International Journal o f Molecular Sciences Review Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury CesarReis1,†,OnatAkyol1,†,CamilaAraujo1,†,LeiHuang1,2,BudbazarEnkhjargal1, JayMalaguit1,VadimGospodarev1andJohnH.Zhang1,2,3,* 1 DepartmentofPhysiologyandPharmacology,LomaLindaUniversitySchoolofMedicine, 11041CampusStreet,RisleyHall,Room219,LomaLinda,CA92354,USA;[email protected](C.R.); [email protected](O.A.);[email protected](C.A.);[email protected](L.H.); [email protected](B.E.);[email protected](J.M.);[email protected](V.G.) 2 DepartmentofAnesthesiology,LomaLindaUniversityMedicalCenter,LomaLinda,CA92354,USA 3 DepartmentofNeurosurgery,LomaLindaUniversitySchoolofMedicine,LomaLinda,CA92354,USA * Correspondence:[email protected];Tel.:+1-909-558-4723 † Theseauthorscontributedequallytothiswork. AcademicEditor:XiaofengJia Received:1October2016;Accepted:4January2017;Published:11January2017 Abstract: Cardiac arrest (CA) is a well-known cause of global brain ischemia. After CA and subsequentlossofconsciousness, oxygentensionstartstodeclineandleadstoaseriesofcellular changesthatwillleadtocellulardeath,ifnotreversedimmediately,withbrainedemaasaresult. Theelectroencephalographicactivitystartstochangeaswell.Althoughincreasedintracranialpressure (ICP)isnotadirectresultofcardiacarrest,itcanstilloccurduetohypoxic-ischemicencephalopathy induced changes in brain tissue, and is a measure of brain edema after CA and ischemic brain injury. Inthisreview,wewilldiscussthepathophysiologyofbrainedemaafterCA,someavailable techniques,andmethodstomonitorbrainoxygen,electroencephalography(EEG),ICP(intracranial pressure),andmicrodialysisonitsmeasurementofcerebralmetabolismanditsusefulnessbothin clinicalpracticeandpossiblebasicscienceresearchindevelopment. Withthisreview,wehopeto gainknowledgeofthemorepersonalizedinformationaboutpatientstatusandspecificsoftheirbrain injury,andthusfacilitatingthephysicians’decisionmakingintermsofwhichtreatmentstopursue. Keywords: ICP monitoring; cerebral autoregulation; Electrophysiologic monitoring; brain injury aftercardiacarrest; brainoxygenmonitoring; microdialysis; metabolictracingandcardiacarrest braininjury;intracranialpressure 1. Introduction Cardiacarrest(CA)hasayearlyincidenceofapproximately50–110per100,000peopleworldwide[1] andhasbecomealeadingcauseofcomaandadmissiontotheintensivecareunit(ICU).Progressin advancedlifesupport,accesstoemergentcoronaryangiography,andsupportforcerebralperfusion havecontributedtoanincreaseinCAsurvival[2]. DuetotheseverityofbraindysfunctionafterCA fromglobalischemia-reperfusioninjury,thereisaneedtounderstandtheprognosisofpatientsinthe ICUandtheirchancesofsurvival. Caregiverswanttoascertainapatient’schanceofsurvivalandhow serioustheirconditionis[3]. Thus,integrationoftracingmethodssuchaselectroencephalography (EEG), Intracranial pressure monitoring (ICP), brain oxygen monitoring, and microdialysis may providevaluableinformationregardingbraindysfunctionafterCA.Inthisreview,wewillprovidean updatedcriticaloverviewoftheavailabletracingmethodsforbraininjuryafterCAinadults. Explosive growth of technology and information has occurred over the years and clinicians approach their daily practice differently compared to previous generations of medical practice. Int.J.Mol.Sci.2017,18,129;doi:10.3390/ijms18010129 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2017,18,129 2of18 Areasonableexplanationtakesintoconsiderationthefactthatadvancesinpre-mortemnon-invasive diagnostic methods are available for doctors, with less need to perform pre-mortem biopsies. Advances in imaging, clinical laboratory studies, and surgical and nonsurgical tissue sampling techniquesoverthepastseveraldecadesprovidethetoolsneededtobetterdiagnoseanddetectpre mortempathologies,thusyieldingagreaternumberofantemortemdiagnosesandshiftingphysicians’ attitudeawayfromneedingtoperformadetailedautopsytoacquireinformation[4]. Inaddition, doctorsarenotgettingtrainedinautopsiessincetheAccreditationCouncilforMedicalEducation (ACGME)programhaseliminatedtheautopsyrequirementinresidencyeducation[5]. Nonetheless, some data support the continued value of autopsy in spite of medical diagnostic advancements becausetheyservetoincreasetheaccuracyofdeathcertificates,enhanceidentificationofemergingor reemergingpathogens/disease,andprovideaneducationalformatforclinicians,pathologists,and students[5].Anotherchallengeisthelargeheterogeneityinthepopulationsofhumansendingupwith cardiacarrest,whichmakeschoosingarepresentativeexperimentalmodelofcardiacarrestdifficult. Results are profoundlyheterogeneous, since there isan arrayof comorbidities. Thereis a needto improve experimental models since animal models are designed mainly to serve a monothematic purpose. Thiscouldbedonebycombiningcommoncomorbiditiessuchasdiabetesmellitus,obesity, andhypertensioninanexperimentalanimalmodeltobetterrepresenttheheterogeneityofthehuman populationexperiencingcardiacarrest[6]. ThePubMedsearchforthisreviewfocusedonoriginalarticles,reviewpapersandclinicaltrials publishedinpeer-reviewedjournals;however,thereareseveralchallengesinidentifyingtheexact intracranial events after cardiac arrest. Major problems regarding this issue include inadequate pre-mortemtissuesampling,difficultiesinbraintissueacquisitionandanalysisaftercardiacarrest, challenges in establishing a representative invivo experimental model that directly projects and describeseithermolecularorgrosseventsfollowingcardiacarrest,andtheexistenceofpopulation heterogeneityinpostcardiacarrestclinicalresearch. Inordertominimizeandexcludetheseeffectsin thisreview,weprimarilyfocusedonstroke-modelslikeglobalhypoxia-ischemiaandoxygendeprived celllinestudies. Inthisreview,wealsoinvolvedandcitedtheclinicaltrialswhosetargetedpopulation hasadiagnosisofcardiacarrestwithvariousetiologies. 