ebook img

Pattern theory : from representation to inference PDF

609 Pages·2009·8.599 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pattern theory : from representation to inference

PATTERNTHEORY This page intentionally left blank PATTERN THEORY: FROM REPRESENTATION TO INFERENCE UlfGrenanderandMichaelI.Miller 1 3 GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile CzechRepublic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork ©OxfordUniversityPress,2007 Themoralrightsoftheauthorshavebeenasserted DatabaserightOxfordUniversityPress(maker) Firstpublished2007 Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization.Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethesameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloginginPublicationData Dataavailable TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India PrintedinGreatBritain onacid-freepaperby AntonyRoweLtd.,Chippenham,Wiltshire ISBN0–19–850570–1 978–0–19–850570–9 ISBN0–19–929706–1 978–0–19–929706–1 1 3 5 7 9 10 8 6 4 2 CONTENTS 1 Introduction 1 1.1 Organization 3 2 TheBayesParadigm,EstimationandInformationMeasures 5 2.1 BayesPosteriorDistribution 5 2.1.1 MinimumRiskEstimation 6 2.1.2 InformationMeasures 7 2.2 MathematicalPreliminaries 8 2.2.1 ProbabilitySpaces,RandomVariables,Distributions, Densities,andExpectation 8 2.2.2 TransformationsofVariables 10 2.2.3 TheMultivariateNormalDistribution 10 2.2.4 CharacteristicFunction 11 2.3 MinimumRiskHypothesisTestingonDiscreteSpaces 12 2.3.1 MinimumProbabilityofErrorviaMaximumAPosteriori HypothesisTesting 13 2.3.2 Neyman–PearsonandtheOptimalityoftheLikelihoodRatioTest 14 2.4 MinimumMean-SquaredErrorRiskEstimationinVectorSpaces 16 2.4.1 NormedLinearandHilbertSpaces 17 2.4.2 Least-SquaresEstimation 20 2.4.3 ConditionalMeanEstimationandGaussianProcesses 22 2.5 TheFisherInformationofEstimators 24 2.6 Maximum-Likelihoodanditsconsistency 26 2.6.1 ConsistencyviaUniformConvergenceofEmpiricalLog-likelihood 27 2.6.2 AsymptoticNormalityand√nConvergenceRateoftheMLE 28 2.7 Complete–IncompleteDataProblemsandtheEMAlgorithm 30 2.8 HypothesisTestingandModelComplexity 38 2.8.1 Model-OrderEstimationandthed/2logSample-SizeComplexity 38 2.8.2 TheGaussianCaseisSpecial 41 2.8.3 ModelComplexityandtheGaussianCase 42 2.9 BuildingProbabilityModelsviathePrincipleofMaximumEntropy 43 2.9.1 PrincipleofMaximumEntropy 44 2.9.2 MaximumEntropyModels 45 2.9.3 ConditionalDistributionsareMaximumEntropy 47 3 ProbabilisticDirectedAcyclicGraphsandTheirEntropies 49 3.1 DirectedAcyclicGraphs(DAGs) 49 3.2 ProbabilitiesonDirectedAcyclicGraphs(PDAGs) 51 3.3 FiniteStateMarkovChains 54 3.4 Multi-typeBranchingProcesses 56 3.4.1 TheBranchingMatrix 59 3.4.2 TheMoment-GeneratingFunction 60 3.5 ExtinctionforFinite-StateMarkovChainsandBranchingProcesses 62 3.5.1 ExtinctioninMarkovChains 62 3.5.2 ExtinctioninBranchingProcesses 63 3.6 EntropiesofDirectedAcyclicGraphs 64 3.7 CombinatoricsofIndependent,IdenticallyDistributedStringsviathe AymptoticEquipartitionTheorem 65 v vi CONTENTS 3.8 EntropyandCombinatoricsofMarkovChains 