ebook img

PDF (1.698 MB) PDF

12 Pages·2008·1.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PDF (1.698 MB)

A&A491,681–692(2008) Astronomy DOI:10.1051/0004-6361:200809845 & (cid:2)c ESO2008 Astrophysics Photometric redshifts as a tool for studying the Coma (cid:2) cluster galaxy populations C.Adami1,O.Ilbert1,2,R.Pelló3,J.C.Cuillandre4,F.Durret5,A.Mazure1,J.P.Picat3,andM.P.Ulmer1,6 1 LAM,OAMP,UniversitéAix-Marseille&CNRS,Pôledel’Étoile,SitedeChâteauGombert,38rueFrédéricJoliot-Curie, 13388Marseille13Cedex,France e-mail:[email protected] 2 InstituteforAstronomy,2680WoodlawnDr.,UniversityofHawaii,Honolulu,Hawaii96822,USA 3 Laboratoired’AstrophysiquedeToulouse-Tarbes,UniversitédeToulouse,CNRS,14Av.ÉdouardBelin,31400Toulouse,France 4 Canada-France-HawaiiTelescopeCorporation,Kamuela,HI96743,USA 5 Institutd’AstrophysiquedeParis,CNRS,UMR7095,UniversitéPierreetMarieCurie,98bisBdArago,75014Paris,France 6 DepartmentPhysics&Astronomy,NorthwesternUniversity,Evanston,IL60208-2900,USA Received26March2008/Accepted13September2008 ABSTRACT Aims.Weapplyphotometricredshifttechniques toaninvestigationoftheComaclustergalaxyluminosityfunction(GLF)atfaint magnitudes,inparticularintheu∗bandwherebasicallynostudiesarepresentlyavailableatthesemagnitudes. Methods.Clustermemberswereselectedbasedonprobabilitydistributionfunctionfromphotometricredshiftcalculationsappliedto deepu∗,B,V,R,Iimagescoveringaregionofalmost1deg2(completenesslimitR∼24).Intheareacoveredonlybytheu∗image, theGLFwasalsoderivedafterastatisticalbackgroundsubtraction. Results.Global and local GLFs in the B, V, R, and I bands obtained with photometric redshift selection are consistent with our previousresultsbasedonastatisticalbackgroundsubtraction. TheGLFintheu∗bandshowsanincreaseinthefaintendslopetowardstheouterregionsofthecluster. Theanalysisofthemulticolortypespatialdistributionrevealsthatlatetypegalaxiesaredistributedinclumpsintheclusteroutskirts, whereX-raysubstructuresarealsodetectedandwheretheGLFintheu∗bandissteeper. Conclusions.WecanreproducetheGLFscomputedwithclassicalstatisticalsubtractionmethodsbyapplyingaphotometricredshift technique. Theu∗ GLFslopeissteeperintheclusteroutskirts,varyingfromα ∼ −1intheclustercentertoα ∼ −2inthecluster periphery.Theconcentrationsoffaintlatetypegalaxiesintheclusteroutskirtscouldexplaintheseverysteepslopes,assumingashort burstofstarformationinthesegalaxieswhenenteringthecluster. Keywords.galaxies:clusters:individual:Coma–galaxies:luminosityfunction,massfunction 1. Introduction contiguous coverage of the spectral regions of interest, in par- ticular around the strong spectral features, such as the 4000 Å Ever-growing optical imaging surveys of galaxies for which break or the Lyman α break. This technique has proven to be completespectroscopicfollow-upisimpossibleduetotelescope a veryvaluabletoolforseveralcosmologicalpurposes,suchas limitations has triggered the development of photometric red- derivingfieldgalaxycorrelationfunctionsorgalaxyluminosity shift techniques (e.g. Bolzonella et al. 2000; or Ilbert et al. functions(seee.g.Ilbertetal.2006b;Meneuxetal.2006).Ithas 2006a, and references therein). Based on the comparison of alsobeenappliedinthestudyofdistantclustersofgalaxies(see multi-band photometry with synthetic spectral templates, this e.g.Whiteetal.2005,andreferencestherein). technique can be viewed as very low-resolution spectroscopy. Inthepresentpaper,weapplythephotometricredshifttech- Thequalityofphotometricredshiftsdependsonthewavelength nique to study the galaxy population of the rich Coma cluster. range covered by the photometric survey. High-quality photo- Due to its proximity (z ∼ 0.023), Coma covers a large extent metric redshifts and related quantities require a complete and overthesky(ontheorderof1deg2),requiringawidefieldcam- (cid:3) BasedonobservationsobtainedwithMegaPrime/MegaCam,ajoint era;dataintheU bandareneededtodeterminewithasufficient project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii accuracytheprobabilitythatagalaxybelongsornottotheclus- Telescope(CFHT)whichisoperatedbytheNationalResearchCouncil ter,basedinparticularonthe4000Åbreak. (NRC)ofCanada,theInstitutNationaldesSciencesdel’Universofthe As a continuation of our Coma photometric survey (e.g. Centre National de la Recherche Scientifique (CNRS) of France, and Adamietal.2006a)whichalreadyincludesdeep(R∼24)wide theUniversityofHawaii.Thisworkisalsopartlybasedondataprod- field (42 × 52 arcmin2) B, V, R and I images, we recently uctsproducedatTERAPIXandtheCanadianAstronomyDataCentre acquired a Megacam u∗ band image of comparable depth and aspartoftheCanada-France-Hawaii TelescopeLegacySurvey,acol- field of view. In addition to our spectroscopic redshift catalog, laborativeprojectofNRCandCNRS.AlsobasedondatafromW.M. thisallowsustocomputephotometricredshiftsandProbability KeckObservatorywhichisoperatedasascientificpartnershipbetween theCaliforniaInstituteofTechnology,theUniversityofCalifornia,and Distribution Function (PDF hereafter) along the Coma clus- NASA.Itwasmadepossiblebythegenerousfinancial support of the ter line of sight down to the dwarf galaxy regime. One of the W.M.KeckFoundation. main goals of the paper is to qualify this photometric redshift ArticlepublishedbyEDPSciences 682 C.Adamietal.:Comaclustergalaxypopulations techniqueappliedtothegalaxyluminosityfunction(GLFhere- 195.300 195.000 194.700 after)determination.Forthis,wewillcomparethepresentpho- tometricredshifttechniquewiththegalaxyluminosityfunctions 28.400 computed with the same data set but with a statistical back- groundremoval(Adamietal.2007a,b). 