2. Methods Forthisreview,multiplesearcheswereconductedinordertofindtheappropriatearticlesforeach subsection. InthesectionentitledPathophysiology,aPubMedBooleansearchwasperformedusing “cardiacarrestandpathophysiologyandbrain”,1820articleswerefound. AnotherBooleansearch wasperformedusing“globalbrainischemiaandpathophysiology”, and1852articleswerefound. Forty-threesourceswereused. InthesectionentitledElectrophysiologicMonitoringofBrainInjury after Cardiac Arrest, PubMed search criteria included “EEG and cardiac arrest”. These keywords wereusedtofindreviewpapersandoriginalarticlesinlasttenyearsand437articleswerefound, and19paperswereselected. InthesectionentitledIntracranialPressureMonitoringandCerebral Autoregulation,PubMedresearchdatabasewassearchedusingthefollowingkeywords: “Cerebral edemaandcardiacarrest”andfound382results. Reviewpaperswereavoided,andthisnarrowed downthesearchto3papersofinterestbasedoncriteriaofclinicalstudyanduseofexperimental animalmodels. “Intracranialpressuremonitoring”searchfound4872results. Reviewpaperswere avoided, andthisnarroweddownthesearchto10papersbasedoncriteriaofclinicalstudiesand experimentalanimalmodels. “Cerebralautoregulationandcardiacarrest”searchfound210results. Reviewpaperswereavoided,andthisnarroweddownthesearchtoonepaperbasedoncriteriaof clinicalstudy. Thetotalnumberofcitationsusedfor“IntracranialPressureMonitoringandCerebral Autoregulation” was 14. In the section entitled Brain Oxygen Monitoring, several searches were performed. Asearchusingkeywords“Near-infraredspectroscopyandCerebralOximetry”yielded 700results,and4wereselected. Asearchusingkeywords“Cerebralischemiaandoximetry”found 340articles,and3wereselected. Asearchusingkeywords“meanarterialpressureandcardiacarrest” Int.J.Mol.Sci.2017,18,129 3of18 found 1478 articles, and 2 were selected. Lastly, a search using keywords “cerebral oximetry and cardiacarrest”yielded121resultsand6wereselected. Categoriesforinclusionincludedclinically relevantandtranslatable,includinganimalstudies,monitoringmethodsalreadybeingimplemented intheclinicalsetting,measuredorwasinvolvedincontinuousmeasurementofbraintissueoxygen content/saturation, and more recent publications took priority. In the section entitled Metabolic ImagingModalitiesforCardiacArrestBrainInjury, PubMedsearchusedthefollowingkeywords, “metabolicimagingandcardiacarrestandbrain”and44searchresultswerefound.Anadditionalsetof keywordsincluded“molecularimagingandcardiacarrestandbrain”and16searchresultswerefound. Totalnumberofcitationsusedforthissectionwas6. InthesectionentitledMicrodialysis,aPubMed Booleansearchwasconductedusingthekeywords“Microdialysisandcardiacarrest”. Eighty-five articles were found. Excluding papers except for those published in last five years left 70 articles. Inclusioncriteriaalsoincludedusingreviewsforbackgroundinformationandthenfocusingonclinical trials. Fourteenpaperswereutilizedinthissection. 3. Pathophysiology The brain is extremely susceptible to global cerebral ischemia associated with cardiac arrest. Hosmann and colleagues, working with monkeys, found that consciousness was lost within 10 s after the onset of circulatory arrest and EEG activity becomes isoelectric within 20 s [7]. There was arapidlydecliningcerebraltissueoxygentensionto0inabout2mininapigmodelofcardiacarrest[8]. Whenundergoingcompletedglobalcerebralischemia,energysubstratesadenosinetriphosphate(ATP)in caninebraintissuesdepletedrapidlyto25%–30%ofbaselinelevelwithinthefirst4min(Figure1)[9,10]. Once the storage of ATP is completely consumed, the dysfunction of cell membrane ion pumps and the disruption of cellular ionic homoeostasis occur (Figure 1). The interstitial K+ concentration rapidly increases, membrane depolarization and a large influx of Na+, Cl− and water into cells, constitutingcytotoxicedema[11,12].Thecalciumeffluxpumpsfailandvoltage-gatedcalciumchannels open, contributing to a massive cytosol Ca2+ accumulation followed by the release of intracellular excitatoryaminoacidssuchasglutamateandaspiratebypresynapticterminals[13]. Whenactivatedby glutamate,N-methyl-D-aspartate(NMDA)receptorsactivateCa2+ionchannelsandfurtherincrease Ca2+ conductanceintotheintracellularspace;αamino-3-hydroxy-5-methyl-4-isoxasolepropionicacid (AMPA)receptorsactivateNa+ionchannelsallowingsodiuminflux.Asacriticalfactor,elevatedlevels ofintracellularCa2+exertcytotoxiceffectsatmultiplelevels,leadingtothemitochondrialdysfunction and free radical production [14], lipolysis and production of free fatty acids (FFAs) associated with phospholipases (PLA2) activation [15]. Mitochondrial Ca2+ overload cause the induction of inner mitochondrial membrane permeability transition (MPT), which then leads to disruption of mitochondrialmembraneintegrity,irreversibleoxidativedamage,andthelossofATPproduction, finallyresultingincelldeath(Figure1)[16,17]. Ifreperfusionstarts,itenhancestheproductionof alargeamountofreactiveoxygenspecies(ROS)originatingprimarilyfrommitochondrialcomplexesI andIIIoftheelectrontransportchain,intheformsofasuperoxideanion(O −),H O ,andhydroxyl 2 2 2 radical(OH−)[18]. Itoverwhelmstheendogenousmitochondrialandcytoplasmicscavengingsystems