ebook img

Partners of the $X(3872)$ and HQSS breaking PDF

0.07 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Partners of the $X(3872)$ and HQSS breaking

Partners of the X(3872) and HQSS breaking D.R. Entem1,a), P.G. Ortega2 and F. Ferna´ndez1 6 1GrupodeF´ısicaNuclearandIUFFyM,UniversidaddeSalamanca,E-37008Salamanca,Spain. 1 2CERN(EuropeanOrganizationforNuclearResearch),CH-1211Geneva,Switzerland. 0 2 a)Correspondingauthor:[email protected] n a J Abstract.Sincethediscoveryofthe X(3872)thestudyofheavymesonmoleculeshasbeenthesubject ofmanyinvestigations. 5 Ontheexperimentalsidedifferentexperimentshavelookedforitsspinpartnersandthebottomanalogs.Onthetheoreticalside 1 differentapproacheshavebeenusedtounderstandthisstate.SomeofthemareEFTthatimposeHQSSandsotheymakepredictions forthepartnersoftheX(3872),suggestingtheexistenceofaJPC =2++partnerinthecharmsectororJPC =1++or2++analogsin ] thebottom. h Inour work,inorder tounderstand the X(3872), weuseaChiral quarkmodel inwhich,due totheproximitytothe DD ∗ p threshold,weincludecc¯statescoupledtoDD molecularcomponents.Inthiscoupledchannelmodeltherelativepositionofthe ∗ - barecc¯stateswithtwomesonthresholdsareveryimportant.WehavelookedfortheX(3872)partnersandwedon’tfindabound p stateintheD D JPC =2++.InthebottomsectorwefindtheoppositesituationwheretheB B withJPC =2++isboundedwhile e ∗ ∗ ∗ ∗ h theJPC =1++isnotbounded.Theseresultsshowshowthecouplingwithcc¯statescaninduceddifferentresultsthanthoseexpected [ byHQSS.Thereasonisthatthissymmetryisworseintheopenheavymesonsectorthaninthehiddenheavymesonsector. 1 v INTRODUCTION 1 0 9 Thetheoreticalstudyofexoticstates,notwellaccommodatedinthenaivequarkmodel,hasmotivatedagreatinterest 3 since the discoveryof the X(3872).This state was discoveredby the Belle collaborationin 2003[1] and verysoon 0 after confirmed by the CDF [2], D0 [3] and BaBar [4] collaborations.The state lies well below where the χ (2P) . c1 1 state is expected by quark models and is very close to the DD threshold. However it also presents very peculiar ∗ 0 decayproperties,beingthemostrelevantthedecaysintoJ/ΨππthroughaρandJ/Ψπππthroughanωwhichimplies 6 somekindofisospinviolation.Thesepropertiesruleoutcompletelya cc¯ interpretationofthestate. Howeveritcan 1 beeasilyunderstoodinthemolecularpictureasa DD molecule.Thentheisospinviolationcanbeobtaineddueto : ∗ v thedifferenceonthemassofdifferentchargedstatesofthecharmedmesonswithouttheneedofintroducingisospin i violatinginteractions.Forthesereasonsitisnowacceptedasthebestcandidatetobeanonqq¯state. X The first consequence of the molecular picture is the existence of other analog states. In fact, if you assume r a heavyflavorsymmetry(HFS),whichisanapproximategoodsymmetryofQCDandimpliesthattheinteractionsare thesamewhenyouchangeacquark(antiquark)byabquark(antiquark),thenaJPC =1++analoginthebottomonium sectorshouldexistduetothereductionofthekineticenergybythebiggermassofthebottommesons.Soyoushould expectastatewithbiggerbindingenergyandprobablysmallerisospinbreakingpropertiesduetothesmalldifference