28.300 We will also compute luminosity functions in the u∗ band based on statistical background subtraction in the area where 28.200 onlytheu∗bandisavailable. Wedescribeournewphotometricdataandphotometricred- 28.100 shift and PDF estimates in Sect. 2. We compute in Sect. 3 the ComaGLFusingthePDFandinSect.4theComau∗ GLFap- 28.000 plying statistical subtraction. The spatial distributions of mul- ticolor galaxy types are discussed in Sect. 5. Conclusions are 27.900 drawninSect.6. Inthispaperwe assumeH =70 kms−1 Mpc−1, Ω = 0.3, 27.800 0 m ΩΛ=0.7,adistancetoComaof100Mpc,adistancemodulus= 35.00,andascaleof0.46kpcarcsec−1. 27.700 27.600 2. Photometricdataandphotometricredshifts 2.1.B,V,RandIbandimagingdata Fig.1.Megacamu∗bandweightimage(thedarkerthecolor,theshorter These data are fully described in Adami et al. (2006a) and we theexposuretime).Thecoordinatesindegreesareindicated. give here only the salient points. Coma was observed with a 2 field mosaic of the CFH12K camera in 4 bands(B,V, R and I). Altogether,our data cover a 52 × 42 arcmin2 field over the the galaxy positions (assuming an initial 3 arcsec identifica- sky (the CFH12K f.o.v. in the following) centered on the two tion distance) in order to find the best identification. We could dominant cluster galaxies (NGC 4874 and NGC 4889) with a also have applied SExtractor in double-image mode, but this completenesslevelinRclosetoR ∼ 24.Theseeingconditions wouldhaverequiredto degradealltheMegacamimagestothe were allcloseto 1 arcsec.Thesedataare availableathttp:// CFH12Kcharacteristics. cencosw.oamp.fr.We have already published several papers We note that the seeing values slightly differed from one basedonthesedata(Adamietal.2005a,b,2006a,b,2007a,b). bandtoanother,andthiscouldproduceoffsetsintheestimated magnitudevalues.We didnotattempttocorrectforthisseeing effect before computing the photometric redshifts. However, it ∗ 2.2.Newu bandimagingdata wastakenintoaccountwhenfittingtheobservedmagnitudesto Newu∗ banddata(seeFig.3)includingthepreviousfieldwere the synthethic SEDs by the photometric redshift codes for ob- obtainedbetween2006and2007withtheCFHMegacamcam- jectsofourspectroscopiccatalog(seefollowing).Thesecorrec- era.Megacamisamosaicof36individualCCDs,givingafield tionsprovedtobesmall. ofview(f.o.v.)of1deg2.Theaverageseeingwas1.1arcsec.The totalexposuretimewas9.66h,obtainedbycombining58indi- 2.3.Zeropointvariationsacrossthefieldofview vidualspatiallyditheredexposuresof10mineach.Weshowin Fig. 1 the weight map that was generated during the reduction Besidesthepossibleseeingeffects,itisimportanttoassesspos- procedure. This gives a good idea of the exposure time varia- sible magnitude zero point variations across our field of view. tions across the field of view (the darker the color, the shorter Given the u∗ data treatment, the u∗ zero points are stable over the exposure time). The sigma of the distribution of the expo- the whole field of view at better than 0.05 mag (a calibration sure times per pixel is ∼30%of the mean value.However,this atbetterthan∼4%isachievedbytheTerapixElixir codefrom affects only the gaps between individual CCDs, that represent thefieldcentertothefieldedges).RegardingtheCFH12Kdata, lessthan10%ofthetotalarea. we alreadyestimated inAdamietal.(2006a)thatcorrectionin The data reduction was performed with the Terapix tools magnitudedueto smallairmass variationswouldhave been,at (http://terapix.iap.fr/) and the standard procedure ap- maximum,of0.033magforR,0.020magforV,and0.015mag plied for example to the CFHTLS fields (McCracken et al. for B, much less than the estimated errors on the magnitudes. 2008). A ∼1 deg2 image was produced with a zero point set Inthe samepaper(Fig.16)we alsoconsideredstellartracksto to 30.0. We extracted an object catalog from this image with estimate the additional shifts that must be applied to the zero the SExtractor package (Bertin & Arnouts 1996) with a detec- points to match the empirical stellar library of Pickles (1998). tion threshold of 0.4 and a minimum number of pixels (above The mean (over the whole f.o.v.) corrections were negligible. this threshold) of 3. We derived total Kron AB magnitudes However,this doesnotexcludesome possible small zeropoint (Kron 1980) to compute photometric redshifts. We corrected variationsaccrossthefieldofviewthatcouldremainundetected each detected object for galactic extinction using the Schlegel due to the width of the observedstellar tracks (on the order of maps. This catalog was then cross-correlated with the B, V, 0.2mag).Inordertotestthispoint,weredidthesamefigureas R, and I catalog already available. The cross-correlation was Fig.16ofAdamietal.