causingoxidativedamagetothemitochondriaandconsequentlythecell[19]. Otherhighlyreactive freeradicals,namelyreactivenitrogenspecies(RNS)areproducedbyproteinnitrosylationdueto thereactionofnitricoxide(NO)andsuperoxideanions,whichcanalsoleadtothedysregulationof cellularhomeostasis. ThemajortargetsofROS/RNSarelipids,andtheperoxidativeactionofROS promotestheinactivationofkeymetabolicenzymesthatregulateglucosemetabolism. ROS/RNScan alsocausecellulardamageanddeathincerebralischemiaandreperfusionindirectlybyactivating avarietyofsignalingpathways[20,21]. Theinitialcellswelling(cytotoxicedema)isatranslocationofinterstitialwaterintointracellular compartmentfollowingthedisturbanceofionichemostasis(Figure1); onlyafterthebeginningof reperfusionanetaccumulationofbrainwaterinterstitiallyoccursfollowingincreasedmicrovascular permeability[22].Increasedcerebralmicrovascularpermeabilityhasbeenobservedintheexperimental Int.J.Mol.Sci.2017,18,129 4of18 CAmodels[22–24]. Consistently,inCApatients,computedtomography(CT)andmagneticresonance imaging(MRI)scanninghavealsoshowndiffusebrainedemaformationpredictingpoorneurological outcomes[25–27]. BrainedemacanleadtoanelevatedICPduetothelimitedspaceforexpansionin thecrania[27,28]. Tissueswellingincreasescapillary–tissuediffusiondistanceandimpairsoxygen Int. J. Mol. Sci. 2017, 18, 129 4 of 17 (O )/wasteexchange,eventuallyleadingtolossoftissuefunction[22].ThemechanismsofCA-induced 2 cerebirmalpeadires moxaygfoenrm (Oa2t)i/ownasatree elxickhealnygme, uevlteinfatuctaollryi alel.adRiencge tnot lloys,sp oefr tiivssausec ufulanrctpioono [l2o2]f. aTqhue ampeocrhiann-i4sm(As QP4) hasboefe nCAsu-igndguescetedd caerseobrnael kedeeymma efcohrmanaitsiomn bareec aliukseelyt hmisulbtirfaacintorpiarel.d Roemceinntalyn,t pweraitvearsccuhlaarn npeololc oonf trols theraatqeulaipmoirtino-f4w (AaQtePr4i)n hflaus xbedeun rsiungggecsetreedb arsa olneed keemya mfeocrhmanaitsimon baecnadusiet itshitsh berarieng purleadtionmginsiatnet owfaotesrm otic channel controls the rate limit of water influx during cerebral edema formation and it is the regulating agentsforbrainwaterefflux[29]. site of osmotic agents for brain water efflux [29]. If global ischemia endures without resuscitation, severe cerebral ischemia renders the If global ischemia endures without resuscitation, severe cerebral ischemia renders the mitochondria mitochondria completely dysfunctional for ATP production, leading to necrotic cell death [30]. completely dysfunctional for ATP production, leading to necrotic cell death [30]. Although reperfusion Althoughreperfusionuponcardiopulmonaryresuscitation(CPR)andreturnofspontaneouscirculation upon cardiopulmonary resuscitation (CPR) and return of spontaneous circulation (ROSC) can recover (ROSnCe)ucraonnarle AcoTvPe lrevneelsu rtoo nata lleAasTt P70le%v–e8l0s%to ofa tnoleramsatl7 l0ev%e–ls8 (0F%iguorfen 1o)r, mit adloleesv neolst c(oFmigpulreete1ly) ,rietsdtooree snot compcleeltle fluynrcetisoton raes cdeelllafyuendc ntieounroansadl edleaaythed fonlleouwrso nina lthdee vauthlnfeorlalbolwe bsrianint hreegviounlns e[2r0a]b. lebrainregions[20]. FigurFeig1u.rDe e1m. Doenmstornastetrsattehse tchaes ccaasdceadoef oeff feefcfetsctas fateftrerc acradrdiaiacca arrrreesstt aanndd ddeeccrreeaasseedd ooxxyyggeenn tetnesnisoino nhahsa son thebroani nthcee lblrualianr cfeullnucltairo fnudncuteiotno ddueec rtoea dseecdreAasTePd (AATdPe n(Aodsienneotsrinipeh torispphhoaspteh)a,tien)c, rienacrseeadseedx ceixtacittoartoyraym ino acidsa,manindo tahceidfsa, ilaunrde tohfe Cfaaillcuiruem of eCfflaulcxiupmu meffplutxo pwumorpk .toI CwPor(kin. tIrCaPc e(rinetbrraaclerPerbersasl uPrree)s,suRrOe)S, R(rOeSa ctive (reactive oxygen species), RNS (reactive nitrogen species). The thin arrows indicate the increase or oxygenspecies),RNS(reactivenitrogenspecies).Thethinarrowsindicatetheincreaseordecreaseof decrease of either a substance or diagrams the consequences of cardiac arrest. eitherasubstanceordiagramstheconsequencesofcardiacarrest. An important feature of global ischemia reperfusion injury after CA and resuscitation is a Asunbsitmanptioalr tdaenlatyf beaettwureeeno tfheg elonbda olf isshcohret minisaultr eapnedr cfuelsl idoenatihn. jTuhryis “adfteelaryCedA apaonpdtotriec snuesucriotantailo n is asubdsteaantht”ia gledneelraayllyb eotcwcueresn setvheeraeln ddayosf ashndo rits imnsoustl teavniddencte linl dtheea tChA. T1 hreisgi“odne olfa ytheed haipppoopctaomtipcunse. uItr onal deatha”lsgoe oncecruarlsl ywoitchciun rtshes epvaertrsa olfd tahyes CaAn3d riesgmiono sotf ehvipidpeoncatminptuhse, sCtrAia1turmeg ainodn loafytehrse 2h ainpdp o5 cinam cepreubsr.aIlt also occurcsorwteixt h[3in1,3th2]e. Tphaer tdsiosrfutphteioCn Aof3 mreitgociohnonodfrihailp mpeomcabmrapneu sin,tsetgrriiatytu umndaenrldielsa tyheer ms2aina nmdec5hiannicsemre bral of neuronal apoptosis by releasing pro-apoptotic proteins such as cytochrome C and apoptosis- cortex[31,32]. Thedisruptionofmitochondrialmembraneintegrityunderliesthemainmechanismof inducing factor Smac [33,34]. Cytochrome C interacts with the cell death protein (CED-4) homolog, neuronalapoptosisbyreleasingpro-apoptoticproteinssuchascytochromeCandapoptosis-inducing Apaf-1, and deoxyadenosine triphosphate, forming the apoptosome and leading to caspase-9 factorSmac[33,34].CytochromeCinteractswiththecelldeathprotein(CED-4)homolog,Apaf-1,and activation [35–38]. Caspase-9 then activates caspase-3, followed by downstream caspase-2, -6, -8, and deoxyadenosine triphosphate, forming the apoptosome and leading to caspase-9 activation [35–38]. -10 activations [39]. Smac binds inhibitor-of-apoptosis proteins (IAPs), thereby promoting activation Caspaofs ec-a9spthaseen-3a c[4ti0v,4a1t]e.s Tchaes pdaoswen-3s,trfeoalmlo wcaesdpabsyesd coawn nclsetarevae mmacnasyp sausbes-t2r,a-te6 ,p-r8o,taeninds -i1n0cluacdtiinvga tpioolnys [39]. Smac(AbiDnPd-sriibnohseib) iptoolry-mofe-arapsoe p(PtoAsRisP)p [r4o2t]e, ilneasd(iInAgP tos) D,tNhAer ienbjuyrpy raonmd osutibnsgeqaucetnivtlayt iaopnopotfotciacs cpealls dee-3ath[4. 