ebook img

Particle rapidity density and collective phenomena in heavy ion collisions PDF

6 Pages·0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Particle rapidity density and collective phenomena in heavy ion collisions

PARTICLE RAPIDITY DENSITY AND COLLECTIVE PHENOMENA IN HEAVY ION COLLISIONS ∗ R. UGOCCIONI ANDJ. DIASDEDEUS CENTRA and Departamento de Físi a (I.S.T.) Av. Rovis o Pais, 1049-001 Lisboa, Portugal 1 0 0 Weanalysere entresultson hargedparti lepseudo-rapiditydensitiesfromRHIC 2 intheframeworkoftheDualStringModel,inparti ularwhenin ludingstringfu- sion. Themodel,inasimpleway,agreeswithalltheexistingdataandis onsistent n withthepresen eoftheper olationtransitiontotheQuark-GluonPlasmaalready a attheCERN-SPS.Itleadstostri tsaturationoftheparti le(pseudo-)rapidityden- J sity,normalised tothe number ofparti ipant nu leons, as that number in reases. √s 9 Asymptoti ally, as → ∞, with the number of parti ipants (cid:28)xed, this density approa hes again nu leon-nu leon density. A omparison withre ent WA98 data 1 ispresented. v 2 7 The dependen e of measurable quantities like harged parti le density, 0 J/ψ N 1 transverse energy and produ tion rate on the number part of parti i- 0 pantnu leonsin highenergyheavyion ollisionsisextremelyimportantboth 1 for a better understanding of the initial onditions in the evolution of newly 0 / reated dense matter and be a1u,2s,e3,4it,5,p6rovides the information for dis rimi- h nating among di(cid:27)erent models. In this ontribution we analyse su h p quantities in the framework of the Dual String Model (DSM). - p Westartbybuildingnu leus-nu leus ollisionsasresultingfromsuperpo- e sitionofnu leon-nu leon ollisions,inthewayitisdoneintheGlaubermode7l h approa h and its generalisat8ions: in the DSM, i.e., the Dual Parton Model : v with the in lusion of strings, the valen e quarksof the nu leon produ e par- i ti les, via strings, only on e (cid:22)this is the wounded nu leon model ase(cid:22) and X N A produ tion is proportionalto the number of parti ipant nu leons. As the r NA a energy and in rease the role of sea quarks and gluons in reases, they in- tera t and produ e, again via strings, parti les, and the number of ollisions ν be omes the relevant parameter. One should noti e that multiple inelasti s atteringmayo ureitherinternallywithinagivennu leon-nu leon ollision or externally involving intera tions with di(cid:27)erent nu leons. Following Ref. 9, and taking into a ount the above basi properties, we *Present address: Dipartimento di Fisi a Teori a, via Giuria 1, 10125 Torino, Italy ugo ioni: submitted to World S ienti(cid:28) on February 1, 2008 1 now write an expression for the parti le pseudo-rapidity density, dN =N [2+2(k 1)α]h+(ν N )2kαh, dy A − NA − A (1) (cid:12)NANA (cid:12) h (cid:12) α where isthe h(cid:12)eight ofthe valen e-valen erapidity plateau, is the relative k weightofthesea-sea(in ludinggluons)plateauand istheaverag9enumνbero=f stringpairsper ollision. Elementarymulti-s atteringarguments give NA N4/3 A . However,aswementionedabove,thediagram orrespondingtosea-sea k 1 s attering an be iterated with ≥ being, in general, a fun tion of energy. N +(ν N ) = The number of nu leon-nu leon ollisions is, of ourse, A NA − A ν N =N [2+2(k 1)]+(ν N )2k = NA, and the number of