(2006a),separatingthenorthernandthe made by applying a technique similar to that of Adami et al. southernarea(asdefinedinAdamietal.2007a).Figure2shows (2006a) and optimized to take into account small astrometric that we nearlyhave the same agreementbetweenthe empirical differences between CFH12K and Megacam data. We defined stellar library of Pickles (1998) and the observed stellar tracks small regions 2 arcmin wide in which we iteratively adjusted forboththenorthernandsouthernfields.Weestimatedthemean C.Adamietal.:Comaclustergalaxypopulations 683 of 1.5, this u∗ completeness level is fully consistent with the previouslyestimatedRcompletenesslevel(R∼24). 2.5.Photometricredshifttechniques We have computedphotometric redshiftswith two of the most well-knownpackages: Hyperz (e.g. Bolzonella et al. 2000and 1)and LePhare(e.g.Ilbertetal.2006aand2 (authors:Arnouts &Ilbert)),mainlytocheckthatthesetwosoftwaresgiveconsis- tentresults.Thesetoolsarefullydescribedinthequotedpapers. In a few words, Hyperz (Bolzonella et al. 2000) and LePhare (Arnouts & Ilbert) are both based on a template-fitting proce- dure. However, the setting of the two photo-z codes presents two main differences:Hyperz includes a large set of templates fromBruzual&Charlot(2003)withdifferentstarformationhis- tories and differentages. LePhare includes a limited library of 9 templatesfromPolletta et al. (2007) and 3 star-formingtem- platesfromBruzual&Charlot(2003).InHyperz,thezero-point calibration has been done by comparing the stellar locus in a color−colordiagramwiththeexpectedstarcolors.In LePhare, the zero-point calibration has been done with an iterative pro- cedure described in Sect. 4.1 of Ilbert et al. (2006a), by com- paring the predicted magnitudesfrom the best fit template and the observed magnitudes. In order to compute these possible small magnitude zero point shifts in LePhare, we trained the photometricredshiftestimateswiththespectroscopiccatalogde- scribedinAdamietal.(2005a).Thiscatalogwassupplemented with20archiveredshiftsfromtheKeckLRISmultispectrograph Fig.2.R−IversusB−V forstars(asdefinedinAdamietal.(2006a). (Secker et al. 1998), increasing the total number of redshifts Dots:observedstars,openred(greyinblackandwhiteversion)circles: available in the CFH12K f.o.v. by ∼5%. These galaxies have empiricalstellarlibraryofPickles(1998).Theupperandlowerfigures magnitudesbetweenR=16.5and21.5andredshiftslowerthan correspondtothenorthandsouthCFH12Kfieldsrespectively. 0.5(onlyoneoftheseobjectsispartoftheComacluster). The additional zero point shifts applied to our photome- try to compute optimal photometric redshifts with Hyperz and LePhare were quite small. Hyperz requiredmanuallyimposed magnitudeshift between the northernand southernfields to be shiftsoflessthan0.05maginRandI andnoshiftinu∗, Band smallerthan0.05mag. V.LePharerequiredshiftsof0.028±0.02inu∗,−0.141±0.09 inB,−0.062±0.03inV,0.±0.04inRand0.12±0.05inI(er- ∗ 2.4.Completenessoftheu image rorbarscomingfromthedispersionoftheshiftsoverthewhole spectroscopicsample). ThegoodefficiencyofMegacamintheblueallowedustoreach A set of fit parameterswas then produced(see also Adami asimilardepthinu∗asintheB(∼24.75forpointlikeobjectsat et al. 2008): internalextinction,age, multicolortype (based on the 90% level, see Adamiet al. 2006a), V (∼24),R (∼24),and a color classification in a 5 mag space), redshift, and PDF es- I (∼23.25) images. These new data were required to compute timates. However, we mainly consider here the (photometric) photometricredshiftsinordertohaveabluephotometricband, redshift, the template multicolor type, and the PDF estimates. encompassingthe4000Åbreak. Types 1 to 4 are the Elliptical, Sbc, Scd and Irr from Coleman ThepercentageofRdetectionswithanassociatedu∗ detec- et al. (1980) respectively and types 5 are starburst 1 templates tion is between 87% and 92%. This leads to estimate the 90% fromKinneyetal.(1996). completeness level of the u∗ image to R ∼ 24. The ∼10% of Wealsocomputedtheintegratedprobabilityforeachgalaxy galaxiesdetectedinRandnotinu∗are,atleastpartially,objects to be at a redshift lower than a given value z (P hereafter). lim thatarenotformingstarsandwhichthereforedonotappearin This is the area of the PDF enclosed in the consideredredshift u∗eveninadeepexposure. interval:[0.,z ]. lim In order to assess the completeness level of our u∗ image in another way, we directly compared our u∗ counts with the u∗ counts of the CFHTLS D1, D3 and D4 fields (T0004 2.6.Advantagesofthephotometricredshifttechnique release). These fields have long enough exposure times (see We could argue that a simple color−magnituderelation (CMR http://terapix.iap.fr/cplt/table-syn-T0004.html) hereafter) could also provide a good way to discriminate be- tobecomparablewithourdata.WedidnotconsidertheD2field tweenclustermembersandnonmembers(Bivianoetal.1996). thatonlyhasatotalexposuretimeof1.3hinu∗.Figure4shows However, besides the simple fact that five bands appear intu- that the Coma countsdominatethe D1, D3, and D4 countsfor itively better than two to characterize the spectral energy dis- u∗ ≤ 25, due to the presence of the highly populated Coma tributions of galaxies, the use of a CMR first requires the cluster in the field. Our data become incomplete at fainter magnitudes, leading to estimate the u∗ completeness level to 1 http://webast.obs-mip.fr/hyperz/ ∼25.5. Given that the u∗−R color in our data is on the order 2 http://www.oamp.fr/people/arnouts/LE_PHARE.html 684 C.Adamietal.:Comaclustergalaxypopulations 195.300 195.000 194.700 28.400 G4 28.300 28.200 28.100 28.000 G5 G3 27.900 27.800 G2 27.700 G1 27.600 Fig.3.Megacamu∗ bandimageoverplottedwiththe5detectedgroups(circlescorrespondto300kpcindiameteratz = 0.1)andtheNeumann etal.