0,41]. ThedEomwenrgstirnega emvicdaesnpcae saelssoc aimnpclliecaavtees mthaen inytrsiunbsisct rcaatsepapsreo itnedinespienncdleundti mngecphoalnyis(mA DunPd-reirblyoisneg) npeoulyromne rase (PARaPp)o[p4t2o]s,isle. aTdhien agptooptDosNisA inidnujucirnyg afnacdtosru (bAsIeFq),u eenndtolynuacpleoapsteo Gtic acnedl lBdcle-a2/tahd.eEnomveirrugsi nEg1Be v1i9d keDncae- also interacting protein (BNIP3) constitutes this set of proapoptotic proteins released from mitochondrial transition pores [18]. In addition, apoptotic signaling can be trigged extrinsically through members Int.J.Mol.Sci.2017,18,129 5of18 implicatestheintrinsiccaspaseindependentmechanismunderlyingneuronapoptosis.Theapoptosis inducingfactor(AIF),endonucleaseGandBcl-2/adenovirusE1B19kDa-interactingprotein(BNIP3) constitutes this set of proapoptotic proteins released from mitochondrial transition pores [18]. Inaddition,apoptoticsignalingcanbetriggedextrinsicallythroughmembersofthedeathreceptor family,suchasFas,andtumornecrosisfactor(TNF)receptor. ThebindingofextracellularFasligand Int. J. Mol. Sci. 2017, 18, x 5 of 17 (FasL) to Fas-associated death domain (FADD) protein can activate procaspase-8 and subsequent caspaseo-f3 thpea dthewatha yre.cCepatsopr afasme-il8y,i ssuaclhs oasa Fbalse, atnodt rtuumnocra tneecarnosdis afcactitvora (tTeNBFc)l -r2ecienpttoerr.a Tchtien bginddoinmg aoifn (BID), extracellular Fas ligand (FasL) to Fas-associated death domain (FADD) protein can activate apro-apoptoticmemberofBcl-2family,subsequentlyinitiatingcytochromeCreleaseandapoptosis[18]. procaspase-8 and subsequent caspase-3 pathway. Caspase-8 is also able to truncate and activate Bcl- Inflammationplaysanimportantroleinglobalbrainischemia. Thepost-resuscitationdiseases 2 interacting domain (BID), a pro-apoptotic member of Bcl-2 family, subsequently initiating cytochrome have been suggested as a sepsis-like syndrome, involving a systemic inflammatory response in C release and apoptosis [18]. a cardiac arInreflsatmpmaattiieonn tp[la4y3s] .anA imftpeorrtCanAt raolned inr gelsoubsalc ibtraatiino insc,haemraiap. iTdhee pleovsta-rteiosunscoitfatvioanr idoisuesasceys tokines and solhuabvlee breeecne psutoggrsesotecdc uasr sa isneptshise-lbikleo osydnsdtrroemame, iansvoelavrinlyg aas sy3sthem(Fici ginufrlaem2m).atTohrye rleesvpeolnsseo finc ya tokines such ascainrdteiarcl eaurrkeisnt -p6ataienndt [s4o3]l.u Abflteert uCmA oarndn erecsruossciistaftiaocnt,o ar rraepciedp etloevraItIioanr eof wvaerliloucos rcryetolaktiendes wanidth tissue soluble receptors occurs in the bloodstream as early as 3 h (Figure 2). The levels of cytokines such as hypoxia marker lactate [43]. In a mice model of cardiac arrest, resuscitation resulted in the rapid interleukin-6 and soluble tumor necrosis factor receptor II are well correlated with tissue hypoxia infiltration of neutrophil and pro-inflammatory T-lymphocytes into the brain, starting within 3 h marker lactate [43]. In a mice model of cardiac arrest, resuscitation resulted in the rapid infiltration ofresuscitationandlastingforthethreedays[44,45]. Theactivationofresidentmicrogliainitiated of neutrophil and pro-inflammatory T-lymphocytes into the brain, starting within 3 h of resuscitation withinmanidn luatsetisnga ffoter rthteh tehroene sdeatyos f[4c4a,4r5d].i aTchea arcrteivsattaionnd ofd reevsiedleonpt emdicorovgelira hinoituiartsedto wditahiyns maifntuerterse asftuesr citation (Figuret2h)e[ 4o6ns].etT ohfe caarcdtiiavca tairorensto afnTdo ldl-elviekleopreedce opvteorr hsoaunrds tsou dbasyesq aufetenrt lryesnusuccitlaetaiornf a(Fctigour-rκe B2)c [o4n6]t.r iTbhuet etothe pro-inflaacmtivmataitoonr oyf gTeonll-eliskter raencsepcrtoiprst iaonnd isnubhsueqmuaenntlcye nllulcinleeasr f[a4c7to].r-SκuBc chonTtorilbl-ultiek teor tehcee pprtoo-irnsf/laNmFm-κatBorsyi gnaling genes transcription in human cell lines [47]. Such Toll-like receptors/NF-κB signaling on monocytes onmonocytescontributestopost-resuscitationsyndrome[48]. Infiltratingperipheralleukocytesand contributes to post-resuscitation syndrome [48]. Infiltrating peripheral leukocytes and brain residual brainresidualmicrogliaandmacrophagesfurthertriggerinfiltrationofperipheralimmunecells,by microglia and macrophages further trigger infiltration of peripheral immune cells, by releasing ROS releasinagnRd OpSroa-inndflapmrmo-aintoflrya mcymtoaktionreys, cwythoickhin iens ,tuwrhn icahffeicnt tmuricnroagflfieacl tamctiivcraotigolni.a lTahcist ivvaictiioouns. cTyhclies vicious cyclecocnotnrtirbibuutteess ttoo oonnggooinign gsesceocnodnardya nreyunroenuarl oinnjuarlyi n[4ju9,r5y0][. 