66 3.9 EntropiesofBranchingProcesses 68 3.9.1 TreeStructureofMulti-TypeBranchingProcesses 69 3.9.2 EntropiesofSub-Critical,Critical,andSuper-CriticalProcesses 70 3.9.3 TypicalTreesandtheEquipartitionTheorem 71 3.10 FormalLanguagesandStochasticGrammars 74 3.11 DAGsforNaturalLanguageModelling 81 3.11.1 MarkovChainsandm-Grams 81 3.11.2 Context-FreeModels 82 3.11.3 HierarchicalDirectedAcyclicGraphModel 84 3.12 EMAlgorithmsforParameterEstimationinHidden MarkovModels 87 3.12.1 MAPDecodingoftheHiddenStateSequence 88 3.12.2 MLEstimationofHMMparametersviaEMForward/Backward Algorithm 89 3.13 EMAlgorithmsforParameterEstimationinNatural LanguageModels 92 3.13.1 EMAlgorithmforContext-FreeChomskyNormalForm 93 3.13.2 GeneralContext-FreeGrammarsandtheTrellisAlgorithm ofKupiec 94 4 MarkovRandomFieldsonUndirectedGraphs 95 4.1 UndirectedGraphs 95 4.2 MarkovRandomFields 96 4.3 GibbsRandomFields 101 4.4 TheSplittingPropertyofGibbsDistributions 104 4.5 BayesianTextureSegmentation:Thelog-NormalizerProblem 110 4.5.1 TheGibbsPartitionFunctionProblem 110 4.6 Maximum-EntropyTextureRepresentation 112 4.6.1 EmpiricalMaximumEntropyTextureCoding 113 4.7 StationaryGibbsRandomFields 116 4.7.1 TheDobrushin/Lanford/RuelleDefinition 116 4.7.2 GibbsDistributionsExhibitMultipleLawswiththeSameInteractions (PhaseTransitions):TheIsingModelatLowTemperature 117 4.8 1DRandomFieldsareMarkovChains 119 4.9 MarkovChainsHaveaUniqueGibbsDistribution 120 4.10 EntropyofStationaryGibbsFields 121 5 GaussianRandomFieldsonUndirectedGraphs 123 5.1 GaussianRandomFields 123 5.2 DifferenceOperatorsandAdjoints 124 5.3 GaussianFieldsInducedviaDifferenceOperators 126 5.4 StationaryGaussianProcessesonZdandtheirSpectrum 133 5.5 Cyclo-StationaryGaussianProcessesandtheirSpectrum 134 5.6 Thelog-DeterminantCovarianceandtheAsymptoticNormalizer 137 5.6.1 AsymptoticsoftheGaussianprocessesandtheirCovariance 138 5.6.2 TheAsymptoticCovarianceandlog-Normalizer 142 5.7 TheEntropyRatesoftheStationaryProcess 142 5.7.1 Burg’sMaximumEntropyAuto-regressiveProcessesonZd 143 5.8 GeneralizedAuto-RegressiveImageModellingviaMaximum-Likelihood Estimation 144 5.8.1 AnisotropicTextures 147 CONTENTS vii 6 TheCanonicalRepresentationsofGeneralPatternTheory 154 6.1 TheGenerators,Configurations,andRegularityofPatterns 154 6.2 TheGeneratorsofFormalLanguagesandGrammars 158 6.3 GraphTransformations 162 6.4 TheCanonicalRepresentationofPatterns:DAGs,MRFs,GaussianRandomFields 166 6.4.1 DirectedAcyclicGraphs 167 6.4.2 MarkovRandomFields 169 6.4.3 GaussianRandomFields:Generatorsinducedviadifferenceoperators 170 7 MatrixGroupActionsTransformingPatterns 174 7.1 GroupsTransformingConfigurations 174 7.1.1 SimilarityGroups 174 7.1.2 GroupActionsDefiningEquivalence 175 7.1.3 GroupsActionsonGeneratorsandDeformableTemplates 177 7.2 TheMatrixGroups 177 7.2.1 LinearMatrixandAffineGroupsofTransformation 177 7.2.2 MatrixgroupsactingonRd 179 7.3 TransformationsConstructedfromProductsofGroups 181 7.4 RandomRegularityontheSimilarities 184 7.5 CurvesasSubmanifoldsandtheFrenetFrame 190 7.6 2DSurfacesinR3andtheShapeOperator 