strings is s A − NA − A 2kν NA. The (cid:28)rst term on the right-hand side of Eq. (1) is just a sum over nu leon-nu leon s attering ontributions (in luding internal parton multiple s attering) and we an thus write dN dN = N +(ν N )2kαh dy dy A NA − A (2) (cid:12)NANA (cid:12)pp (cid:12) (cid:12) (cid:12) (cid:12) ν = N If external multiple s(cid:12) attering is a(cid:12)bsent, by putting NA A, one obtains k 1 the wounded nu leon model limit; if ≫ we obtain the limit in whi h multiple s attering dominates. In Fig. 1, togetherwith the PHOBOS data, we have presented the quan- 1 dN √s tity NA dy NANA asfun tion ofthe .m. energy for the wounded nu leon (cid:12) modellimit(cid:12)(cid:22)solidline(cid:22)andthemultiples atteringdominan elimit(cid:22)dotted (cid:12) h α line. Assuming that and areenergy independent ( onstant plateaus),the dN/dy pp energy depend6en e of | , obtained from ka parametrisaαtio=n o0f.0e5xper- imental data, (cid:28)xes the energy dependen e of . We (cid:28)nd and h=0.75 . 14,15 In the DSM, strings may intera t by fusing in the transverse plane of intera tion thus modifying the number and the distributions of produ ed parmti les: inparti ular,duetotheve tornamtureofthe olour 1h6arge,a luster of strings will emit fewer parti les that separate strings. The number of stringsN om(Nin1g/3from1)2nku leon multiple s attering (cid:22)the se ond term in Eq. (1)(cid:22)is A A − and they o upy the transverse S intera tion area NA, wh2i h, for entral ollisions, is approximately given S π 1.14N1/3 by NA ≃ A , su h that the dimensionless transverse density η (cid:16) (cid:17) parameter is η = rs 22kN1/3(N1/3 1), 1.14 A A − (3) (cid:16) (cid:17) ugo ioni: submitted to World S ienti(cid:28) on February 1, 2008 2 30 Au+Au Collisions 5 PHOBOS Au+Au NA49 Pb+Pb 4.5 25 WA98 Pb+Pb 200 GeV HIJING Monte Carlo 4 CDF pp η(1/N) dN / dA 2105 UNAA52 2p ppp η/(0.5N)part23..355 130 GeV d N/ch 2 s1/2=56 GeV 10 d 1.5 ISR 1 HIST: HIJING UA5 5 0.5 Saturation model PHOBOS Dual String Model 0 0 100 200 300 400 0 10 100 1000 N c.m. energy (GeV/nucleon) part Figure 1. Pseudo-rapidity density nor- Figure 2. Central harged parti le rapidity malisedperparti ipantpairasafun tionof density per parti ipating pairas a fun tion .m. energy. The lines give predi tions for ofthenumberofparti ipants. ResultsofHI- thewoundednu leonmodel(solidline),the JING(histograms),EKRTpredi tions(dot- pure multi ollision approa h (dotted line), dashed lines) and DSM predi tions (√sosli=d and the Dual String Model, without fu- l5i6n,e1s3)0f,o2r0 0enAtralAu+Au ollisionsat sion Eq. (2) (dash-dotted line) and with pp pp¯GeV. Also shown are results fusion Eq. (4) (dashed linpe)p. AApp¯points from and ollisionsandPHOBOSdata are taken from Ref. 2,3,5, and from (Everything in the (cid:28)gure ex ept the DSM Ref.10,11,12,13 urves istakenfromRef.5.) r 0.2 η s where ≃ fmisthestringtransversese tionradius. Notethat in reases N k √s A with and, via , also with . 