ebook img

Pattern Formation and Dynamics in Nonequilibrium Systems PDF

553 Pages·2009·7.102 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pattern Formation and Dynamics in Nonequilibrium Systems

PATTERN FORMATION AND DYNAMICS IN NONEQUILIBRIUM SYSTEMS Manyexcitingfrontiersofscienceandengineeringrequireunderstandingofthespa- tiotemporalpropertiesofsustainednonequilibriumsystemssuchasfluids,plasmas, reactinganddiffusingchemicals,crystalssolidifyingfromamelt,heartmuscle,and networksofexcitableneuronsinbrains. Thisintroductorytextbookforgraduatestudentsinbiology,chemistry,engineer- ing, mathematics, and physics provides a systematic account of the basic science commontothesediverseareas.Thisbookprovidesacarefulpedagogicalmotivation ofkeyconcepts,discusseswhydiversenonequilibriumsystemsoftenshowsimilar patternsanddynamics,andgivesabalanceddiscussionoftheroleofexperiments, simulation,andanalytics.Itcontainsnumerousillustrativeworkedexamples,and over150exercises. This book will also interest scientists who want to learn about the experi- ments,simulations,andtheorythatexplainhowcomplexpatternsforminsustained nonequilibriumsystems. Michael Cross isaProfessorofTheoreticalPhysicsattheCaliforniaInsti- tuteofTechnology,USA.Hisresearchinterestsareinnonequilibriumandnonlinear physics including pattern formation, chaos theory, nanomechanical systems, and condensedmatterphysics,particularlythetheoryofliquidandsolidhelium. Henry Greenside is a Professor in the Department of Physics at Duke University,USA.Hehascarriedoutresearchincondensedmatterphysics,plasma physics,nonequilibriumpatternformation,andtheoreticalneurobiology.Heisalso involved with outreach programs to stimulate interest in science and physics at juniorhighschoolandhighschoollevels. “This book by Cross and Greenside presents a comprehensive introduction to an importantareaofnaturalscience,andassemblesinonevolumetheessentialcon- ceptual,theoretical,andexperimentaltoolsaseriousstudentwillneedtoobtaina modern understanding of pattern formation outside of equilibrium.The masterful 50-pageIntroductionlaysouttheessentialquestionsandprovidesmotivationtothe readertoexplorethesubsequentchapters,beginningwithsimpleideasandgrowing progressivelyinmathematicalsophisticationandphysicaldepth.Carefulattention is paid to the relationship between the theoretical methods and controlled labora- tory experiments or numerical simulations. I can highly recommend this book to anystudentorresearcherinterestedinadeepenedunderstandingofnonequilibrium spatiotemporalpatterns.’’ PierreHohenberg,NewYorkUniversity “Thisbookgivesanexcellentdidacticintroductiontopatternformationinspatially extended systems. It can serve both as the basis for an advanced undergraduate or graduate course as well as a reference. It is one of those books that will never outliveitsusefulness.Itisamustforanyoneinterestedinnonlinear,nonequilibrium physics.’’ EberhardBodenschatz,MPIforDynamicsandSelf-Organization, UniversityofGoettingen,CornellUniversity “This book fills a long-standing need, and is certain to be an instant classic. The physicsofpatternformingsystemsisdiversebutthetheoreticalcoreofthesubject, along with many of the most important applications, can be learned from this splendid book. It is bound to be a key text for courses, as well as a much cited reference.’’ StephenMorris,UniversityofToronto PATTERN FORMATION AND DYNAMICS IN NONEQUILIBRIUM SYSTEMS MICHAEL CROSS CaliforniaInstituteofTechnology HENRY GREENSIDE DukeUniversity cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SãoPaulo,Delhi CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521770507 ©M.CrossandH.Greenside2009 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2009 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-0-521-77050-7hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Toourfamilies Katy,ColinandLynn Peyton,ArthurandNoel Contents Preface page xiii 1 Introduction 1 1.1 Thebigpicture:whyistheUniversenotboring? 