195 7.6.1 TheShapeOperator 196 7.7 FittingQuadraticChartsandCurvaturesonSurfaces 198 7.7.1 GaussianandMeanCurvature 198 7.7.2 SecondOrderQuadraticCharts 200 7.7.3 IsosurfaceAlgorithm 201 7.8 RidgeCurvesandCrestLines 205 7.8.1 DefinitionofSulcus,Gyrus,andGeodesicCurveson TriangulatedGraphs 205 7.8.2 DynamicProgramming 207 7.9 BijectionsandSmoothMappingsforCoordinatizing ManifoldsviaLocalCoordinates 210 8 Manifolds,ActiveModels,andDeformableTemplates 214 8.1 ManifoldsasGenerators,TangentSpaces,andVectorFields 214 8.1.1 Manifolds 214 8.1.2 TangentSpaces 215 8.1.3 VectorFieldsonM 217 8.1.4 CurvesandtheTangentSpace 218 8.2 SmoothMappings,theJacobian,andDiffeomorphisms 219 8.2.1 SmoothMappingsandtheJacobian 219 8.2.2 TheJacobianandLocalDiffeomorphicProperties 221 8.3 MatrixGroupsareDiffeomorphismswhichareaSmoothManifold 222 8.3.1 Diffeomorphisms 222 8.3.2 MatrixGroupActionsareDiffeomorphismsonthe BackgroundSpace 223 8.3.3 TheMatrixGroupsareSmoothManifolds(LieGroups) 224 8.4 ActiveModelsandDeformableTemplatesasImmersions 226 8.4.1 SnakesandActiveContours 226 8.4.2 DeformingClosedContoursinthePlane 226 8.4.3 NormalDeformableSurfaces 227 8.5 ActivatingShapesinDeformableModels 229 8.5.1 LikelihoodofShapesPartitioningImage 229 8.5.2 AGeneralCalculusforShapeActivation 229 viii CONTENTS 8.5.3 ActiveClosedContoursinR2 232 8.5.4 ActiveUnclosedSnakesandRoads 234 8.5.5 NormalDeformationofCirclesandSpheres 236 8.5.6 ActiveDeformableSpheres 236 8.6 LevelSetActiveContourModels 237 8.7 GaussianRandomFieldModelsforActiveShapes 240 9 SecondOrderandGaussianFields 244 9.1 SecondOrderProcesses(SOP)andtheHilbertSpaceofRandomVariables 244 9.1.1 Measurability,Separability,Continuity 244 9.1.2 Hilbertspaceofrandomvariables 247 9.1.3 CovarianceandSecondOrderProperties 249 9.1.4 QuadraticMeanContinuityandIntegration 251 9.2 OrthogonalProcessRepresentationsonBoundedDomains 252 9.2.1 CompactOperatorsandCovariances 253 9.2.2 OrthogonalRepresentationsforRandomProcessesandFields 257 9.2.3 StationaryPeriodicProcessesandFieldsonBoundedDomains 258 9.3 GaussianFieldsontheContinuum 262 9.4 SobolevSpaces,Green’sFunctions,andReproducing KernelHilbertSpaces 264 9.4.1 ReproducingKernelHilbertSpaces 265 9.4.2 SobolevNormedSpaces 266 9.4.3 RelationtoGreen’sFunctions 267 9.4.4 GradientandLaplacianInducedGreen’sKernels 267 9.5 GaussianProcessesInducedviaLinearDifferentialOperators 271 9.6 GaussianFieldsintheUnitCube 274 9.6.1 MaximumLikelihoodEstimationoftheFields:GeneralizedARMA Modelling 278 9.6.2 SmallDeformationVectorFieldsModelsinthePlaneandCube 280 9.7 DiscreteLatticesandReachabilityofCyclo-StationarySpectra 283 9.8 StationaryProcessesontheSphere 285 9.8.1 LaplacianOperatorInducedGaussianFieldsontheSphere 289 9.9 GaussianRandomFieldsonanArbitrarySmoothSurface 293 9.9.1 Laplace-BeltramiOperatorwithNeumannBoundaryConditions 293 9.9.2 SmoothinganArbitraryFunctiononManifoldsbyOrthonormalBases oftheLaplace-BeltramiOperator 297 9.10 SamplePathPropertiesandContinuity 299 9.11 GaussianRandomFieldsasPriorDistributionsinPoint