6 When fusion o urs, Eq. (2) be omes 1 dN = dN +F(η)(N1/3 1)2kαh, N dy dy A − (4) A (cid:12)NANA (cid:12)pp (cid:12) (cid:12) F(η) (cid:12)(cid:12) (cid:12)(cid:12) 17 where is the parti le produ tion redu tion fa tor, 1 e−η F(η) − . ≃s η (5) 18 It an now easily be shown that the DSM with fusion predi ts satura- N A tion of the parti le rapidity densities per parti ipant pa5i,r19o,2f0nu leons as in reases. This predi tion is om3pared to other models in (cid:28)gure 2 and to experimental data from WA98 in (cid:28)gure 3. ugo ioni: submitted to World S ienti(cid:28) on February 1, 2008 3 2 40 (a) (b) N / dy 11..68 N / dy 35 N) dpart 1.4 d 30 (1/ 1.2 25 1 20 0.8 15 0.6 10 0.4 0.2 5 0 0 0 100 200 300 400 0 5 10 15 20 25 30 Npart Npart Figure3. (a)Chargedparti ledensityperparti ipantnu leonversusthenumberofparti - ipants; (b)3absolute h15a8rgAed parti le density versus thenumber ofparti ipants. Thedata fprpom WA9821refer to GeV Pb+Pb ollisions ((cid:28)lleαd= i0r .1le1s), theho=pe0n.77 ir le refers to ollisions ;thesolidlineresultsfromEq.(4)with and . Furthermore, it is to be noted that the predi tions for parti le densities in entral Pb+Pb ollisions of the DSM without fusion and of the DSM with √s = 200 √s = 5.5 fusion are very di(cid:27)erent at AGeV (RHIC) and at ATeV (LHC) as an be seen in the following table: .m. energy 200 AGeV 5.5 ATeV without fusion 1500 4400 with fusion 700 1400 Of ourse this model is essentially soft. The parameters of the elementary h α ollisiondensities, and ,wereassumed onstant,alltheenergydependen e k being attributed to the parameter , the average number of string pairs per h α elementary ollision. If and are allowed to grow with energy, as a result, k for instan e, of semi-hard e(cid:27)e ts, the parameter may then have a slower in rease than the one obtained here. Finally,oneshould o1n4,s1i5dertheideathatstringfusioneventuallyleadsto asituationofper olation withtheformationofextendedregionsof olour freedom, with the features of the expe ted Quark-Gluon Plasma. Indeed η η 1.8 the parameter at the CERN-SPS has the value ≈ , larger than the η 1.12 1.17 c riti al density ( ≈ ÷ ) whi h means that per olation transition is √s=20 alreadytakingpla eat η A1G.5eV2,2evenallowingfornon-uniformmka=tte1r c distribution in the nu leusJ/(ψ ≈ ); th2i3s result is valid even with . The observed anomalous suppression may then be a signature of the ugo ioni: submitted to World S ienti(cid:28) on February 1, 2008 4 14,15 per olation transition to the Quark-G1l5uoJn/Pψlasma. Indeed, in our simple approa h, and Drell-Yan produ tion are treated as rare events: this implies that their ratio is given by the produ t of J/ψ twofun tions, onedes ribingabsorptionof (whi hweassumeasusualto be exponential in the amount of matter longitudinally traversed), the other J/ψ cc¯ des ribing ( )suppressionduetoDebyes reening. Ifwetakethedrasti positionthatthelatteris100%e(cid:27)e tiveifthereisper olation,andine(cid:27)e tive otherwise, then s reening is des ribed by the probability of non-per olation, whi h an be parametrised as −1 η η c P (η)= 1+exp − , non-per (cid:20) (cid:18) ac (cid:19)(cid:21) (6) a c with a parameter linked to the (cid:28)nite size of the nu lear system. Thus we see that the onset of the phase transition is hara terised by a hange in the J/ψ urvature of the over D.Y. ratio from positive (during absorption) to negative. This however is only a qualitative des ription: a quantitative one should probablytakeinto a ountmoredetails of the pro ess (e.g., geometry ... varying with impa t parameter, resonan es, ). In on lusion, the DSM is a model with two omponents, the valen e- valen e omponentandthesea-sea omponent,thesea-sea omponentin reas- ingitsimportan ewithenergyandnumberofparti ipants. Thisissomewhat similar to the HIJING Monte Carlo model, with soft and hard omponents. N A On the other hand, with fusion the DSM behaves, for large , similarly to the EKRT model, but with stri t saturation of the parti le density per parti ipant nu leon. However, in the original EKRT model the saturation riterion in the transverse plane is stronger than in ase of fusion of strings. η Here,saturationin theintera tionareaisasymptoti (when →∞)while in the EKRT model it o urs at (cid:28)nite density. This auses the de rease of the N A parti le density with in the EKRT original model. Probably di(cid:27)erent explanations, su h as the ones based on string fusion, parton saturation, parton sh9adowing, are in some sense dual and refer to the same underlying physi s. What is be oming lear is that saturation of parti le density puts strong onstraints in models, and limits the rise of the (pseudo-)rapidity plateau at RHIC and LHC. A knowledgements R.U. gratefullya knowledgesthe (cid:28)nan ial support ofthe FundaçãoCiên ia e 2o Te nologiavia the (cid:16)Sub-ProgramaCiên ia e Te nologiado QuadroComu- nitário de Apoio.(cid:17) ugo ioni: submitted to World S ienti(cid:28) on February 1, 2008 5 Referen es 1. M. Gyulassy, these pro eedings. 2. B.B. Ba k et al., PHOBOS Collaboration, Phys. Rev. Lett. 85, 3100 (2000). 3. M.M. Aggarwal et al., WA98 Collaboration, preprint nu l-ex/0008004, (WA98/CERN). 4. C. Lourenço, talk given at the Heavy Ion Day meeting in Lisbon, Portu- gal, April 2000. 5. X.-N. Wang and M. Gyulassy, preprint nu l-th/0008014. 6. J. Dias de Deus and R. Ugo ioni, Phys. Lett. B 491, 253 (2000). 7. A. Capella, U.P. Sukhatme, C.I. Tan and J. Trân Thanh Vân, Physi s Reports 236, 225 (1994). 8. N.S.Amelin, M.A. BraunandC.Pajares,Phys.Lett.B306,312(1993); N.S. Amelin, M.A. Braun and C. Pajares, Z. Phys. C 63, 507 (1994). 9. N. Armesto and C. Pajares, Int. J. Mod. Phys. A 15, 2019 (2000). 10. M. Adamus et al., NA22 Collaboration, Z. Phys. C 37, 215 (1988). 11. G.J. Alner et al., UA5 Collaboration, Physi s Reports 154, 247 (1987). 12. R.E. Ansorge et al., UA5 Collaboration, Z. Phys. C 43, 357 (1989). 13. F. Abe et al., CDF Collaboration, Phys. Rev. D 41, 2330 (1990). 14. N.Armesto,M.A. Braun, E.G.FerreiroandC. Pajares,Phys.Rev.Lett. 77, 3736 (1996); M. Nardi and H. Satz, Phys. Lett. B 442, 14 (1998). 15. J.DiasdeDeus,R.Ugo ioniandA.Rodrigues,Eur. Phys.J.C16,537 (2000). 16. T.S. Biro, H.B. Nielsen and J. Knoll, Nu l. Phys. B 245, 449 (1984). 17. M.A. Braun and C. Pajares, Eur. Phys. J. C 16, 349 (2000). 18. J. Dias de Deus and R. Ugo ioni, Phys. Lett. B 494, 53 (2000). 19. K.J.Eskola,K.Kajantie,P.V.RuuskanenandK.Tuominen,Nu l.Phys. B 570, 379 (2000). 20. K.J.Eskola,K.KajantieandK.Tuominen,preprintJYFL-3700andHIP- 2000-45/TH(hep-ph/0009246),Univ.ofJyväskyläandUniv.ofHelsinki. 21. C. De Marzo et al., Phys. Rev. D 26, 1019 (1982). 22. A. Rodrigues, R. Ugo ioni and J. Dias de Deus, Phys. Lett. B 458, 402 (1999). 23. M.C. Abreu et al., NA50 Collaboration, Phys. Lett. B 477, 28 (2000). ugo ioni: submitted to World S ienti(cid:28) on February 1, 2008 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.