inthemassesofthebottommesons. Otherapproximatesymmetriescanbeusedtostudytheexistenceofotheranalogslike,forinstance,heavyquark spin symmetry (HQSS) which implies the independence of the interactions on the spin of the heavy quark. This symmetry has been use by the authors of Reference [5] to study the analogs in the charmonium sector with other quantum numbers. The strongest conclusion of this work is the existence of a JPC = 2++ B B analog which has ∗ ∗ beencalledX(4012)sincetheinteractioninthischannelisthesameasinthechanneloftheX(3872).Inordertoget conclusionsforotherquantumnumbersfurtherassumptionsareneeded.AssumingthattheX(3915)isa0++analoga totalofsixmolecularstatesarefoundinthecharmoniumsector. UsingsimilarideasandHFStheauthorsofReference[6]studiedthebottomoniumsectorwherethe1++ analog shouldbefoundandextendedthestudytotheisovectorchannelsinbothsectors. Althoughthepuremolecularpictureisverypopularonecouldexpectthatthemolecularstatescouldcoupleto nearbycc¯states.WefollowedthisinvestigationintheframeworkoftheChiralQuarkModel(CQM)inReference[7]. InthisworkwefoundthattheJPC =1++ DD channelisunboundedifwedonotincludethecouplingtocc¯statesand ∗ isboundedoncethecouplingtotheχ (2P)isincluded.Inalatterwork[8]wealsoincludeotherchannelslikethe c1 J/Ψωfindingitirrelevant.Thereasonisthatthecouplingof J/Ψωandcc¯ statesisanOZIforbiddenprocessandso verysuppressedandthecouplingtoDD statesgoesthrougharearrangementprocesswhichisalsoverysuppressed. ∗ SothemostimportantcomponentsaretheDD andχ (2P). ∗ c1 Theirrelevanceofthe J/Ψωchannelhasbeenconfirmedrecentlyinlattice simulations[9] andalso thestrong coupling between the DD components and cc¯. In this work only the bound DD state is found and the expected ∗ ∗ χ (2P)stateisnotfound.Forthisreasonithasbeeninterpretedasacc¯largelydressedbytheDD components.This c1 ∗ differsfromourpicturesinceforustheX(3872)appearsasanadditionalstatetothenaivequarkmodelexpectations. Ifoneassumesthatthecouplingtocc¯statescanbeimportantoneimportantquestionisifthiscouplingcanmake resultsdeviatefromexpectationsfromHQSSandHFS.Thisiswhatweanalyzeinthepresentwork. THECHIRALQUARKMODEL The present work use the CQM which has been extensivelyused to study baryonand meson phenomenology.The SU(2)versionwaspublishedinReference[10]andlateronwasextendedtotheSU(3)versionandtotheheavyquark sectorinReference[11].Hereweonlydescribethemainingredientsofthemodel. QCD has Chiral Symmetry as an approximate good symmetry at the level of the Lagrangian. However this symmetryisnotrealizedinthehadronspectrumandisspontaneouslybrokenatthequantumlevel.Thisfactimplies theexistenceofmasslessGoldstonebosons(thepions)withthequantumnumbersofthebrokensymmetry.However thesymmetryisnotexactandtheGoldstonebosonsacquireadynamical(small)masswhichisthemostsatisfactory waytounderstandthesmallnessofthemassofthepionmeson.WhenwebreakthesymmetryintheSU(3)version thenthekaonsandtheetamesonappears.Thesenewdegreesoffreedomgeneratesinteractionsbetweenquarksasone Goldstonebosonexchanges.Multibosonexchangesarenotincludedbuttheyaretakenintoaccountbytheexchange