ebook img

Partition Algebras and Kronecker Coefficients [Master thesis] PDF

102 Pages·2015·0.481 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Partition Algebras and Kronecker Coefficients [Master thesis]

Partition Algebras and Kronecker Coefficients by Cameron Marcott A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Combinatorics and Optimization Waterloo, Ontario, Canada, 2015 (cid:13)c Cameron Marcott 2015 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Classical Schur-Weyl duality relates the representation theory of the general linear group to the representation theory of the symmetric group via their commuting actions on tensor space. With the goal of studying Kronecker products of symmetric group representations, the partition algebra is introduced as the commutator algebra of the diagonal action of the symmetric group on tensor space. An analysis of the representation theory of the partition offers results relating reduced Kronecker coefficients to Kronecker coefficients. v Acknowledgements I’d like to thank my supervisor Kevin Purbhoo for guiding me as I explored a large variety mathematical topics over the past two years, and for offering valuable editorial advice on this thesis. Also, I’d like to thank David Wagner and Jason Bell for agreeing to serve as readers for this thesis. vii Table of Contents List of Figures xi 1 Introduction 1 2 Representation Theory Background 3 2.1 Representations of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Isotypic Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Induction and Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Bratteli Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Representation Theory of C[S ] . . . . . . . . . . . . . . . . . . . . . . . . 10 n 2.6 Kronecker Products of C[S ] Representations . . . . . . . . . . . . . . . . 17 n 3 Centralizer Algebras and Schur-Weyl Duality 19 3.1 Centralizer Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Schur-Weyl Duality and Seesaw Reciprocity . . . . . . . . . . . . . . . . . 21 3.3 A Centralizer for the Symmetric Group Algebra . . . . . . . . . . . . . . . 25 4 The Partition Algebra 29 4.1 Building the Partition Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Pretty Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Special Elements, Ideals, and Quotients . . . . . . . . . . . . . . . . . . . . 34 4.4 A Trace for the Partition Algebra . . . . . . . . . . . . . . . . . . . . . . . 35 ix 5 Representation Theory of the Partition Algebra 37 5.1 Green’s Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 Jones’ Basic Construction 45 6.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2 Jones’ Construction and the Partition Algebra . . . . . . . . . . . . . . . . 50 7 Quasi-hereditary Algebras 59 7.1 Hand waving some hard math . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 Quasi-hereditary Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.3 P (n) as a Quasi-hereditary Algebra . . . . . . . . . . . . . . . . . . . . . 69 k 8 The n-pair Condition 73 9 Results about Kronecker Coefficients and Concluding Remarks 83 9.1 Results about Kronecker Coefficients . . . . . . . . . . . . . . . . . . . . . 83 9.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Bibliography 87 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.