(2003)X-raysubstructures.WecorrectedforasmalloverallshiftbetweentheXMMandtheMegacamastrometry. existenceofawelldefinedredsequence(RShereafter).Thisis earlytypegalaxycoresshowninAdamietal.2006b).Thesim- notalwaysverifiedeveniftheRSinComaisverywellknownat pleextrapolationofthebrightComaclustergalaxyRSatR>21 brightmagnitudes,thankstothelargepercentageofbrightellip- wouldmissthesepeculiarobjectsasclustermembers. ticalgalaxiesinthiscluster(e.g.Adamietal.1998).Inthiscase, the photometricredshiftand CMR techniquesgive comparable Third,thephotometricredshifttechniqueoffersamuchmore results. direct way to characterize the spectral energy distributions of the galaxies. The use of the CMR RS can at best discriminate Second, this RS is only poorly known beyond the present betweenearlyandlatetypegalaxiesfornottoofaintmagnitudes. spectroscopic limit (typically R ∼ 21 for the Coma cluster). It On theotherhand,the photometricredshifttechnique(alsosee may show a reddeningat R > 21, as suggested by e.g. Adami Sect. 2.8) allows the separation of galaxies in 5 spectral types etal.(2000).Moreover,atR > 21peculiargalaxytypesappear, andgivesadirectestimateoftheagesandinternalextinctionsof directlyresultingfromthedisruptionsoflargergalaxies.Anex- thegalaxies. amplearethetidaldwarfgalaxies(Bournaudetal.2003).These peculiargalaxies(notonlytidaldwarfgalaxies)sometimeshave For all these reasons, we decided to apply the photometric ellipticallikespectraltypes,butareatypicallyred(e.g.depleted redshifttechniqueinthispaper. C.Adamietal.:Comaclustergalaxypopulations 685 agivengalaxy.Thevalueofz willbechosentominimizethe lim number of intruders (galaxies at spectroscopic redshift greater thanz thathaveaphotometricredshiftlowerthanz )andof lim lim lost galaxies (galaxies at spectroscopic redshift lower than z lim withaphotometricredshiftgreaterthanz ).Thisminimization lim wasdoneonthebasisofthespectroscopiccatalogandtheresults are shownin Fig.6.Setting z to a highvaluewouldproduce lim nointruderorlostgalaxies,butthediscriminationpowerofsuch a high value would be low. We therefore selected z = 0.20, lim which is a good compromize between intruder and lost galaxy percentagesandthediscriminationpowerofthemethod.Wesee inFig.6thatthepercentagesofintruderorlostgalaxiesdonot decrease very strongly for z ≥ 0.2. With this limit and consid- eringourspectroscopiccatalog,weestimatethatwelose(inthe Fig.4. Coma line of sight u∗ counts (solid line) compared to three magnituderangecoveredbythespectroscopiccatalog)lessthan deeper u∗ fields from the CFHTLS:D1 (short dashed line), D3 (long 10% galaxies and we include about 15% intruders. These per- dashedline),andD4(short/longdashedline). centages will be taken into accountwhen computingthe GLFs inthenextsection. 2.7.Results 2.8.Uncertaintiesinthegalaxydiscriminationbased First,welimitedthecatalogtotheobjectsdetectedinallu∗, B, onthePDF V,R,and I bands.Thisexcludedthesouth-westareaforwhich With this limit of z = 0.2 and considering our spectroscopic BandV dataarenotavailable(seeAdamietal.2006a). catalog,weestimatethatweloselessthan10%galaxiesandwe The two sets of estimates (from LePhare and Hyperz) include about15% intrudergalaxiesif we limit our analysisto are most of the time in good agreement. As usual, we lim- thespectroscopiccatalogmagnitudelimit. ited the sample to unmasked regions (this leads to remove all Given the fact that our spectroscopic catalog is by far not objects at less than twice the radius of objects brighter than R = 18) to avoid uncertain magnitude estimates, and we plot- as deep as our photometric catalog, we need to quantify the accuracyofthe photometricredshiftsbeyondthe spectroscopic tedforbothmethodsthephotometricversusspectroscopicred- limit.Ilbertetal.(2006a)haveshownthatthe1σerrorbarsare shifts.Ourspectroscopiccatalogincludes172spectroscopicred- shifts in non masked areas, among which 103 are at z ≤ 0.2. representative of a measurement at 68% confidence level, and Figure 5 shows the results for LePhare and Hyperz. As both we can therefore quantify this accuracy based on the 1σ error bars.Figure7showsthe fractionofphotometricredshiftsfrom methods provide very similar results, we merged the two esti- mates (LePhare and Hyperz) keeping the value with the best LePhare(resultswouldbesimilarwithHyperz)witha1σerror reducedχ2(afterhavinghomogenizedthetwosetsofχ2). barsmallerthan0.2×(1+z)(0.2beingtypicallythewidthofthe lowredshiftintervalwewanttocharacterize).Thisfigureshows Beyond the general agreement between photometric and that we still have more than half of the galaxies with a photo- spectroscopicredshifts,weclearlyseeadegeneracyattheComa metric redshiftestimate lower than 0.2× (1+z) for R brighter cluster redshift. For some galaxies which have spectroscopic than22.Wealsohaveagoodagreementbetweenthedecreaseof redshifts inside the cluster, LePhare and Hyperz producepho- thefractionofphotometricredshiftswitha1σerrorbarsmaller tometricredshiftsnotonlyattheclusterredshiftbutspreadover than0.2×(1+z)andthenumberofavailablespectroscopicred- the interval z = 0, z ∼ 0.2. Moreover,there is a clear system- shifts(shownasthehistograminFig.7).Thesepercentageswill