of scalar bosons. However Chiral Symmetry Breaking also generates a dynamicalmass for quarks, the constituent quarkmass. Besides the Chiral Symmetry Breaking another crucial non-perturbative effect of QCD is confinement which makesallhadronstoappearascolorsinglets.We includeconfinementina phenomenologicalwayasa colorlinear screenedinteractionbetweenquarks. QCD perturbative effects are included by the interaction induced by one gluon exchange which is of special relevanceonthedescriptionofheavyquarksystems. AllthedetailsoftheinteractionsusedcanbefoundinReferences[11]and[12]wheretheparametersusedcan befound. THETWO MESON INTERACTION Oncewehavetheinteractionbetweentheconstituentsofmesonswecanstudytheinteractionbetweenmesonsgen- eratedbythem.WeobtainthisinteractionsusingtheResonatingGroupMethod(RGM)consideringthatweknowthe internalwave functionsof the interacting mesons. In our calculation these wave functionsare obtained solving the twobody(qq¯)system. Inthesystemsconsideredinthisworknoantisymmetryeffectsbetweenquarksindifferentmesonsarepresent. SotheinteractionisgivenbythesocalledRGMdirectkernel RGMV (P~ ,P~) = d~p d~p d~p d~p φ (~p )φ (~p )V (P~ ,P~)φ (~p )φ (~p ) (1) D ′ Z ξA′ ξB′ ξA ξB ∗A ξA′ ∗B ξB′ ij ′ A ξA B ξB iXA,j B ∈ ∈ Howeverquarksorantiquarkscanbeexchangedbetweendifferentmesonscouplingdifferentmesonstates,like,for instance, the DD J/Ψω. This kind of processes are rearrangementdiagramsthat are suppressed by the meson ∗ → wavefunctionsoverlaps. COUPLINGMOLECULAR AND QQ¯ COMPONENTS AsmentionedintheintroductiontheclosestQQ¯ statestothetwomesonthresholdscancoupledwiththesestates.A measuredofthiscouplingisgivenbythewidthsoftheQQ¯ statesdecayingtoopenheavyquarkmesons,whichisof theorderortensorhundredsofMeV. Inorderto studythiseffectwe usethe 3P modelto coupledtwoquarkandfourquarksectors. Itis important 0 to notice thatthe modelonly introducesa couplingthatcan be fitted to anydecay andthen allthe othersare given bythemesonwavefunctionsandquarksymmetries.Inordertogetanoverallgooddescriptionoftwomesondecays we performed an analysis of strong decays in differentsectors and we allowed the coupling to logarithmically run with thescale ofthesystem givenbythe reducedmassof thetwo quarksofthedecayingmeson.Thiswasdonein Reference[13]wherepredictionsinsectorswherethecouplingwasnotfittedweregivenwithverygoodagreement withtheexperimentaldata. Thenwetakethehadronicwavefunctiongivenby Ψ = c ψ + χ (P)φ φ β (2) α β M1 M2 | i | i | i Xα Xβ where ψ arethehiddenheavymesonsand φ φ β arethetwomesonstateswithβquantumnumbers. M1 M2 Th|eicouplingwithQQ¯ statesinduceda|neffectiveienergydependentpotentialbetweenthetwomesonsgivenby h (P)h (P) Veff(P,P)= β′α ′ αβ (3) β′β ′ Xα E−Mα WesolvethecoupledchannelproblemfollowingReference[14].AllthedetailscanbefoundinReference[8]. HEAVYQUARKSPIN SYMMETRY Since we want to analyze the discrepancies with HQSS expectations induced in our model by the coupling to QQ¯ states is important to check if we don’t have additional HQSS breaking effects. In our model HQSS