ebook img

Pencils of cubics and algebraic curves in the real projective plane PDF

257 Pages·2019·8.784 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pencils of cubics and algebraic curves in the real projective plane

Pencils of Cubics and Algebraic Curves in the Real Projective Plane Pencils of Cubics and Algebraic Curves in the Real Projective Plane Séverine Fiedler-Le Touzé Université Toulouse III, Toulouse, France CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20180719 International Standard Book Number-13: 978-1-138-32257-8 (Hardback) International Standard Book Number-13: 978-1-138-59051-9 (Paperback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my parents, Thomas, Delphine, Etienne. Contents Preface xi List of Figures xvii List of Tables xxi Acknowledgments xxiii Contributors xxv Symbols xxvii I Rational cubics and configurations of six or seven points in RP2 1 1 Points, lines and conics in the plane 3 1.1 Configurations of points . . . . . . . . . . . . . . . . . . . . . 3 1.2 Definitions and results . . . . . . . . . . . . . . . . . . . . . . 5 2 Configurations of six points 7 2.1 Rational pencils of cubics . . . . . . . . . . . . . . . . . . . . 7 2.2 Diagrams and codes . . . . . . . . . . . . . . . . . . . . . . . 17 3 Configurations of seven points 31 3.1 Fourteen configurations . . . . . . . . . . . . . . . . . . . . . 31 3.2 Line-walls and conic-walls . . . . . . . . . . . . . . . . . . . . 40 3.3 Refined line-walls . . . . . . . . . . . . . . . . . . . . . . . . 50 II Pencils of cubics with eight base points lying in convex position in RP2 57 4 Pencils of cubics 59 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Singular pencils . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Lists 65 5.1 Points in convex position and conics . . . . . . . . . . . . . . 65 5.2 Admissible lists . . . . . . . . . . . . . . . . . . . . . . . . . 68 vii viii Contents 5.3 Extremal lists . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 Distances between points . . . . . . . . . . . . . . . . . . . . 75 5.5 Isotopies of octuples of points . . . . . . . . . . . . . . . . . 76 5.6 Elementary changes . . . . . . . . . . . . . . . . . . . . . . . 78 6 Link between lists and pencils 83 6.1 Nodal lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Pairs of distinguished cubics . . . . . . . . . . . . . . . . . . 85 6.3 Changes of lists and of pencils . . . . . . . . . . . . . . . . . 88 7 Pencils with reducible cubics 91 7.1 Two non-generic lists . . . . . . . . . . . . . . . . . . . . . . 91 7.2 Pencil with six reducible cubics . . . . . . . . . . . . . . . . . 93 7.3 Symmetric lists . . . . . . . . . . . . . . . . . . . . . . . . . 97 8 Classification of the pencils of cubics 103 8.1 Nodal pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.2 Inductive constructions . . . . . . . . . . . . . . . . . . . . . 106 9 Tables 111 10 Application to an interpolation problem 123 10.1 A non-generic pencil of cubics . . . . . . . . . . . . . . . . . 123 10.2 Solution to the interpolation problem . . . . . . . . . . . . . 126 III Algebraic curves 129 11 Hilbert’s 16th problem 131 11.1 Real and complex schemes . . . . . . . . . . . . . . . . . . . 131 11.2 Classical restriction method and degree 7 . . . . . . . . . . . 136 11.3 Orevkov’s method . . . . . . . . . . . . . . . . . . . . . . . . 140 11.4 M-curves of degree 9 . . . . . . . . . . . . . . . . . . . . . . 145 12 M-curves of degree 9 with deep nests 155 12.1 Results and rigid isotopy invariants . . . . . . . . . . . . . . 155 12.2 Curves without O -jumps . . . . . . . . . . . . . . . . . . . . 158 1 13 M-curves of degree 9 with four or three nests 163 13.1 Statement of the results and first proofs . . . . . . . . . . . . 163 13.2 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 13.3 M-curves with three nests and a jump . . . . . . . . . . . . . 183 13.4 End of the proof, using two Orevkov formulas . . . . . . . . 194 14 More restrictions 203 14.1 M-curves of degree 9 or 11 with one non-empty oval . . . . . 203 14.2 Curves of degree 11 with many nests . . . . . . . . . . . . . 208 Contents ix 15 Totally real pencils of cubics 211 15.1 Two real schemes of sextics . . . . . . . . . . . . . . . . . . . 211 15.2 Nodal pencil again . . . . . . . . . . . . . . . . . . . . . . . . 213 Bibliography 217 Index 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.