aticoffsetontheorderof0.05inredshift(mainlyvisibleinthe betakenintoaccountwhencomputingtheGLFuncertaintiesin LePhare results) between z = 0.1 and 0.4. This bias can have thenextsection. two origins. First, the magnitude estimates can be partially bi- ased because of observational effects (small seeing variations betweenthe differentphotometricbands,peculiarproblemsfor 2.9.Uncertaintiesinthegalaxycolor-typeestimate agivenbandatagivenskylocation,etc.).Second,clustergalax- ies are in general redder than their equivalents in the field due In order to determine the reliability of color-types assigned to to environmental effects, while photometric redshift estimates galaxies in the Coma cluster, we have carried out a series of are computedwith syntheticgalaxytemplatesmainlybased on simulations with Hyperz and related software. Synthetic cata- fieldgalaxies.Thiscanleadtoamis-interpretationofthespec- logs contain 105 galaxiesin total at the redshiftof Coma, with tral energy distribution, confusing the intrinsic red color and R-bandmagnitudesrangingbetweenR=19and24,spanningall the reddening of galaxies due to redshift. This shows the need the basic spectraltypes,i.e. ∼4000galaxiespermagnitudeand forthedefinitionofsyntheticclustergalaxyspectroscopictem- typebin.Photometricerrorsinthedifferentfilterswereassigned plates. This also implies that we cannot use directly the pho- followingaGaussiandistributionwithvariancescaledtoappar- tometric redshift estimates to efficiently discriminate between entmagnitude,i.e.σ(m) (cid:7) 2.5log[1+1/(S/N)],whereS/N is clustermembersandfieldgalaxies. the signal to noise ratio corresponding to the apparent magni- Moreover, certain galaxies may have a very extended PDF tudeminourcatalog.Hyperzsettingsusedtofitthesesynthetic and consideringjustthe value givingthe maximumprobability catalogsarethesameasforrealcatalogs. could producea wrongphotometricredshift. We will therefore Table1summarizestheresultsobtainedfromthesesimula- classify galaxies as being at a greater or lower redshift than a tions as a functionof R-bandmagnitudeand photometrictype. limitingvaluez ,basedontheprobabilityPquotedaboveand UptoR≤23(weassumedalimitofR=22.5inthefollowing), lim computedusingtheareabelowthePDFforzlowerthanz for photometrictypesarecorrectlyretrievedbySEDfitting,witha lim 686 C.Adamietal.:Comaclustergalaxypopulations Fig.5.LePhare(left)andHyperZ(right)photometricredshiftsintheCFH12Kf.o.v.andoutsidethemaskedregionsversusspectroscopicredshifts. Thetwodashedlinesshowa±0.2uncertaintyenveloppearoundtheperfectrelation(continuousline).Thelargenumberofdotsbelowz ∼0.2 phot butoutsideofComaisexplainedbythegroupsdetectedinSect.3.2. Table1.PercentageofsimulatedgalaxiesintheComaclusterwithpho- tometrictypescorrectlyassignedasafunctionofR-bandmagnitude. R E/S0 Sbc Scd Im SB mag % % % % % 19–20 100.0 99.9 99.9 98.9 98.8 20–21 100.0 99.9 99.9 98.7 99.2 21–22 100.0 99.7 99.8 97.9 97.5 22–23 100.0 98.3 98.2 93.3 90.3 23–24 98.0 88.4 84.7 76.2 77.3 quotedarethereforelowerlimitsonthetrueuncertaintiesonthe Fig.6.Variationofthepercentageofintruders(fullblackline)andlost galaxycolor-typeestimates(seealsoSect.5). galaxies(green(greyinblackandwhiteversion)dottedline)asafunc- tionofz .ErrorbarsarePoissonianuncertainties. lim 3. Thegalaxyluminosityfunctioncomputation Aspreviouslystated,photometricredshifttechniquesallowone tomakeanoptimalsubtractionofbackgroundgalaxiesforared- shiftlimitof0.2.However,westillneedtoremovefromthesam- plethegalaxiesatz≤0.2whichdonotbelongtotheComaclus- ter. Thesegalaxiescanbefieldgalaxiesorgalaxiesincludedin groupsofgalaxiesnotrelatedtoComa.Wechosetosubtractsta- tisticallythesetwocontributionsbyconsideringfieldandgroup luminosityfunctionstaken in the literature.In thisway,we are still applying a statistical subtraction, but photometric redshift techniqueshelptocutdownverysignificantlytheredshiftrange thatincludesbackgroundgalaxies. 3.1.Fieldcontribution Fig.7.Fractionofphotometricredshifts(asafunctionofRmagnitude) fromLePharewitha1σerrorbarsmallerthan0.2×(1+z).Solidline: We estimated the field contribution to be subtracted from the photometricredshiftslowerthan0.2,dashedline:photometricredshifts VVDSfieldluminosityfunctionofIlbertetal.(2005),whoob- greaterthan0.2.Thehistogram(inarbitraryunits)showsthenumberof tained a very large redshift catalog complete to I(AB) ∼ 24 availablespectroscopicredshiftsasafunctionofRmagnitude. (close to R ∼ 24 considering the passband of our filters). This is close to our own magnitude limit and ensures that the field luminosity function we subtract is really constrained over our percentageof failuresusuallybelow∼3%, andupto ∼10%for wholemagnituderange,withoutrequiringanyextrapolation. the bluest galaxies. As expected, early-type galaxies are better TheIlbertetal.(2005)luminosityfunctionisalsocomputed identifiedthanlatetypes,evenforthefaintestsourcesinourcat- infivebandsfromU toI,allowingafieldsubtractionadaptedto alog, butthe differenceis small. At least ∼75%of galaxiesare eachphotometricband. stillcorrectlyclassifiedinthefaintestmagnitudebin. Thesubtractionofthefieldcontributionwassimplydoneby Of course, since we fit the templates used to generate the computingthecosmologicalco-movingvolumeincludedinour catalogs, this must help recovering the color-types; the errors fieldofviewatredshiftlowerthan0.2andusingtheφ∗,α,and C.Adamietal.:Comaclustergalaxypopulations 687 Table 2. Characteristics of the background groups detected by the 4. Galaxyluminosityfunctions(GLF) Serna-Gerbal method, based on spectroscopic redshifts: coordinates, meanredshiftandtotalmass(Adamietal.2005). 4.1.Galaxyluminosityfunctionsbasedonphotometric redshifts Group α δ Meanz Mass(M(cid:8)) G1 195.04 27.61 0.149 7.34×1012 We computedtheGLFinthesubregionspreviouslyconsidered G2 194.90 27.71 0.138 5.25×1011 by Adami et al. (2007a). These ∼10(cid:9) × 10(cid:9) regions cover the G3 194.92 27.87 0.144 1.25×1013 whole cluster area and represent a good compromize between G4 194.94 28.27 0.097 1.46×1011 thespatialresolutionandthenumberofgalaxiesincludedinthe G5 194.70 27.89 0.133 4.15×1012 individual GLFs. Figure 8 shows the GLFs together with their 1σ error bars (red symbols) overplotted on the previous GLFs computedbyAdamietal.(2007a:blacksymbols)withstatistical M∗ parameters of the Schechter function given by Ilbert et al. backgroundsubtractions. (2005). Thegoalofthissectionismainlytocompareourresultswith thoseofAdamietal.(2007a).Asthesetwostudiesarebasedon 3.2.Groupcontribution thesamedataset,thisisagoodwaytotestthereliabilityofthe two methods (statistical field subtraction and photometric red- We first located in our field of view the groups unrelated with shifttechnique).Theagreementisgenerallyquitegoodbetween theComaclusterandatredshiftlowerthan0.2byapplyingthe thetwoestimates.Afewregions,however,showsignificantdis- Serna-Gerbalmethod(Serna&Gerbal1996)totheredshiftcat- crepancies:fields5,6,8,9,16,and20.Thesefieldshavediffer- alog(Adamietal.2005a).Briefly,thismethodisabletodetect entluminosityfunctions(derivedwiththetwotechniques)over dynamicallylinked galaxies(whatwe calla groupof galaxies) morethan15%ofthemagnitudeintervalR =[19.25,22.5],the basedonthepositions,magnitudesandredshiftsofthegalaxies largestdifferencesoccuringforfields16 and6.Itisinteresting (seeTable2).ThismethodwasalreadyappliedbyAdamietal. to note that among these fields, three contain very bright stars (2005a)to studythe Comacluster,andfivebackgroundgroups atz≤0.2weredetected. (fields5,8,and9)andone(field8)theclusterdominantgalaxy NGC 4874. These objects have a very extended light halo that The group luminosity functions were computed from the possiblyaffectsthephotometry(eveniftheyweremaskedinside SDSS groupluminosity functionestimates of Zandivarezet al. twicetheirradius)andthereforethephotometricredshiftcompu- (2006). Since these authors have data in the five SDSS bands, tations,orthefaintobjectdetectioninthecaseofthestatistical wetransformedtheirmagnitudestoourownsystemapplyingthe backgroundremovaltechniqueofAdamietal.2007a).Wealso relationsgivenbyFukugitaetal.(1995).Thenumberofgalax- ies brighter than R = 17.75 (where our spectroscopic catalog knowthatatleastoneofthesefields(field9)containsasignif- icantpopulationofveryfaintandveryblueComagalaxies(the isnearlycomplete)wasestimatedfromourspectroscopiccata- log.Thisallowedustocomputetheφ∗normalizationofthefive field aroundNGC4858/4860,Adamietal. 2007b). Thesefaint blue knots, similar to those discussed by Cortese et al. (2007), detectedgroups(seeFig.3). are perhaps not well represented in our galaxy synthetic tem- Inordertosubtractthisgroupcontribution,weassumedthat plates;thiscouldproduceanincorrectvalueforphotometricred- thewholegroupgalaxycontributionwasenclosedina300kpc shifts,outsidetheComaclusterrange. diametercircle,atypicalgroupsize. We note here that we do not know the background group Inordertohaveathirdestimate(beyondAdamietal.2007a, GLF per spectral type and this prevents us from computing a andthepresentpaperdeterminations),wealsocomparedourre- ComaclusterGLF per spectraltypewiththephotometricred- sults for one of these possiblybiased fields (the NGC 4874re- shifttechnique.Wewillsimplystudythegeneralmulticolortype gion) with a study dedicated to the computationof the GLF in spatialdistributioninSect.5. theComaclustercenter(Seckeretal.1996,basedonKeckim- ages).Figure9showsthattheseauthorspredictgalaxynumber densitiesconsistentatthe2σlevelwiththephotometricredshift 3.3.GLFuncertainties technique estimates in the range where these counts are lower We tookintoaccountseveraluncertaintiesontheComacluster than the onescomputedin Adamietal. (2007a). So the counts GLF(computedin0.5magbins,asinAdamietal.2007a): ofAdamietal.(2007a)couldalsobeoverestimated(despitethe great care that was devoted to the statistical field subtraction). – thePoissonnoiseineachbin; It is beyond the scope of this paper to present a full compari- – theuncertaintyonthefieldandgroupluminosityfunctions, sonwithliteratureresults.ThiswasalreadydoneinAdamietal. computed by generating 1000 field and group luminosity (2007a:Sect.7.4). functionswithparametersGaussianlyvaryinginsidetheer- We also note that we still see the discrimination between rorrangequotedintheliterature; the north-northeast and the south-southwest parts of the clus- – the uncertainty due to the photometric redshift computa- ter (Fig. 10) that was detected by Adami et al. (2007a). The tions. As previously shown, the number of galaxies below z = 0.2canbeoverestimatedby15%orunderestimatedby north-northeastregionismorepopulatedinthefaintmagnitude