breaking is presentsincewetakefiniteheavyquarkmasses,howeveroneshouldexpectsmalleffectsduetothebigvaluesofthe heavyquarkmasses. ForS-wavetwomesonstatesitiseasytofindthefollowingrelationsbetweenmatrixelements 2 D D (0++)HDD(0++) = DD(0++)HDD(0++) D D (0++)HD D (0++) (4) ∗ ∗ ∗ ∗ ∗ ∗ √3h | | i h | | i−h | | i DD (1++)HDD (1++) = D D (2++)HD D (2++) (5) ∗ ∗ ∗ ∗ ∗ ∗ h | | i h | | i 3 1 = DD(0++)HDD(0++) D D (0++)HD D (0++) (6) ∗ ∗ ∗ ∗ 2"h | | i− 3h | | i# 2 DD (1+ )HDD (1+ ) = DD(0++)HDD(0++) + D D (0++)HD D (0++) (7) ∗ − ∗ − ∗ ∗ ∗ ∗ h | | i h | | i h | | i whicharegivenjustbyrecouplingcoefficients.TheserelationsarecheckedinFigures1and2.ForexactHQSSall the solid lines should be the same, so we see just small HQSS breaking effects in the two meson interaction. The smallbreakingeffectsareinducedbythesmalldifferenceinthewavefunctionsofthepseudoscalarandvectorheavy mesonswhichareshowninFigure3andforexactHQSSshouldbethesame. RESULTS AsshownintheprevioussectionthemodelpreservesHQSSinagoodapproximationalthoughsmallbreakingeffects arepresentduetotheuseoffiniteheavyquarkmasses.HoweveritisinterestingtonoticethattheHQSSbreakingin themassesofopencharmandbottommesonsisbiggerthaninthehiddencharmandhiddenbottomsectors.Forthis reasontherelationsbetweenthetwomesonthresholdsandthe QQ¯ stateschangewhenwechangethe JPC quantum numbers.This can be seen in Figure 4 where we present the predictionsof the pure QQ¯ states of the modelin red comparedwiththetwomesonthresholdsandthestatesoftheParticleDataGroup(PDG)fromReference[15]inblue. 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 -2V) 0.2 -2V) 0.2 Ge Ge 0.0 p) ( 0.0 p) ( -0.2 V(p, -0.2 V(p, -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1.0 -1.0 -1.2 0 500 1000 1500 2000 0 500 1000 1500 2000 p (MeV) p (MeV) FIGURE1.Diagonal matrixelementsofthetwomesoninteractioninmomentumspaceforthe D()D() sector(leftpanel) and ∗ ∗ B()B()sector(rightpanel).ThedashedbluelinegivestheD D (0++)matrixelement,thedashedredlinetheDD(0++),thesolid ∗ ∗ ∗ ∗ bluelinetherighthandsideofEquation4andthesolidredlinelefthandsideofthesameEquation. 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 -2V) 0.2 -2V) 0.2 e e G G p) ( 0.0 p) ( 0.0 p, -0.2 p, -0.2 V( V( -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1.0 -1.0 0 500 1000 1500 2000 0 500 1000 1500 2000 p (MeV) p (MeV) FIGURE2.Diagonal matrixelementsofthetwomesoninteractioninmomentumspaceforthe D()D() sector(leftpanel) and ∗ ∗ B()B()sector(rightpanel).ThedashedbluelinegivestheD D (0++)matrixelement,thedashedredlinetheDD(0++),thesolid ∗ ∗ ∗ ∗ bluelinetherighthandsideofEquation5,thesolidredlinelefthandsideofthesameEquationandthesolidgreenlinetheright handsideofEquation6. ForthePDGstatesweonlyincludestateswithwellknownquantumnumberswithsomeexceptions.Inthe1+ sector − althoughtheIG quantumnumbershasnotbeenmeasureditisawellacceptedcandidatefortheh (1P)stateasshown c bytheagreementwithourquarkmodelresult.FortheX(3940)theputinthe1++sectorsinceithasbeenseeninDD ∗ decaysandsoitisagoodcandidatefortheχ (2P)state.Inthebottomoniumsectorthesameappliestotheh (1P) c1 b andh (2P)(includedintheupdatedversion).Fortheχ (3P)onlyC =+hasbeenmeasuredandwehaveincludedas b b astatecoveringthethreepossibleassignments.Wealsohaveincludedinlightbluethecandidatesfortheχ (2P)and b1 χ (2P)measuredrecentlybyLHCb[16]. b2 It is important to consider the following aspects. In the charmonium sector the relevant thresholds, in which an S-wave two mesonstate is possible, are DD and D D in 1+ , DD and D D in 0++, DD in 1++ and D D in ∗ ∗ ∗ − ∗ ∗ ∗ ∗ ∗ 2++.Thesameoccursinthebottomoniumsectorchangingthe D( ) mesonsby B( ) mesons.Then,a QQ¯ stateabove ∗ ∗ thresholdgivesattractionandbelowgivesrepulsion.Thestrengthisinverselyproportionaltothedifferencebetween thethresholdpositionandthemassofthebareQQ¯ state. Ourprescriptioninthepresentworkistoincludethecloserstateaboveandbelowtherelevantthresholdandwe onlyincludetwomesonstateswhereanS-waveispresent.Thepartialwavesincludedfortwomesonstatesare 1. Inthe0++sectorweincludeDD(BB)andD D (B B )1S waves ∗ ∗ ∗ ∗ 0 2. Inthe1++sectorweincludeDD (BB )3S and3D waves ∗ ∗ 1 1 8.0 7.0 7.0 6.0 6.0 5.0 -3/2V) 5.0 -3/2V) 4.0 Ge 4.0 Ge Ψ(p) ( 3.0 Ψ(p) ( 3.0 2.0 2.0 1.0 1.0 0.0 0.0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 p (GeV) p (GeV) FIGURE3.Wavefunctionforthepseudoscalar(red)andvector(blue)heavymesons.Theleftpanelcorrespondstocharmmesons (D())andtherightpaneltobottommesons(B()). ∗ ∗ TABLE1.AdditionalstatestothedressedQQ¯statesgivenbythemodel. ThestatespredictedusingHFSandHQSSsymmetriesgiven inRefer- ences[5,6]aregivenforcomparison. Charmonium 1+ 0++ 1++ 2++ − Reference[5] 3815/3955 3710/Input Input 4012 Reference[6] Input 4012 Thiswork X(3872) Bottomonium 1+ 0++ 1++ 2++ − Reference[6] 10580 10600 Thiswork 10621 ? 10648 3. Inthe1+ sectorweincludeDD (BB )andD D (B B )3S and3D waves − ∗ ∗ ∗ ∗ ∗ ∗ 1 1 4. Inthe2++sectorweincludeD D (B B )5S ,1D and5D waves ∗ ∗ ∗ ∗ 2 2 2 The resultsare summarizedin Table 1 wherewe onlyquoteadditionalstates to the dressed QQ¯ states thatwe findasresonances. Let’sconsiderfirstthe1++ DD and2++ D D channelswhereHQSStellsusthattheinteractionisthesame.In ∗ ∗ ∗ thecharmsectorweseethatinthe1++wegetmoreattractionthanrepulsionwhileinthe2++wegetrepulsion(thestate abovethresholdis an F-wave cc¯ state thatis weakly coupledto the two meson sector). As shown in Reference [7] the two meson interaction is not enough to bind the system, however the couplingwith the χ (2P) state gives the c1 additional attraction and we get a new state that we assigned to the X(3872). In the 2++ sector we don’t get this additionalattractionandforthisreasonnonewstateisfound.Howeverthedressedcc¯(3F )stategetsdressedanda 2 stateclosetothepredictedX(4012)byHQSSisfoundbutnotpresentasanadditionalstate.Forthisreasonalthough anstatewithsimilarmassisfoundweexpectdifferentdecaysproperties. Inthebottomoniumwehavetheoppositesituation.Nowthetwomesoninteractionisenoughtobindthesystem. Inthe1++weexpectmorerepulsionfromthestatebelowtheBB threshold.InTable1wedon’tgiveananswertothe ∗ existenceornotexistenceofthisstatesincewecanfindaveryshallowboundstateornostatewhenwevarythevalue