ebook img

Passive Control of Aerodynamic Load in Wind Turbine Blades PDF

118 Pages·2015·3.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Passive Control of Aerodynamic Load in Wind Turbine Blades

Passive Control of Aerodynamic Load in Wind Turbine Blades Edgar Sousa Carrolo Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Professor André Calado Marta Examination Committee Chairperson: Professor Filipe Szolnoky Ramos Pinto Cunha Supervisor: Professor André Calado Marta Member of the Committee: Doctor José Lobo do Vale June 2015 ii Acknowledgments Iwouldliketogiveawordofgratitudeinfirstplace,tomysupervisorAndre´ Martaforhistotalavailability wheneverIneeded. Hetrustedinmesincethebeginningandgavemealltheconfidencetoovercome thedifficultiesIhadthroughoutthiswork. Thankyouforeverything! ThegreetingisextendedtothePh D.studentSima˜oRodriguesforhistechnicaltipsandadvices. IwanttothankmydearfriendsandcolleaguesJose´ andDiogo,fortheirconcernaboutmyprogress and emotional support, not only during the dissertation period but all the university time. All those who alwayscaredaboutmearealsoincluded. Finally, I want to thank my family, whose financial support was crucial. They never put pressure on me,andgavemefreedomtofollowmyownpath,alwaysdemonstratingtheirconfidenceonme. Ihope, fromnowon,throughtheworkingtoolyougavemeopportunitytoget,rewardalltheeffortyoudonein myeducationeversince. iii iv Resumo As pa´s de turbinas eo´licas com grandes dimenso˜es teˆm muitas vantagens em termos de eficieˆncia energe´tica,noentantooseudimensionamentorepresentaummaiordesafio,devidoa`selevadascargas aqueestasestruturasesta˜osujeitas. Tradicionalmente, os sistemas de controlo activo permitem a` pa´ adaptar-se de acordo com as condic¸o˜es de vento, e assim manter a sua eficieˆncia dentro de n´ıveis aceita´veis. Desde o final do se´culo passado, alguns investigadores teˆm vindo a discutir acerca de te´cnicas de controlo passivo. A implementac¸a˜o deste tipo de resposta aerola´stica na˜o introduz peso ou manutenc¸a˜o adicional, ao contra´rio do controlo activo, porque na˜o existem estruturas adicionais ou complementares, e e´ muito u´til para a reduc¸a˜o de cargas de fadiga ou optimizar a energia produzida. O objectivo passou por conseguir uma reduc¸a˜o efectiva da carga aerodinaˆmica num modelo computacional de uma pa´. No aˆmbito deste trabalho foram desenvolvidos modelos computacionais que simulam a interacc¸a˜o flu´ıdo- estruturanummodelodepa´ aperfeic¸oado,efoiconsideradoinicialmentenumana´liseacoplada,apenas acargaaerodinaˆmicaedeseguida,combinando-acomcarregamentosinerciais. Osresultadosdemon- straramqueestedesignreduzirem2.1%acargaaerodinaˆmicanacondic¸a˜odeumventodevelocidade ma´xima de operac¸a˜o. Uma validac¸a˜o esta´tica preliminar foi realizada com sucesso, tendo em conta valoresma´ximosderefereˆncia. Palavras-chave: Adaptac¸a˜oaeroela´stica,Acoplamentoflexa˜o-torc¸a˜o,Controlopassivo,Car- regamentoaerodinaˆmico,Interac¸a˜ofluido-estrutura. v vi Abstract Largewindturbinebladeshavemanyadvantagesintermsofpowerefficiency, despiterepresentingan hazard concerning the high loads applied on the structure. Traditionally, there are active control sys- tems that allow blades to adapt according to wind conditions, and so maintain power efficiency and aerodynamic load within acceptable levels. Since the end of the last century, some researchers have been discussing about passive control techniques. The implementation of this kind of aeroelastic re- sponse does not bring additional maintenance or weight, unlike active control, because there are no additionaldevicesorcomplementarystructures,andisveryusefuleithertoreducefatigueloadsorop- timize energy output. The main purpose was to achieve an effective reduction in aerodynamic loading inawindturbineblade. Inthescopeofthiswork,computationalmodelsweredevelopedthatsimulated the fluid-structure interaction on a enhanced blade model. Coupled analysis considering first only the aerodynamic load and then combining it with inertial were performed. The results demonstrated that this design could reduce 2.1% aerodynamic load in high wind speeds at the cut-out wind speed, thus provingtobearealisticpassivecontroltechnique. Apreliminarystaticvalidationoftheenhancedblade modelwassuccessfullydone,takingintoaccountmaximumreferencevalues. Keywords: Aeroelastic Tailoring, Bend-twist Coupling, Passive Control, Aerodynamic Load, Fluid-structureInteraction. vii viii Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 WindEnergyOverview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 HistoricPerspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 ModernWindEnergyContext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Horizontal-AxisWindTurbines 7 2.1 GenericOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 SourcesofLoadonBlades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 PowerandTorqueCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 BladeDesignandProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 BladeSection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.2 BladeMaterialProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.3 AirfoilOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.4 NumberofBlades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.5 BladeTwistDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.6 BladeThickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.7 Tip-SpeedRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 AerodynamicLoadControl 15 3.1 ActiveLoadControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 VariablePitchAngleBlades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ix 3.1.2 ActiveFlowControlTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 PassiveLoadControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 StallRegulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 AerolasticTailoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.3 Bend-TwistCoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 AerodynamicModel 22 4.1 IncompressiblePotentialFlowFundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 BoundaryConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 VortexFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 ActuatorDiskConcept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.4 ClassicalBladeElementMethodTheory . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 NumericalModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 PanelMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 BEMIterativeSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 DescriptionofAerodynamicRoutineProgramaero load.m . . . . . . . . . . . . . . . . . . 32 4.3.1 PurposeandObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.2 InputVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.3 Pressuredistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.4 BEMComputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 AerodynamicLoadComputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 ProgramRoutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 StructuralModel 37 5.1 LinearElasticityFoundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 FiniteElementMatrixFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Compositematerials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4 DescriptionofStructuralMeshGeneratorWTB struct model.m . . . . . . . . . . . . . . . 41 5.4.1 PurposesandObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.4.2 InputVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4.3 NodesAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4.4 ElementsAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5 LoadandNodalConstraintsComputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6 Fluid-StructureInteraction 45 6.1 FluidStructureInteractionMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 LooseCouplingFSISchemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3 SimplifiedCouplingProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 x

Description:
Os resultados demon- this design could reduce 2.1% aerodynamic load in high wind speeds at the cut-out wind speed, thus .. List of Tables.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.