2 1.2 Convection:afirstexampleofanonequilibriumsystem 3 1.3 Examplesofnonequilibriumpatternsanddynamics 10 1.3.1 Naturalpatterns 10 1.3.2 Preparedpatterns 20 1.3.3 Whataretheinterestingquestions? 35 1.4 Newfeaturesofpattern-formingsystems 38 1.4.1 Conceptualdifferences 38 1.4.2 Newproperties 43 1.5 Astrategyforstudyingpattern-formingnonequilibrium systems 44 1.6 Nonequilibriumsystemsnotdiscussedinthisbook 48 1.7 Conclusion 49 1.8 Furtherreading 50 2 Linearinstability:basics 56 2.1 Conceptualframeworkforalinearstabilityanalysis 57 2.2 Linearstabilityanalysisofapattern-formingsystem 63 2.2.1 One-dimensionalSwift–Hohenbergequation 63 2.2.2 Linearstabilityanalysis 64 2.2.3 Growthratesandinstabilitydiagram 67 2.3 Keystepsofalinearstabilityanalysis 69 2.4 Experimentalinvestigationsoflinearstability 70 2.4.1 Generalremarks 70 2.4.2 Taylor–Couetteinstability 74 vii viii Contents 2.5 Classificationforlinearinstabilitiesofauniformstate 75 2.5.1 Type-Iinstability 77 2.5.2 Type-IIinstability 79 2.5.3 Type-IIIinstability 80 2.6 Roleofsymmetryinalinearstabilityanalysis 81 2.6.1 Rotationallyinvariantsystems 82 2.6.2 Uniaxialsystems 84 2.6.3 Anisotropicsystems 86 2.6.4 Formaldiscussion 86 2.7 Conclusions 88 2.8 Furtherreading 88 3 Linearinstability:applications 96 3.1 Turinginstability 96 3.1.1 Reaction–diffusionequations 97 3.1.2 Linearstabilityanalysis 99 3.1.3 Oscillatoryinstability 108 3.2 Realisticchemicalsystems 109 3.2.1 Experimentalapparatus 109 3.2.2 Evolutionequations 110 3.2.3 Experimentalresults 116 3.3 Conclusions 119 3.4 Furtherreading 120 4 Nonlinearstates 126 4.1 Nonlinearsaturation 129 4.1.1 Complexamplitude 130 4.1.2 Bifurcationtheory 134 4.1.3 NonlinearstripestateoftheSwift–Hohenbergequation 137 4.2 Stabilityballoons 139 4.2.1 Generaldiscussion 139 4.2.2 BusseballoonforRayleigh–Bénardconvection 147 4.3 Two-dimensionallatticestates 152 4.4 Non-idealstates 158 4.4.1 Realisticpatterns 158 4.4.2 Topologicaldefects 160 4.4.3 Dynamicsofdefects 164 4.5 Conclusions 165 4.6 Furtherreading 166 Contents ix 5 Models 173 5.1 Swift–Hohenbergmodel 175 5.1.1 Heuristicderivation 176 5.1.2 Properties 179 5.1.3 Numericalsimulations 183 5.1.4 Comparisonwithexperimentalsystems 185 5.2 GeneralizedSwift–Hohenbergmodels 187 5.2.1 Non-symmetricmodel 187 5.2.2 Nonpotentialmodels 188 5.2.3 Modelswithmeanflow 188 5.2.4 Modelforrotatingconvection 190 5.2.5 Modelforquasicrystallinepatterns 192 5.3 Order-parameterequations 192 5.4 ComplexGinzburg–Landauequation 196 5.5 Kuramoto–Sivashinskyequation 197 5.6 Reaction–diffusionmodels 199 5.7 Modelsthatarediscreteinspace,time,orvalue 201 5.8 Conclusions 201 5.9 Furtherreading 202 6 One-dimensionalamplitudeequation 208 6.1 Originandmeaningoftheamplitude 211 6.2 Derivationoftheamplitudeequation 214 6.2.1 Phenomenologicalderivation 214 6.2.2 Deductionoftheamplitude-equationparameters 217 6.2.3 Methodofmultiplescales 218 6.2.4 Boundaryconditionsfortheamplitudeequation 219 6.3 Propertiesoftheamplitudeequation 221 6.3.1 Universalityandscales 221 6.3.2 Potentialdynamics 224 6.4 Applicationsoftheamplitudeequation 226 6.4.1 Lateralboundaries 226 6.4.2 Eckhausinstability 230 6.4.3 Phasedynamics 234 6.5 Limitationsoftheamplitude-equationformalism 237 6.6 Conclusions 238 6.7 Furtherreading 239 7 Amplitudeequationsfortwo-dimensionalpatterns 244 7.1 Stripesinrotationallyinvariantsystems 246 7.1.1 Amplitudeequation 246 7.1.2 Boundaryconditions 248

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.