49,50]. Figure2F.igCuarer d2.i aCcaradriraecs atrarensdt atnhde trhees ruesltuilntignga cactitvivaattiioonn ooff ththe einifnlaflmammamtorayt ocrayscacdaes cisa ddeemisondsetrmatoedn sotnr atedon thefigutrhee afibgourvee a.bIonvflea. mInfmlamatmioantioisn dise dpeipcitcetdeda ass aa ffaaccttoorr ththata ctocnotrnibtruitbeus ttoe ssetcoosnedcaoryn ndeaurryonnael uinrjounrya linjury anddeaatnhd. dTehateh.d Tahseh deadshliende lirneep rreepsreensetnstsa ad diviviissiioonn ooff tthhe ebrbarian iannadn pderpipehreirpyh. eTrhyis. fTighuirse fishgouwres tshheo wsthe migration of cells from the blood into the brain. The arrows in green demonstrate the factors that will migrationofcellsfromthebloodintothebrain.Thearrowsingreendemonstratethefactorsthatwill lead to Secondary Neuronal Injury and Neuronal Death. Penetration of Microglia in the brain also leadtoSecondaryNeuronalInjuryandNeuronalDeath. PenetrationofMicrogliainthebrainalso leads to stimulation of Cytokines, inflammation, and ROS (reactive oxygen species). The upward leadstofasctiimngu alrartoiwons ionfdiCcaytteo tkhien iensc,reiansflea inm am cearttiaoinn ,faacntodr RorO ceSll( arfetaecr tciavredioaxc yargreenst.s Gpeercriye Ss)h.aTwh, Meuicprowglairad facing arrowsainndd inceautreotnhs,e 2i5n Jcurleya 2s0e0i5n bay ccererattaivine fcaocmtmoroonsr; cHeellmaafttoelrogciastr,d Sieagcmaernrteesdt .NGeuetrrroyphSihlsa, w31, MAuigcurostg liaand neurons2,00295, CJurelyati2v0e0 C5obmymcornesa. t ivecommons;Hematologist,SegmentedNeutrophils,31August2009, CreativeCommons. Int.J.Mol.Sci.2017,18,129 6of18 Inthenextsections,wewillreviewthetracingmethodsthatmonitorbraininjuryandedema, facilitating the understanding of some of the pathophysiological mechanism above. In addition, wewilldiscussthemethodsavailabletomonitorbrainfunctionafterCAandtheirapplicationand updatesinresearchandclinicalpractice. 4. ElectrophysiologicMonitoringofBrainInjuryafterCardiacArrest EEG,anelectricalphenomenonofthebrain, wasdiscoveredmorethanonecenturyago, and haslastedseveraldecades. ScientistsaretryingtouseEEGasaprognosticpredictorandfindoutits advantagesafterCAandhumanbraininjury.Currently,themostusefulmethodofElectrophysiological MonitoringofBrainInjuryafterCAisanEEG.Mostpatientssuccumbduetohypoxicbraindamage; evenaftersuccessfulcardiopulmonaryresuscitationfollowingCA,predictionofbraininjuryduringor afterCAremainsanimportantissueguidingthedecisiontocontinueorwithdrawaltreatment,and organdonation. TheprognosticpredictionofEEGisanimportantdiagnosticcriterionofbraininjury, suchasclinicalsymptomsandbiochemicalmarkers. TechnicaladvantagesofEEGrecordingincluding continuousEEG,quantitativeEEG,andamplitude-integratedEEGareusedtopredictpatientoutcomes afterCA.Moreover,somatosensory,motor,auditory,andvisualevokedpotentialsinEEGprovide informationaboutdegreeoffunctionaldamageofbrainafterCA[51]. HumanandanimalstudieshaveshownthatEEGisawell-describedmethodtomonitoracute braininjuryafterCA.ThestudiesdemonstratedthatEEGisausefulmonitorforseizureandischemia detectionand,hasawell-describedroleforEEGinconvulsivestatusepilepticusafterCA[52]. Recently, severalreviewpapershavesummarizedElectrophysiologicMonitoringofBrainInjuryafterCAwith therapeutichypothermia(TH),astandardmethodfortreatmentofCA[51,52]. Thus,mostEEGrecords havebeendoneinCAwiththerapeutichypothermiainhumans. Recentstudiesshowedthatbispectral index(<40,acalculatedsummaryofrawEEGdataincludingfrequencyandamplitude)[53,54],burst suppression(aquantitativeEGGparameter)[55,56],periodicdischarges(commonlyrecognizedpatterns ofabnormalEEG)[57,58],epileptiformdischarges(anuncommonEEGpatternincludingperiodicspike, sharpandslowwavecomplexandmorecommoninpeoplewithepilepsy)[59],stimulus-induced rhythmicperiodic,orictaldischarges(aspectrumofstimulation-inducedEEGpattern)[60]intheEEG recordsaftersuccessfulresuscitationwithnon-therapeutichypothermiamayindicatepoorprognosis. Inaddition,anon-reactiveEEG[61,62]maypredictpoorprognosisinpatientswithouttherapeutic hypothermia,whilerhythmicdeltaactivitymayindicatebetterprognosis[55,58]afterCA[63]. TheabsenceordiscontinuationofreactivityincontinuousEEGisastrongpredictorofoutcome independentoftemperatureandsedatives[64]. BilateralabsenceofcorticalN20component,anearly cortical response in EEG, on median nerve somatosensory evoked potentials (SSEPs) was one of themostspecificpredictorsofpooroutcomeinthe2006AmericanAcademyofNeurologypractice parameters[65]. However,onestudyfoundthatbilateralabsenceofN20potentialsdoesnotguarantee pooroutcomeamongsttherapeutichypothermia-treatedCApatients[66]. Recently,acasereportin ayoungpatientshowedthathighly-preservedanteriorcortico-thalamicintegrityisassociatedwith thepresenceofconsciousawarenessindependentfromthedegreeofinjurytootherbrainareas[67]. BorjiginandcolleaguesdescribedtheCAstages,whichbeganatthelastheartbeatintheEEG,and showedthatgammaoscillationsindicateahighlyarousedbrain. Furthermore,theydemonstrated thatthemammalianbrainhasthepotentialforhighlevelsofinternalinformationprocessingduring clinicaldeath[68]. Cellular electrophysiology, such as multi-unit activity and local field potentials, has strong potentialforimprovingprognosticationafterCA,buttheystillrequirefurtherinvestigationbefore beingtranslatedintoinvivostudiesandclinicalpractice[51].StudiesshowedthatacontinuousEEGis morepreciseforevaluationofbraininjuryafterCA[69],especiallytodetectnon-convulsiveepileptic status. ThisstatusisacriticalconditionthatcouldbeinducedbyCA,causingexacerbationofbrain injury,andpooroutcomes[70]. Diagnosisandanti-convulsiveepilepticstatustherapymightbeone bestwaytoprotectbraininjuryafterCA. Int.J.Mol.Sci.2017,18,129 7of18 MorecomparablestudiesarerecommendedforscientificevidencetoaccuratelydescribeEEG characterization after CA with and without therapeutic hypothermia. They