Path Actuators for Magnetic Pulse Assisted Forming and Punch-less Electro-Magnetic Shearing A THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Scott Michael Golowin, B.S. * * * * * The Ohio State University 2008 Master’s Examination Committee: Dr. Glenn S. Daehn, Adviser Dr. John E. Morral ___________________________ Advisor Graduate Program in Material Science and Engineering © Copyright By Scott Michael Golowin 2008 ABSTRACT Path actuators can be fabricated very quickly and inexpensive, allowing customized products to be brought to market very quickly. Only one sided tooling is required, since an electro-magnetic force is used to drive the work sheet. This eliminates high tolerance problems in matched tooling and could be implemented into a manufacturing process. The path actuators were successfully used in net shape calibration forming of doubly bent U channels and three shearing operations. The path actuator used for calibration forming can be tuned to the requirements of the incoming material and form, by simply varying the discharge energy through the actuator. For both thicknesses of DP 600 (0.035 and 0.057 inches), the doubly bent U channels were formed to 89-90° sidewall angles using 5.6 kilojoules of discharge energy. The path actuator used in a shearing operation required tuning of two variables: offset distance and energy. The coils were designed to create a magnetic pressure on both sides of a shearing edge. Zero offset distance showed the most promise, shearing at the lowest energy. It also showed promise in more complex shapes, without high tolerance issues. ii The high velocity punch-less shearing method developed here minimizes burrs on shearing and no slivers have been seen on any of the parts sheared. iii DEDICATION This is to my Mother, Father, and Sister. They always knew what I was capable of doing and were always a positive encouragement. Without them I would not have made it this far. iv ACKNOWLEDGMENTS This is a relatively long list. First and foremost I need to acknowledge my advisor Professor Glenn Daehn, whom gave me a chance to work in this wonderful field of Electro-Magnetic Forming (EMF). Without him, I would not have found this exciting work environment of explosions and high speed forming, which brings excitement to my work every day. The next people I would like to thank is my fantastic graduate group I have worked with: Manish Kamal, Mala Seth, Jianhui Shang, Yuan Zhang, Kristen Banik, Jacob Portier, Jonathan Evarts, Kinga Uniocic, Geoffrey Taber, Anupam Vivek, and last but not least Kathy Babusci. These people made work enjoyable and functional. I would also like to acknowledge everyone that I have come in contact with throughout various companies researching EMF. v VITA August 30, 1983 .......................................Born – Columbus, Ohio 2006..........................................................B.S. Material Science and Engineering, The Ohio State University 2006 – Present ..........................................Graduate Researching Associate, The Ohio State University PUBLICATIONS Research Publications 1. Scott Golowin, M. Kamal, J. Shang, J. Portier, A. Din, G.S. Daehn, J.R. Bradley, K.E. Newman and S. Hatkevich, Application of a Uniform Pressure Actuator for Electromagnetic Processing of Sheet Metal. J. of Mat. Eng. & Perf. 2007. 16(4): p. 455- 460 FIELD OF STUDY Major Field: Material Science and Engineering Area of Emphasis: Electromagnetic Forming vi TABLE OF CONTENTS ABSTRACT ................................................................................................................ ii DEDICATION ............................................................................................................ iv ACKNOWLEDGMENTS ........................................................................................... v VITA ........................................................................................................................... vi TABLE OF CONTENTS .......................................................................................... vii LIST OF FIGURES ..................................................................................................... x LIST OF TABLES ................................................................................................... xvii CHAPTER 1 ................................................................................................................ 1 INTRODUCTION ................................................................................................ 1 1.1. ELECTRO-MAGNETIC FORMING BASICS ..................................... 1 1.2. MOTIVATION FOR RESEARCH ........................................................ 5 1.3. OBJECTIVES ........................................................................................ 9 CHAPTER 2 .............................................................................................................. 10 PATH ACTUATORS ......................................................................................... 10 vii CHAPTER 3 .............................................................................................................. 13 MAGNETIC PULSE ASSISTED FORMING ................................................... 13 3.1. INTRODUCTION ................................................................................ 14 3.2. EXPERIMENTAL METHOD ............................................................. 17 3.3. ANALYTICAL PROCEDURES ......................................................... 21 3.4. EXPERIMENTAL RESULTS ............................................................. 22 3.5. ANALYTICAL RESULTS .................................................................. 25 3.6. DISCUSSION ...................................................................................... 29 CHAPTER 4 .............................................................................................................. 31 PUNCH-LESS ELECTRO-MAGNETIC FORMING ....................................... 31 4.1. INTRODUCTION ................................................................................ 31 4.1.1. OTHER SHEARING METHODS ............................................. 32 4.1.2. HIGH VELOCITY SHEARING ............................................... 33 4.2. EXPERIMENTAL PROCEDURES .................................................... 40 4.2.1. TWO BY TWO PROCEDURES ............................................... 40 4.2.2. ONE BY ONE PROCEDURE ................................................... 42 4.2.3. OHIO SHEARING PROCEDURE ............................................ 43 4.3. ANALYTICAL PROCEDURES ......................................................... 45 4.4. EXPERIMENTAL RESULTS ............................................................. 47 4.4.1. TWO BY TWO SHEARING RESULTS .................................. 47 4.1.2. ONE BY ONE SHEARING RESULTS .................................... 55 4.1.3. OHIO SHEARING RESULTS .................................................. 57 4.5. ANALYTICAL RESULTS .................................................................. 64 4.6. DISCUSSION ...................................................................................... 68 CHAPTER 5 .............................................................................................................. 74 CONCLUSIONS ................................................................................................ 74 viii LIST OF REFERENCES .......................................................................................... 77 APPENDIX A. ........................................................................................................... 79 TWO BY TWO SHEARING DESIGN ............................................................. 79 APPENDIX B. ........................................................................................................... 82 ONE BY ONE SHEARING DESIGN ............................................................... 82 APPENDIX C. ........................................................................................................... 86 OHIO CROSS-SECTIONAL SHEARING DATA ............................................ 86 ix
Description: