HayaniA.,DePetrocellis,L., theregulatorysystemconsistingof FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article191|10