also need to describe outcomes after CA that are altered under hypothermic conditions. Several limitations should be consideredinthefurtherstudies. Asadiagnostictool,waveform-basedEEGanalysisissubjectiveand laborious,withresultsdependingontheinterpreter’sexpertise[71]. Moststudiespublishedarecase reports. Thereisalackoflargenumberstudies,andanimalexperimentsinvariousclinicalcontext usingdifferentmeasuresofthebrainactivityandfunctioncollected.Inaddition,dataareheterogenetic bytheuseofvariousdevices[71]. TheoptimalmontageandnumberofelectrodestorecordEEGin theICUisuncertainandEEGrecordingisdependentonacertainnumberofelectrodes,theirnature, formandplacement. Thus,perspective,directionofclinicalapplicationofEEG,andstudiesshould beconsideredinordertoestablishstandardizedsettingswithconstanttimeofEEGrecordingafter CA,anduseofcontinuedEEGrecordingsasaprognosticpredictorinEEG,suchasN20andcerebral recoveryindex. FutureimprovementofEEGusingcurrentadvantagesofEEGdevicesmightbefinest andspecificpredictionmethodofElectrophysiologicalMonitoringofBrainInjuryafterCA. 5. IntracranialPressureMonitoringandCerebralAutoregulation Cerebral edema is an important cause of secondary brain injury following CA and must be carefullymonitoredinordertodecreasetheriskofcomaandchanceofmortalityamongstindividuals thatexperiencesuchadevastatingevent[27,29]. Increased intracerebral pressure (ICP) is not a direct result of cardiac arrest, as evidenced by a clinical study conducted by Sakabe and colleagues who found that ICP persistently remained below20mmHginfiveoutofsixpatientsfollowingcardiopulmonaryresuscitation[72]. Nonetheless, cerebraledemacanstilloccurandthereforeanincreaseinICP,duetohypoxic-ischemicencephalopathy inducedchangesinbraintissue. Brainswellingwasfoundinagroupofpatientsthatexperienced CAasaresultofrespiratorydistressbasedonresultsofaclinicalstudyconductedbyMorimotoand colleagues,whichcouldeventuallyleadtocerebralherniationandbraindeath[27]. ICPmonitoringis animportantclinicaltoolduetoastrongassociationbetweenhighICPs(>20mmHg)andincreased ratesofmortalitybasedonoutcomesinpatientswithseveretraumaticbraininjury[73]. Indications for ICP monitoring, especially in post-CA patients presenting with initially unremarkable cranial computedtomography(CT)neuroimaging,canbedeterminedbasedonapredictivemodel,which includespatients’age(>40years),systolicbloodpressure(<90mmHg)andsignsofdecerebrateor decorticateposturing[74,75]. The most commonly used ICP monitoring devices are categorized based on their location of placement: parenchymal and ventricular. Both types are minimally associated with infection and bleedingwithgreaterriskofcomplicationstypicallyseeninuseofextracranialventriculardrainICP monitors[76]. Inordertodecreasethechanceofcausingfurthercomplicationsinpatientsthatare alreadyincriticalconditionduetointracranialhypertension,non-invasiveICPmonitoringtechniques arecurrentlybeingdeveloped.TheseincludetranscranialDopplerdevices,opticnervesheathdiameter (ONSD) measurements and even pupillometry [77–79]. Unfortunately, due to limited studies and lackofreproducibleresults,thesenovelnon-invasiveICPmonitoringdevicesarenotwidelyusedin clinicalpractice. Besides the obvious danger of cerebral herniation, the other concern associated with having increasedICPisadecreaseincerebralperfusionpressure(normal=60mmHg),whichisderivedfrom meanarterialpressure(MAP)—ICP.Inanon-pathologicstate,cerebralautoregulationisresponsiblefor maintenanceofcerebralbloodflow(CBF)inlightoftheconstantlyfluctuatingMAP.Whileconducting aclinicalstudy,Sundgreenandcolleaguesfoundthatinamajorityofpatientsintheacutephaseof cardiacarrest,cerebralautoregulationwaseitherabsentorright-shifted,therebysuggestingthatMAP shouldbemaintainedathigherlevelstomaintainpropercerebralperfusion,whichwasmeasuredvia transcranialDopplerultrasonography[80]. Int.J.Mol.Sci.2017,18,129 8of18 However, the aforementioned advances in ICP monitoring and understanding of cerebral autoregulation would have never seen the light of day unless results from animal studies were translatedintoclinicaltrials,interventionsandinnovations. Experimental studies are often a required precursor to clinical trials that test differences in interventiontherapies’effectivenessinaclinicalsetting.Mirskiandcolleaguesquestionedthedifference ineffectivenessbetweenadministrationofmannitolandhypertonicsalineinreductionandcontrolof ICP,thelatterofwhichwasfoundtobemoreeffectiveinrats,atleastinthefirst8h[81]. Whileother rodent studies conducted by Hiploylee and colleagues came to the conclusion that there are no differenceswhencomparingICPreadingsfromepiduralvs.intraparenchymalmonitoringlocations[82], therebygivingcliniciansabasistoconfirmsuchfindingsthroughclinicaltrials,yieldingresultsthat would allow less invasive ICP monitoring options for patients requiring such care. Furthermore, studieswhichutilizedultrasoundinICPmonitoringandanovelmethodofepiduralICPrecording, suchasthoseconductedbyLimbrick,andUldall,respectively,arethedrivingforcebehindprogress andinnovationwhenitcomestonovelmethodsforlong-termICPmonitoring,whichishighlysought afterinboththebasicscience,aswellasintheclinicalsetting[83,84]. 