regime than the south-southwest regions. However, this trend 10% within the magnitude range where the spectroscopic is not significant when applying the photometric redshift tech- catalog is contributing. For fainter magnitudes, we consid- nique.Wealsoseeinthesouthernclusterpartasimilarturn-over eredFig.7 toinfera valueoftheoverestimationandofthe astheonealreadyshowninRin Adamietal. (2007a),butitis underestimation. poorly significant due to the large error bars. These error bars Thesumofthethreeuncertaintiesisassumedtobethetotalerror could only be reducedby using a deeper spectroscopiccatalog andisclosetoa3σerror.Theuncertaintyduetothephotometric tobetterconstrainthephotometricredshiftestimatesofthefaint redshiftcomputationsisclearlythedominatingsourceoferror. galaxies. 688 C.Adamietal.:Comaclustergalaxypopulations Fig.8.Rband GLFsfordifferent regionsintheComacluster.Northistopandeast isleft.Theemptysubgraphs correspond toareaswhere B andV datawerenotavailable.Blackcontinuousandshortdashedlines(alongwitherrorbars)aretheGLFstatisticalestimatesofAdamietal. (2007a).Red(greyinblackandwhiteversion)long-dashedlines(alongwitherrorbars)arethepresentestimates. Fig.9.RbandGLFfortheNGC4874fieldcomputedwithphotometric Fig.10.RbandGLFforthenorthern(black)andsouthern(reddashed redshifts(reddashedline–greyinblackandwhiteversion).Theslope line–greyinblackandwhiteversion)partsasdefinedinAdamietal. fromSeckeretal.(1996)isoverplotted(blackfullline). (2007a). 4.2.Galaxyluminosityfunctionsintheu*bandbased Thecomparisonfieldscoveratotalareaofmorethan3deg2, onstatisticalbackgroundsubtraction thusreducingthecosmicvariance(seeAdamietal.2007a).The The Megacam u∗ band image is more extended than the resultingGLFsaresimilartotheu∗bandGLFscomputedinthe CFH12K f.o.v. We typically have a 7 arcmin strip all around CFH12K f.o.v.basedonphotometricredshifts.We sub-divided theCFH12Kf.o.v.whichisonlycoveredinu∗.Inordertocom- theMegacamf.o.v.in7×6subfieldsandcomputedtheslopeα puteu∗ GLFsinthisexternalarea,weappliedthesamestatisti- of the u∗ GLF (computedapplyinga statistical subtractionand calfieldgalaxysubtractiontechniqueasinAdamietal.(2007a modelledbyaSchechterfunction)intheu∗=[22,24]magrange andb).Themaingoalofthiscomputationwastoinvestigatepo- foreachzone.The42αslopesaregiveninTable3andwereused tentialvariationsoftheGLFfaintendslopeintheu∗band,which to generate Fig. 11, where the contoursof GLF slope α within is sensitive to recent star formationbursts, and to compareour theMegacamf.o.v.aredisplayed. resultstothoseofDonasetal.(1995). Weclearlyseeasteepeningoftheu∗GLFslopebetweenthe ThecomparisonfieldswerethoseamongthedeepCFHTLS centerandoutskirts,changingfrom−1to−2.2.Theregionswith fields (D1, D3, and D4) that are deep enough to allow us to thesteepestu∗ GLFscorrespondtothosewhereX-raysubtruc- make a statistical subtraction from our Coma data. In order to turesaredetectedandarelocatedat∼25(cid:9)fromtheclustercenter. limitthesecatalogstothesamedepth,weselectedonlygalaxies Thisis exactlywhereDonasetal. (1995)detectedanenhance- brighterthanu∗ = 24intotalmagnitudeandbrighterthan26.3 ment in the median UV flux and in the fraction of bright blue insurfacebrightness. starforminggalaxiesconsideredasclustermembers. C.Adamietal.:Comaclustergalaxypopulations 689 Table3.Slope(andassociated1-σuncertainty)oftheu∗Schechterlu- our analysis to the search of galaxy concentrations outside the minosityfunctionbetweenu∗=22and24asafunctionofcoordinates. maskedareas. ThesevalueswereusedtogenerateFig.11. In order to estimate the multicolor type spatial distribution insidetheComacluster,wemustadresstheproblemofz ≤ 0.2 α δ Slope Err.slope non Coma member galaxies (field or loose group objects) that 12.9639 27.5911 –1.36 0.22 cannot be discriminated by the photometric redshift technique 12.9639 27.7339 –2.22 0.61 alone. 12.9639 27.8767 –1.52 0.18 Ifweconsiderthefieldgalaxyluminosityfunctioncomputed 12.9639 28.0194 –1.59 0.28 by Ilbertet al. (2006b) fromsimilar data,we find thatthe field 12.9639 28.1622 –1.18 0.17 contribution represents about 15% of the Coma cluster galax- 12.9639 28.3050 –1.96 0.21 12.9639 28.4478 –2.20 0.27 ies down to R = 24. Among these 15%, about 1/4th are bulge 12.9761 27.5911 –1.48 0.20 galaxiesand3/4arediskgalaxies.However,thiscontributionis 12.9761 27.7339 –1.71 0.21 spread over the whole field of view and will act as a homoge- 12.9761 27.8767 –1.61 0.09 neousbackgroundcontributionofgalaxies.Itwillthereforenot 12.9761 28.0194 –1.84 0.56 modify the relative variation of the estimated multicolor types 12.9761 28.1622 –1.84 0.56 inside the Coma cluster. We could argue that dense regions of 12.9761 28.3050 –1.43 0.41 filaments (without being real massive structures such as clus- 12.9761 28.4478 –1.96 0.40 ters or groups) at z ≤ 0.2 could provide different galaxy type 12.9883 27.5911 –2.07 0.74 counts across the field of view because they probably contain 12.9883 27.7339 –0.34 0.57 moreearlytypegalaxies.However,evenconsideringthelargest 12.9883 27.8767 –1.67 0.31 12.9883 28.0194 –0.13 0.65 knowncosmicbubblesizes,atleastadozenofsuchbubblesare 12.9883 28.1622 –0.98 0.28 superimposedbetweenComaandz = 0.2.Thesumofallthese 12.9883 28.3050 –1.81 0.23 bubbles therefore homogenizes the distribution of field galaxy 12.9883 28.4478 –0.08 1.51 morphologicaltypesatz≤0.2. 13.0006 27.5911 –1.41 0.49 Similarly, we estimated that the contribution of galaxies in 13.0006 27.7339 –0.32 0.63 loosegroupsrepresents∼5%oftheComaclustergalaxiesdown 13.0006 27.8767 –1.66 0.33 to R = 24 over the whole field of view. However, these con- 13.0006 28.0194 –1.62 0.24 tributions are concentrated in precise locations, so locally, the 13.0006 28.1622 –0.85 0.18 contribution can be much higher. Assuming the group GLF of 13.0006 28.3050 –1.08 0.26 Zandivarezet al. (2006) and the galaxyspectral type estimates 13.0006 28.4478 –1.99 0.37 13.0128 27.5911 –0.73 0.16 inlowmassgroups(≤1013.5M(cid:8))ofDominguezetal.(2002),we 13.0128 27.7339 –1.18 0.73 estimatethatalongthelinesofsighttoloosegroups,galaxiesin 13.0128 27.8767 –1.25 0.22 groupscanrepresentmorethan85%ofallz≤0.2galaxies.This 13.0128 28.0194 –1.06 0.13 contributionisontheorderof50%forearlytypesgalaxiesand 13.0128 28.1622 –1.96 0.41 can reach 100%for other galaxytypes. As we cannotestimate 13.0128 28.3050 –1.51 0.18 preciselythegalaxytypecontributionsforthe5loosegroupsde- 13.0128 28.4478 –2.62 0.53 tectedbehindComa,thisclearlysuggeststhatwehavetoremove 13.0250 27.5911 –1.88 0.37 theseareas. 13.0250 27.7339 –1.52 0.39 Maps of galaxy multicolor type density were then gener- 13.0250 27.8767 –2.12 0.78 atedfromasimplecountincelltechnique,avoidingthemasked 13.0250 28.0194 –2.30 0.43 13.0250 28.1622 –2.12 0.28 regions and considering the whole sample of galaxies down 13.0250 28.3050 –1.43 0.18 R = 24. The original cell size was 1(cid:9) and we applied an addi- 13.0250 28.4478 –1.63 0.36 tionnalsmoothingof3×3pixelsinFig.12.Weonlytookinto accountcellscompletelyincludedin ourfield ofview,so there are no edge effects. This figure shows that early type galaxies are spread over the whole field of view with the possible ex- 5. Multicolortypespatialdistribution ception of the north-west regions. Early and late Spirals show localiseddensityenhancementsintheclusteroutskirts.Wenote Thegoalofthissectionistoinvestigatethespatialdistributionof however that the late (and perhaps early) spiral concentration galaxiesaccordingtotheirmulticolortype.Westresshereonce located north of the cluster center could be well explained by againthatourmulticolortypesarebasedonacolorclassification the loose G4 group. Later types (irregulars and starbursts) are ina5magspaceandarenotrealmorphologicaltypes.Realmor- alsodistributedpreferentiallyintheclusteroutskirts.Inparticu- phologicaltypesarealreadynotwelldeterminedatR≥ 18(our lar,starburstgalaxiesaremainlylocatedatthenorthwest,where starting magnitude) and completely unknown at R ≥ 22, wait- X-raysubstructuresarealso detectedasaninfallinggroup(see ingfortheresultsoftheComaclusterHSTimagingsurvey(e.g. Adami et al. 2005a) and where a concentration of early mul- Carteretal.2008).Ifweconsiderthemorphologicaltypescom- ticolor types is also detected. This is also the place where the piledinBivianoetal.(1996)for8galaxiesfainterthanR = 18 u∗GLFisthesteepestofthefield(seeprevioussection). for which we computed photometric redshifts, we find that all The first thing to note in Fig. 12 is that we confirm that areclassifiedasellipticalgalaxiesandallhaveamulticolortype the Coma cluster is mainly populated by early type galaxies assignedtoDelta burstsorellipticalgalaxies,fromtheBruzual (∼E+S0),asexpectedforsucharichstructure:about80%ofthe &Charlot(2003)evolutionarysyntheticSEDs.Thisagreement galaxy population is made of ellipticals. Spirals representonly clearlyneeds,however,tobeconfirmed. 15%ofthefaintgalaxies. Duetomaskedregions,wepostponethegalaxydensitypro- Second, as expected and observed for bright galaxies (e.g. filepermulticolortypedeterminationtoafutureworkandlimit Whitmore et al. 1993), there are later type galaxy clumps in 690 C.Adamietal.:Comaclustergalaxypopulations Fig.11.Upperpanel:u∗bandGLFsfordifferentregionsintheComaclustercomputedwithastatisticalsubtraction(continuousblacklineswith errorbars)andthephotometricredshifttechnique(red(greyinblackandwhiteversion)dotslinkedwithdashedlinesanderrorbars).Northis top and east is left. TheCFH12K field of view isshown as the central red (grey in black and white version) rectangle. Theempty subgraphs correspondtoareaswherethefieldcountsweregreaterthantheclustercounts.X-raysubstructuresareshownasthickcontinuouscontours.Lower panel:contoursoftheGLFslopewithintheMegacamf.o.v.(thincontinuouslines:slopesbetween−1and−1.2,thindottedlines:between−1.2 and−1.4,thinlongdashedlines:between−1.4and−1.6,thinlongdot-dashedlines:between−1.6and−2.2).Shadedareascorrespondtozones wheretheslopeisnotsignificantlydifferentfrom0atmorethana2σlevel.X-raysubstructuresfromNeumannetal.(2003)areshownassmooth thickblackcontours. theclusteroutskirts.Thisbehavioressentiallyknownforbright Third, we also see a clear concentration of starburst ob- galaxies(R≤∼18fortheComacluster)isnowextended6mag jects in a place whereearlyspiralmulticolortypesare also de- deeper,andforafinerandmoreobjectivetypeseparation. tectedandwhereX-raysubstructuresarepresent.Thesestarburst

Description:
We apply photometric redshift techniques to an investigation of the Coma cluster . ΩΛ = 0.7, a distance to Coma of 100 Mpc, a distance modulus =.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.