ofthestrengthparameterofthe3P modelwithinitsuncertainties.Inthe2++ wegetsimilarrepulsionandattraction 0 fromthestatesbelowandabovethresholdandherewefindanadditionalstate.Thissituationdifferscompletelyfrom themodelindependentexpectationsofHQSSandHFSwithoutcouplingtoQQ¯ states. FortheotherquantumnumbersHQSSneedsomeassumptionsandthefinalresultdependsontheseassumptions. In Table 1 we compareour results in the 0++ and 1+ sectors with the conclusionsfrom References[5, 6] where a − betteragreementisfoundwithReference[6]. As a summary, in this work we only include the closest QQ¯ state above and below the relevant thresholds, howevera more complete description includingall the closest states is necessary to give definite conclusions.This 4.3 10.8 4.2 10.7 4.1 B*B* 4 D*D* 10.6 BB* BB GeV) 3.9 DD* GeV) 10.5 M( 3.8 M( DD 3.7 10.4 3.6 10.3 3.5 3.4 10.2 1+- 0++ 1++ 2++ 1+- 0++ 1++ 2++ FIGURE4.Charm(leftpanel)andbottom(rightpanel)spectrum.BlueboxesshowsthestatesintheParticleDataGroup[15].See commentsinthetextforthePDGstatesselected.Wealsohaveincludedinlightbluethecandidatesfortheχ (2P)andχ (2P) b1 b2 measuredrecentlybyLHCb[16].ThestatesinredarethepureQQ¯ statespredictedbythemodel. willbepresentedinaforthcomingpaper.Howeverthemainconclusionofthisworkisthatthecouplingbetweentwo mesonstatesandQQ¯ statescanmodifiedHQSSandHFSconclusionsinthepuremolecularpicture,andwethinkthat thisproblemshouldbeaddressinmodelsathadronlevel. ACKNOWLEDGMENTS ThisworkhasbeenpartiallyfundedbyMinisteriodeCienciayTecnolog´ıaunderContractno.FPA2013-47443-C2- 2-P, by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDTand by the Spanish Ingenio- Consolider2010ProgramCPAN(CSD2007-00042).P.G.OrtegaacknowledgesthefinancialsupportfromtheEuro- peanUnion’sMarieCurieCOFUNDgrant(PCOFUND-GA-2011-291783). REFERENCES [1] S.-K.Choietal.(BelleCollaboration),Phys.Rev.Lett.91,p.262001(2003). [2] D.Acostaetal.(CDFCollaboration),Phys.Rev.Lett.93,p.072001(2004). [3] V.Abrazovetal.(D0Collaboration),Phys.Rev.Lett.93,p.162002(2004). [4] B.Aubertetal.(BaBarCollaboration),Phys.Rev.D71,p.071103(2005). [5] J.NievesandM.Pavo´n-Valderrama,Phys.Rev.D86,p.056004(2012). [6] F.-K.Guo,C.Hidalgo-Duque,Nieves,J., andM.Pavo´n-Valderrama,Phys.Rev.D88,p.054007(2013). [7] P.Ortega,J.Segovia,D.Entem, andF.Ferna´ndez,Phys.Rev.D81,p.054023(2010). [8] P.Ortega,D.Entem, andF.Ferna´ndez,J.Phys.G40,p.065107(2013). [9] S.PrelovsekandL.Leskovec,Phys.Rev.Lett.11,p.192001(2013). [10] F.Ferna´ndez,A.Valcarce,U.Straub, andA.Faessler,J.Phys.G19,p.2013(1993). [11] J.Vijande,F.Ferna´ndez, andA.Valcarce,J.Phys.G31,p.481(2005). [12] J.Segovia,A.M.Yasser,D.R.Entem, andF.Ferna´ndez,Phys.Rev.D78,p.114033(2008). [13] J.Segovia,D.Entem, andF.Fernndez,PhysicsLettersB715,322–327(2012). [14] Baru, V., Hanhart, C., Kalashnikova,Yu. S., Kudryavtsev,A. E., and Nefediev,A. V., Eur. Phys. J. A 44, 93–103(2010). [15] K.Oliveetal.,Chin.Phys.C38,p.090001(2014). [16] R.Aaijetal.,JournalofHighEnergyPhysics2014(2014).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.