6. BrainOxygenMonitoring Whilemethodsexistformonitoringcerebraloxygencontentperioperatively,nostandardized method of continuous cerebral oxygen monitoring currently exists for patients undergoing an out-of-hospital (OHCA) or in-hospital CA (IHCA). Parnia and colleagues state that the ability todetectandquantifycerebralischemiainreal-time,duringCPRisofvitalclinicalimportance[85]. Patients,withapost-clinicaldeterminationofCAhavesuboptimallevelsofcerebraloxygencontent whichmayleadtosecondaryischemicinjuries(i.e.,sterileinflammatorycascade). Manyofthemoreestablishedmethodsofcontinuouscerebraloxygenmonitoringareinvasive, such as monitoring catheters, and or unfeasible (e.g., constant fMRI, CT monitoring) for both out-of-hospitalandin-hospitalCApatients.Inaddition,neuromonitoringsuchastranscranialDoppler sonography and jugular oxygen content (SjvO ) are unavailable to out-of-hospital patients [86]. 2 In addition, jugular oxygen content (SjvO ) is unavailable to those experiencing OHCA [86]. 2 Forinstance,thetreatmentofbraininjuriessuchastraumaticbraininjuryallowsfortheplacement ofmonitoringcatheterssuchastheNeurovent-PTOandLicox[87]. Despitetheaccuracyofregional oxygensaturationprovidedbyprobessuchasthese,itmightnotbeclinicallyprudentforpatients concurrentlyundergoingbothOHCAand/orIHCA.Inotherwords,theaccuracyoftheseoxymetric probesishinderedbytheirinvasivenessandinabilitytobeutilizedduringCPR. Anon-invasivemethodofaccessingcerebraloxygencontentmaycomefromdeterminingmean arterialpressure(MAP).Kilgannonandcolleaguespostulatedwhetheranassociationbetweenmean arterial pressure (MAP) and neurological outcome could be found [88]. In the observation of CA patientsoveraperiodof6hpost-return-of-spontaneous-circulation(ROSC),theydiscoveredthat40% ofpatientswithanaverageMAPpressureabove70mmHgwereassociatedwithagoodneurological outcome[88]. AcountertotheconclusionbyKilgannonandcolleaguesarguesthatcentralvenous pressure (CVP) is a more accurate indicator of cerebral oxygen saturation than MAP [89]. A pilot studyconductedbyAmelootandcolleaguesfoundthataprolongedCVPover5mmHgincreased thelikelihoodofrecoverywithapoorneurologicaloutcome[89]. Dataanalysisofsimultaneously recordedCVPandcerebraltissueoxygen(SctO )contentvianear-infraredspectroscopy(NIRS)showed 2 anassociationbetweenahighCVP(>20mmHg)andadecreaseinSctO content[89]. Additional 2 analysis between CVP and MAP showed CVP to associate more closely to changes in SctO [89]. 2 Unfortunately, the measurement of CVP requires the insertion of a venous catheter, a procedure that cannot be conducted on OHCA patients, specifically during CPR. However, multifactorial measurementsofSctO withrespecttoMAPandCVPmaybeofanincreasedbenefittoIHCApatients. 2 Studieshaveemergedregardingthefeasibilityandaccuracyofnear-infraredspectroscopy(NIRS) fornon-invasivecerebraloximetry[90]. NIRSutilizesinfraredlight(700–1100nm)todeterminethe Int.J.Mol.Sci.2017,18,129 9of18 differenceinabsorptionbetweenoxyhemoglobinanddeoxyhemoglobin[91]. Theuseofnear-infrared spectroscopyduringCPRhasproducedmultiplestudiesresultinginacorrelationbetweenhigher regional oxygen saturation and a higher chance of return of spontaneous circulation [85,92,93]. However,anotherstudyindicatedthatthehighregionaloxygensaturationandpossibilityofreturnof spontaneouscirculationwasnotsignificanttodeterminesurvivabilitytodischarge[94]. There are pitfalls with cerebral oximetry with near-infrared spectroscopy. Meng and colleagues[95]suggeststhattheregionalareasampledbynear-infraredspectroscopyissuperficial and may not detect deeper regions that may be vulnerable to ischemic insults post-CA. However, morestudiesinvolvingnear-infraredspectroscopybothduringCPRandpost-returnofspontaneous circulationwithlargersamplesizesshouldbeconductedtodeterminewhetherahighregionaloxygen saturationincreasesalikelihoodofafavorableneurologicaloutcome. 7. MetabolicImagingModalitiesforCardiacArrestBrainInjury PotentialpredictionofneurologicoutcomeafterCAinducedbraininjuryhasbeenoneofthe mainaimsofadvancedneuroimagingtechniques. Evidencefromclinicalstudieshaspointedoutthe first72haftercardiopulmonaryresuscitationtobeapoorpredictionforcerebralprognosis. Thus, reducingthelackofcertaintyinneurologicprognosispredictionshouldbetheleadingpurposeof advancedmolecularimagingtechniqueswheremaintenanceandmodulationofcellularpathways causingbraininjurycanimproveneurologicoutcomesaswell[96]. BraininjuryfollowingCAinvolvesperiodsofglobalhypoxia-ischemia, reperfusionrecovery, glutamate consumption, and GABA-induced pathways [97]. Yi Zhang and colleagues compared ventricularfibrillationandasphyxialCAbraininjurymodelsinpigswith18F-fluorodeoxyglucose PET/CTtechniquetoevaluatethemetabolicactivityintheresidualcerebraltissue. Themetabolic activityintwodifferentCAmodelswasfounddecreasedcomparedtoshamintheparietalandfrontal lobeaswellasbrainstemandcerebellumat24hafterspontaneousrecirculation.Anadditionalreduced cerebralglucosemetabolismintheasphyxialCAgrouphadbeendetectedtobemoresignificantthan intheventricularfibrillationgroup. Ontheotherhand,authorsemphasizedthelongerCPRduration intheasphyxialCAgroupcomparedtotheventricularfibrillationgroupand,therefore,itsassociation withpoorneurologicprognosis[98]. However,anolderandverylimitedsamplesizedclinicalstudy bySchaafsmaandcolleaguesreportednobeneficialeffectsof18F-fluorodeoxyglucosePETtechnique inmeansofspecifyingneurologicprognosisafterCA[99]. Clinically,DavidKHandcolleaguesreportedabroadliteraturereviewinordertocorrelatethe association between levels of evidence and quality of previous studies for predicting the accurate neurologic outcomes with molecular neuroimaging techniques in post-CA patients. This review discussedtheprosandconsofPositronEmissionTomography(PET)andSingle-PhotonEmission