ebook img

passive and active reconfigurable microstrip reflectarray antennas PDF

183 Pages·2008·14.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview passive and active reconfigurable microstrip reflectarray antennas

PASSIVE AND ACTIVE RECONFIGURABLE MICROSTRIP REFLECTARRAY ANTENNAS PASSIVE AND ACTIVE RECONFIGURABLE MICROSTRIP REFLECTARRAY ANTENNAS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 30 september 2008 om 15.00 uur door Mostafa HAJIAN elektrotechnisch ingenieur geboren te Arak, Iran Dit proefschrift is goedgekeurd door de promotor: Prof.dr.ir. L.P. Ligthart Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof.dr.ir. L.P. Ligthart, Technische Universiteit Delft, promotor Prof.ir. K. Robers, Technische Universiteit Delft Dr.Sci. A.G. Yarovoy, Technische Universiteit Delft Prof.dr.ir. G. Vandenbosch, Katholieke Universiteit Leuven, Belgi¨e Prof.dr.ir. E.R. Fledderus, Technische Universiteit Eindhoven, Prof.dr.ir. I.G.M.M. Niemegeers, Technische Universiteit Delft Prof.dr.ir. W.C. van Etten, Technische Universiteit Twente Thesis Delft University of Technology. With references and with summary in Dutch. ISBN 978-90-9023134-1 Subject headings: hollow patch antenna, reflectarray antenna, passive- and active antennas, shared aperture antenna. Printed in The Netherlands Copyright (cid:2)c 2008 byM. Hajian All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, includ- ing photocopying, recording or by any information storage and retrieval system, without permission from thecopyright owner. The work presented in this thesis was financially supported by IRCTR in The Netherlands. To Carla, Lavinia and Ramses Contents 1 Introduction 1 1.1 Research objective . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Research lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Novelties and main results . . . . . . . . . . . . . . . . . . . . 3 1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 4 2 Microstrip reflectarray antennas 7 2.1 Basic microstrip reflectarray . . . . . . . . . . . . . . . . . . . 9 2.2 Active microstrip reflectarray . . . . . . . . . . . . . . . . . . 10 2.3 Design parameters of microstrip reflectarray . . . . . . . . . . 11 2.3.1 Feeding . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Spillover and taper efficiencies . . . . . . . . . . . . . 11 2.3.3 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.4 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Single element considerations 15 3.1 Numerical aspects . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Design parameters . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Patch dimensions . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Substrate thickness . . . . . . . . . . . . . . . . . . . . 17 3.2.3 Dielectric constant . . . . . . . . . . . . . . . . . . . . 17 3.2.4 Ground plane dimensions . . . . . . . . . . . . . . . . 17 3.3 Performance parameters . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Far field phase . . . . . . . . . . . . . . . . . . . . . . 18 II CONTENTS 3.3.2 Far field magnitude . . . . . . . . . . . . . . . . . . . 19 3.3.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Cross-polarization . . . . . . . . . . . . . . . . . . . . 19 3.3.5 Resonance frequency . . . . . . . . . . . . . . . . . . . 19 3.3.6 Near field . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.7 Surface currents . . . . . . . . . . . . . . . . . . . . . 20 4 RF Reflection and transmission of semiconductor material under illumination of light 21 4.1 The concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Modelling the reflection and transmission coefficients . . . . . 23 4.2.1 Propagation constant in semiconductor material . . . 25 4.2.2 Electron-hole pair generation rate . . . . . . . . . . . 26 4.2.3 Reflection and transmission coefficients . . . . . . . . 26 4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 28 4.4.1 X-band . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4.2 Ka-band . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 Formulation of the integral equation for microstrip reflec- tarray antennas 37 5.1 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.1 Singularity . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . 39 5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 Variable-sized phasing technique 45 6.1 Geometry of a variable-sized patch . . . . . . . . . . . . . . . 45 6.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2.1 Infinite ground plane . . . . . . . . . . . . . . . . . . . 46 6.2.2 Truncated ground plane . . . . . . . . . . . . . . . . . 47 CONTENTS III 6.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3.1 Computational aspects . . . . . . . . . . . . . . . . . . 51 6.3.2 Substrate thickness . . . . . . . . . . . . . . . . . . . . 52 6.4 Surface currents. . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.4.1 Near-field . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.5 Array design . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.5.1 Measurement results . . . . . . . . . . . . . . . . . . . 56 6.5.2 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 59 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 Hollow patch: part 1 61 7.1 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.2.1 Computational aspects . . . . . . . . . . . . . . . . . . 64 7.2.2 Substrate thickness . . . . . . . . . . . . . . . . . . . . 66 7.2.3 Patch length . . . . . . . . . . . . . . . . . . . . . . . 67 7.3 Surface currents. . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.3.1 Near-field . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.4 Waveguide simulator measurements . . . . . . . . . . . . . . . 69 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 8 Hollow patch: part 2 73 8.1 Geometry of the rectangular hollow patch . . . . . . . . . . . 74 8.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.3 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.3.1 Computational aspects . . . . . . . . . . . . . . . . . . 76 8.3.2 Substrate thickness . . . . . . . . . . . . . . . . . . . . 78 8.3.3 Patch length . . . . . . . . . . . . . . . . . . . . . . . 78 8.3.4 Slot length . . . . . . . . . . . . . . . . . . . . . . . . 79 8.4 Surface currents. . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.4.1 Near-field . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.5 Hollow patch with island . . . . . . . . . . . . . . . . . . . . . 82 IV CONTENTS 8.6 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.6.1 Substrate thickness . . . . . . . . . . . . . . . . . . . . 85 8.6.2 Patch length . . . . . . . . . . . . . . . . . . . . . . . 85 8.7 Surface currents. . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9 Reconfigurable active MRA with capacitive loading 89 9.1 Geometry of a loaded hollow patch . . . . . . . . . . . . . . . 90 9.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.3.1 Computational aspects . . . . . . . . . . . . . . . . . . 94 9.3.2 Substrate thickness . . . . . . . . . . . . . . . . . . . . 95 9.3.3 Patch length . . . . . . . . . . . . . . . . . . . . . . . 95 9.3.4 Slot length . . . . . . . . . . . . . . . . . . . . . . . . 96 9.3.5 Slot width . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.4 Surface currents. . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.4.1 Near-field . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.5 Varactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.6 Varactor-based scanning capabilities . . . . . . . . . . . . . . 102 9.7 Technological aspects and experimental results . . . . . . . . 103 9.8 Narrow-band multi-frequency shared aperture antenna . . . . 115 9.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 10 General conclusions and discussion 119 APPENDICES 125 A Derivation of integral equation 127 A.1 Integral equations . . . . . . . . . . . . . . . . . . . . . . . . 128 A.1.1 Derivation of dyadic Green’s function . . . . . . . . . 129 A.1.2 The Scattered field . . . . . . . . . . . . . . . . . . . . 131 A.1.3 Series expansion for the current . . . . . . . . . . . . . 133 A.1.4 Bases function . . . . . . . . . . . . . . . . . . . . . . 133

Description:
antenna elements without any power divider network and is in many cases printed on a flat surface [2]-[16] for the phase) a 5x5 array already needs 50 signals to be connected and controlled. The control Hence inhomogeneous meshing (so-called smart sampling) is applied for the hollow patch.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.