ProcessImageReconstruction 303 9.11.1 TheNeedforRegularizationinImageReconstruction 304 9.11.2 SmoothnessandGaussianPriors 304 9.11.3 Good’sRoughnessasaGaussianPrior 305 9.11.4 ExponentialSplineSmoothingviaGood’sRoughness 306 9.12 Non-CompactOperatorsandOrthogonalRepresentations 309 9.12.1 CramerDecompositionforStationaryProcesses 311 9.12.2 OrthogonalScaleRepresentation 312 10 MetricsSpacesfortheMatrixGroups 316 10.1 RiemannianManifoldsasMetricSpaces 316 10.1.1 MetricSpacesandSmoothManifolds 316 10.1.2 RiemannianManifold,GeodesicMetric,andMinimumEnergy 317 10.2 VectorSpacesasMetricSpaces 319 10.3 CoordinateFramesontheMatrixGroupsand theExponentialMap 320 CONTENTS ix 10.3.1 LeftandRightGroupAction 320 10.3.2 TheCoordinateFrames 321 10.3.3 LocalOptimizationviaDirectionalDerivativesandthe ExponentialMap 323 10.4 MetricSpaceStructurefortheLinearMatrixGroups 324 10.4.1 GeodesicsintheMatrixGroups 324 10.5 ConservationofMomentumandGeodesicEvolutionofthe MatrixGroupsviatheTangentattheIdentity 326 10.6 MetricsintheMatrixGroups 327 10.7 ViewingtheMatrixGroupsinExtrinsicEuclideanCoordinates 329 10.7.1 TheFrobeniusMetric 329 10.7.2 ComparingintrinsicandextrinsicmetricsinSO(2,3) 330 11 MetricsSpacesfortheInfiniteDimensionalDiffeomorphisms 332 11.1 LagrangianandEulerianGenerationofDiffeomorphisms 332 11.1.1 OnConditionsforGeneratingFlowsofDiffeomorphisms 333 11.1.2 ModelingviaDifferentialOperatorsandtheReproducing KernelHilbertSpace 335 11.2 TheMetricontheSpaceofDiffeomorphisms 336 11.3 MomentumConservationforGeodesics 338 11.4 ConservationofMomentumforDiffeomorphismSplines SpecifiedonSparseLandmarkPoints 340 11.4.1 AnODEforDiffeomorphicLandmarkMapping 343 12 MetricsonPhotometricandGeometricDeformableTemplates 346 12.1 MetricsonDenseDeformableTemplates:GeometricGroups ActingonImages 346 12.1.1 GroupActionsontheImages 346 12.1.2 InvariantMetricDistances 347 12.2 TheDiffeomorphismMetricfortheImageOrbit 349 12.3 NormalMomentumMotionforGeodesicConnectionVia InexactMatching 350 12.4 NormalMomentumMotionforTemporalSequences 354 12.5 MetricDistancesBetweenOrbitsDefinedThrough InvarianceoftheMetric 356 12.6 FiniteDimensionalLandmarkedShapeSpaces 357 12.6.1 TheEuclideanMetric 357 12.6.2 Kendall’sSimilitudeInvariantDistance 359 12.7 TheDiffeomorphismMetricandDiffeomorphismSplinesonLandmarkShapes 361 12.7.1 SmallDeformationSplines 361 12.8 TheDeformableTemplate:OrbitsofPhotometricand GeometricVariation 365 12.8.1 MetricSpacesforPhotometricVariability 365 12.8.2 TheMetricsInducedviaPhotometricandGeometricFlow 366 12.9 TheEulerEquationsforPhotometricandGeometricVariation 369 12.10 MetricsbetweenOrbitsoftheSpecialEuclideanGroup 373 12.11 TheMatrixGroups(EuclideanandAffineMotions) 374 12.11.1 ComputingtheAffineMotions 376 13 EstimationBoundsforAutomatedObjectRecognition 378 13.1 TheCommunicationsModelforImageTransmission 378 13.1.1 TheSourceModel:ObjectsUnderMatrixGroupActions 379 13.1.2 TheSensingModels:ProjectiveTransformationsinNoise 379 13.1.3 TheLikelihoodandPosterior 379

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.