Computed Tomography (SPECT) in prognostication. However, limited sample sizes, variability in imaging times, and inadequate standardization methods in previous clinical research were present [100]. Krep and colleagues investigated the combination of diffusion-weighted imaging (DWI),1H-protonspectroscopy(H-MRS)andperfusion-weightedimaging(PWI)inanexperimental cat study and monitored the variations of regional cerebral blood flow after cerebral recirculation alongwithlactateandcreatininemeasurementsduringthefirst6hafterCA.Despitethefavorable results,thelowerstatisticalpowerandinadequatemodelstandardizationthroughtheexperimentare themainrestrictedfactorsfortheirresults[101]. Magneticresonancespectroscopy(MRS)isafavorableadvancedneuroimagingtechniquefor assessingmetaboliteconcentrationalterationsinischemicbraininjury. InmeansofCAbraininjury, Tangandcolleagues[102]analyzedbrainmetabolitesafterCAandexhibitedlowerlevelsofNAA/Cr (reduced N-acetyl aspartate (NAA)-to-creatine ratio) and NAA/Cho (reduced N-acetyl aspartate (NAA)-to-Cho ratio) at 6 h after spontaneous recirculation although Cho/Cr levels was found increased. Furthermore, in that study, hypothermia has a lessening effect on NAA/Cr decrease andCho/CrincreaseafterCA.Paralleltotheirstudy, Suandcolleaguesusedsinglevoxelproton Int.J.Mol.Sci.2017,18,129 10of18 magnetic resonance spectroscopy in CA pig model and found lactic acid production was reduced inhypothermiagroup[103]. ChanKandcolleaguesdesignedanexperimentalratstudyaimedto investigatetheH-MRSefficacyforevaluatingneuroprotectivemetabolicchangesduringhypothermia withCA.Authorsdemonstratedthetransientchangesofglucose,choline,tau,myo-inositol,NAA andlactateincerebralcortexandthalamusasaresultofhypothermia[104]. Moreanimalandclinical researchwithmagneticresonancespectroscopyarenecessaryinordertoestablishasagoldstandardfor monitoringthetherapeuticeffectsofhypothermiaandenhancethemetabolicimpactsofhypothermia duringCAbraininjury[102]. 8. Microdialysis Microdialysisisamethodofneuromonitoringconsistingofaprobecoveredinasemi-permeable membrane,whichisinsertedintotheinterstitialtissueofthebrain. Asolution,usuallynormalsaline orartificialcerebralspinalfluid,isperfusedthroughtheprobeandintothetissue,allowingcerebral fluid,alongwithsomesmallmolecules,topassivelydiffuseintothemembranewheretheextracellular concentrationofsoluteismeasured. Commonsolutesofinterestincludefreeions,neurotransmitters, andotherbiomarkersandmetabolites[105]. CA often leads to a cessation of blood flow to the brain, creating areas of ischemia and consequentlybraindamage.Reperfusionistypicallythefirstinthelineoftreatmentsadministered;yet itisnotwithoutrisk. Reperfusioninjuryincludesabroaddescriptionofdamagesthatcanoccurwith restorationofcerebralbloodflow. Althoughthesemoleculareventsarelargelyunknown,research inthisfieldisquicklygrowing. Duringischemia,cellularfunctionisalteredandoneoftheknown pathways of damage is that of mitochondrial dysfunction. The downstream cascade is believed to begin in the mitochondria, the lack of oxygen results in anaerobic respiration, and in time, cell death[106]. Whentreatingacutebraininjuryitisimperativetomanagethesedownstreamcascades, suchasinflammationandedema,inordertopreventtheworseningoftheinitialcondition. Through closelyobservingthephysiologicalchangesoccurringintheinjuredbrain,itbecomespossiblefor physicianstodeterminethepatients’exactneedsanddevelopaneffectivetreatmentplanthatmay preventorlessentheeffectsofsecondaryinjuries[107]. Themostcommonapplicationofmicrodialysis is thus measuring cerebral metabolism through observing the levels of lactate (Figure 3), glycerol, pyruvate,glutamate[108],evenfreeionsintheextracellularspace[109],andglucose[110]. Althoughithasbeenusedextensivelyasaresearchtool,furtherdevelopmentsofmicrodialysis allowittobeusedinclinicalsettingstobettermonitorpatientswhohavesufferedseverebraininjury. Changesinlevelsoflactate,pyruvate,glycerolandglutamateactasbiomarkersandallowcliniciansto determinethecurrentstateofapatient’sbrain,aswelltopossiblyaidintheinterventionofsecondary injurysuchashypoxia, glucosedepravation[111]edema, andinflammation[107]. Bymonitoring the biochemical state of the brain, it is possible to further examine the mechanisms in action, and providemoretargetedtreatment. Acommonmeasurementusedtomonitorcerebralmetabolismis theratiooflactatetopyruvate,orLPR(LactatePyruvateratio). Anincreaseinthisratioiscorrelated withneuronaldeclineduetoischemiaorpost-ischemicmitochondrialdysfunction[112]. Iftheratio is increased due to an increase in lactate, while maintaining a relatively normal level of pyruvate, itindicatesincreasedmitochondrialdysfunction(Figure3);howeverifthereisanincreaseinratio with a normal lactate concentration and a marked decrease in pyruvate, ischemia is the outcome indicated[113]. TwoDanishstudies,onebyNielsenandtheotherbyJacobsensupportedthebedside useofmicrodialysistodistinguishbetweenmetabolicchangesrelatingtoischemiaandmitochondrial dysfunction[112,114]. HosmannandcolleaguesusedrodentstocreateamicrodialysisCAmodel,usingmicrodialysisas aneuro-monitortodeterminecerebralmetabolismduringbaseline,CA,cardiopulmonaryresuscitation, reperfusion, and death. Significant results include the possible distinction between survivors and non-survivors. Non-survivors demonstrated with a marked increase in glutamate compared to survivingrodentswithin8minofCPR.Ontheotherhand,survivorswerecharacterizedwithhigher
Description: