ebook img

Particle creation in a Robertson-Walker Universe revisited PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Particle creation in a Robertson-Walker Universe revisited

Particlecreation inaRobertson-Walker Universerevisited F. Pascoal∗ Departamento de F´ısica, Universidade Federal de Sa˜o Carlos Via Washington Luis, km 235. Sa˜o Carlos, 13565-905, SP, Brazil C. Farina† Instituto de Fsica, Universidade Federal do Rio de Janeiro Caixa Postal 68528, 21941-972, Rio de Janeiro, RJ, Brazil (Dated:February2,2008) Wereanalyze theproblemof particlecreationina3+1 spatiallyclosed Robertson-Walker space-time. We computethetotalnumberofparticlesproducedbythisnon-stationarygravitationalbackgroundaswellasthe correspondingtotalenergyandfindaslightdiscrepancybetweenourresultsandthoserecentlyobtainedinthe literature[1]. 7 PACSnumbers:11.10.-z 0 0 2 I. INTRODUCTION was investigated in [2, 5]. The 3 + 1 version of this prob- n lemhasbeeninvestigatedinarecentwork[1][9]. However, a In a curvedspace-time the conceptof particles is a subtle whengeneralizingthe1+1solutiontothe3+1one,thisauthor J oneandthemeaningofwhatisa particleorwhatisa detec- missed a degeneracyfactor leading to an incomplete answer 4 torbecomesmuchmoredifficultthaninaflatspace-time[2] forthetotalnumberofparticlescreatedaswellasthecorre- . Basically, this happensbecause in a generalcurvedspace- spondingtotalenergy. 1 v timewedonothaveLorentzsymmetryanymoreanditispre- Themainpurposeofthisshortpaperistocomputetheto- 3 cisely this symmetry that, in a flat space-time, allows us to talnumberofparticlescreatedandthetotalenergyrelatedto 3 identify the best vacuum state for the theory. Lorentz sym- them taking into account the correct degeneracy factor that 0 metryassuresthatthevacuumstateisthesameforallinertial ariseswhenweareina3+1dimensions. Withtheaidofap- 1 observers. propriatedgraphics,we also makea briefdiscussiononhow 0 Fortunately,inmanyproblemsofourinterest,therearere- theparametersthatappearinthemetricaffectthetotalnumber 7 0 gionswhereachoiceofthephysicalvacuumisquitenatural. ofparticlesproduced. / Thathappenswhenthetimedependenceofthefieldinthese h regions is harmonic (or, at least, almost harmonic). A basic t - conditiontohaveafieldwithaharmonictimedependenceis p II. PARTICLECREATION thatthebackgroundmetricandtheeventualboundariesdonot e h dependontime. Insomespecificcases,thebackgroundmet- We consider the case of an expanding spatially closed : ric respects this condition only in asymptotic times (distant v Robertson-Walkeruniversewhoselineelementandscalarcur- future and remote past). In these cases, the physical inter- i vaturearegiven,respectively,by X pretationof particlesis possible at those asymptoticaltimes, r butnotbetweenthem. Asaconsequence,anon-staticcurved a space-timebackgroundmayleadtothephenomenonofparti- ds2 = a2(η) dη2−dρ2− sen2ρ(dθ2+ sen2θdϕ) , clecreation. (cid:16) (cid:17) The first one to discuss the problem of particle creation R = 6a−3 ∂2a+a , (1) η due to a curved space-time background was Schro¨dinger in (cid:0) (cid:1) 1939[3], butthefirstonethatcarefullyinvestigatedthisphe- where a(η) is the scale factor, η is the conformal time and nomenon was Parker in the late 60s [4]. The particle cre- 0≤ ρ ≤ π. Inthiscasetheequationofamassivescalarfield ationina1+1spatiallyclosedRobertson-Walkerspace-time conformallycoupledtothemetriciswrittenas ∂∂2ηu2k + a2∂∂ηa∂∂uηk + m2a2+1+ a1∂∂2ηa2 uk−∇anguk =0, (2) (cid:18) (cid:19) where ∇ is the angular part of the Laplacian operator on a 3-sphere. This operator has the hiper-spherical harmonics as ang eigenfunctions,thatsatisfythefollowingdifferentialequation[7] ∇ Y(l,m ,m ;ϕ,θ,ρ)=−l(l+2)Y(l,m ,m ;ϕ,θ,ρ), (3) ang 1 2 1 2 where l = 0, 1, 2, ..., m = 0, ±1, ±2, ..., ±l and m = geststheansatz, 1 2 0, ±1, ±2, ..., ±m . Hence, the ∇ in equation (2) sug- 1 ang 1 uk(ϕ,θ,ρ,η)= a(η)Y(l,m1,m2;ϕ,θ,ρ)gl(η). (4) 2 Substituting(4)in(2),weobtainthedifferentialequationfor B g (η), + l A d2g (η) l +ω2(η)g (η)=0, (5) dη2 l l ) η ( A where 2 a ω2(η)=(l+1)2+m2a2(η). (6) l B Notethatthisequationissimilartothatofamechanicalhar- − monicoscillatorwithatime-dependentfrequency. A Now,weconsideranexactlysolvablecaseduetoaconve- −3η0 0 3η0 nientchoiceofa(η),namely η FIG.1:Graphicofa2(η)versusηforaclosedexpandinguniverse. η a(η)= A+Btanh , (7) s (cid:18)η0(cid:19) where A, B and η are constantsandA > B. Since we are As we can see from Figure 1, there are two asymptotic 0 consideringan expandinguniverse, B > 0 and η > 0. An times where the backgroundmetric is almost static, namely, 0 inspectioninFigure1allowustointerpretη asthetimescale the remote pass, characterized by η ≪ −η and the distant 0 0 oftheexpansionoftheUniversewhileA−BandA+Bare, future, characterizedby η ≫ η . At those asymptotic times 0 respectively,thescalesofthe size oftheuniversebeforeand the corresponding vacuum states may be well defined if the aftertheexpansion. solutionsof(5)havethefollowingasymptoticlimit lim g(p,f)(η) = e−iωl(p,f)η , η→∓∞ l 2ω(p,f)Nk l ω(p,f) = q(l+1)2+m2(A∓B), (8) l p wherethesuperscriptspandf standforpastandfuturesolutions,respectively. Thesolutionsof(5)thatrespecttheasymptotic limits(8)aregiven,respectively,by gp = ξ2iωlfη0(1−ξ)−2iωlpη0 F 1+iω−η ,iω−η ;1−iωpη ;1−ξ , l (2ωpNk)1/2 2 1 l 0 l 0 l 0 l gf = ξ2iωlfη0(1−ξ)−2iωlpη0 F (cid:0)1+iω−η ,iω−η ;1+iωfη ;ξ , (cid:1) (9) l 1/2 2 1 l 0 l 0 l 0 2ωlfNk (cid:16) (cid:17) (cid:16) (cid:17) where 2F1 isthehipergeometricfunction[8]andwehavedefinedωl(±) := 12 ωlf ±ωlp andξ := 1−e2η/η0 −1. Sinceupk andufk arenotequal,thecorrespondingBogolubovcoefficientsmustbenon-v(cid:16)anishing. U(cid:17)singsome(cid:0)wellknown(cid:1)proprietiesof thehypergeometricfunction,wecanwriteup intermsofuf anduf∗asfollows k k k upk = αkk′ufk′ +βkk′ufk′∗ , (10) k′ X(cid:16) (cid:17) withtheBogolugovcoefficientsgivenby ωf Γ(1−iωpη )Γ(−iωfη ) αk′k = δkk′sωllp Γ(−iωl+ηl0)Γ0(1−iωll+η00); ωf Γ(1−iωpη )Γ(iωfη ) βk′k = δkk′sωlp Γ(iω−η )lΓ(01+iωl−η0). (11) l l 0 l 0 3 Intheremotepastalltheinertialparticledetectorsregisterthecompleteabsenceofparticlesinthestate|0pi(thevacuumstate associatedtoup). However,inthedistantfuture,anyinertialparticledetectorwillregisteranumberofparticleswithquantum k numberskinthe|0pistategivenby sinh2(πω(−)η ) h0p|Nkf|0pi= |βkk′|2 = sinh(πωpη )silnh(π0ωfη ). (12) k′ l 0 l 0 X Thetotalnumberofproducedparticlesandthetotalenergyassociatedtothemaregiven,respectively,by ∞ sinh2(πω(−)η ) h0p|Nf|0pi= |βkk′|2 = (l+1)2 l 0 , (13) sinh(πωpη )sinh(πωfη ) k′ k l=0 l 0 l 0 XX X ∞ ωfsinh2(πω(−)η ) E = h0p|Nf|0piωf = (l+1)2 l l 0 . (14) k l sinh(πωpη )sinh(πωfη ) k l=0 l 0 l 0 X X Since we were not able to perform summation (13) analyti- onthoseparameters. We dothatbyplottingthegraphofthe cally,letusmakeanumericalanalysisoftheprecedingresults totalnumberofcreatedparticlesasafunctionofthefieldmass constructing,forinstance, the graphicof thetotalnumberof forseveralvaluesofA−B,A+Bandη (Figure3). Atfirst 0 particlescreatedN versusthemassofthefieldexcitationsm. we plot a control curve (in Figure 3, it is represented as a Naively,wecouldexpectthatthetotalnumberofparticlescre- continuousline), andthen we modifyone ofthe parameters, atedwasamonotonicallydecreasingfunctionofm.However, plota new curveand compareto the controlone. We repeat as we can see from the Figure 2, there is a value m for the thisprocedureforallparameters. 0 massofthefieldatwhichthetotalnumberofcreatedparticles N(m )reachesamaximum. 0 ) 40 m0 1 · ( 0 N 2 b b N40 b b 1 N · b ∆m0 10 b b b b b b b b b b b 0 0 100 200 0 m 0 m0 m FIG. 3: Graphic of the total number of created particles N versus thefieldmassmfordifferentvaluesofparametersA−B,A+B FIG.2:Graphicofthetotalnumberofparticlesproducedversusthe andη0. Thecontinuous linerepresentsthecasewhereη0 = 0.01, massrelatedtothefield. A−B = 1 and A+B = 101. The dashed line represents the case where η0 = 0.01, A−B = 3.25 and A+B = 101. The It is convenient to define a width ∆m as it is done in a dottedlinerepresentsthecasewhereη0 = 0.01, A−B = 1and 0 A+B =51. Finally,thecontinuousdottedlinerepresentsthecase Gaussian distribution. With this purpose, we define m and m suchthat + whereη0 =0.0115,A−B =1andA+B=101. − N(m +m )=N(m −m )=e−1N(m ), (15) 0 + 0 − 0 sothat∆m :=m −m . ChangingtheparametersA−B,A+B andη aswedid 0 + − 0 Notefromequation(13)thatN(m ),m and∆m depend in Figure 3 and then analyzing numericallywhat happensto 0 0 0 onlyonA−B,A+B andη . Despitethefactthatwewere thegraphicofN versusm,suggeststhefollowingbehaviors: 0 notabletogetaclosedanalyticexpressionform ,∆m and N(m ) gets larger and ∆m gets smaller as A−B and η 0 0 0 0 0 N(m )asafunctionofthemetricparametersA−B,A+B decreaseorA+Bincreases.Ontheotherhandm getslarger 0 0 and η , we can see numericallyhow these quantitiesdepend asA−B,A+Borη increase. 0 0 4 III. CONCLUSIONS thedegeneracyfactor(l+1)2 thatappearsinequations(13) and(14). Thisfactormustbeincludedduetothedegeneracy Inthisworkwecomputedthetotalnumberofparticlescre- inthequantumnumbersm1andm2. Wethinkourdiscussion ated andthe totalenergyrelatedto them in a 3+1 spatially maybeofsomehelpintheanalysisofsimilarproblems,asfor closed Robertson-Walker space-time. By using appropriated example,ifoneconsidersotherfunctionsa(η)withbehaviors graphics, we also discussed how the parameters that appear slightlydifferentfromthatoneconsideredhere. in the metric affect the total number of particles produced. We found an unexpected behavior of N as a function of m, namely,startingfromzero,itincreasesuntilitreachesamax- IV. ACKNOWLEDGMENTS imumvalueatm andafterthatitdecreasesmonotonicallyas 0 mincreases. F.PascoalthanksI.WagaandN.Pintoforenlighteningcon- The essential differencebetween ourcalculationsand that versations, and FAPERJ and CNPq for financialsupport. C. presentedin[1]isthatthisauthordoesnottakeintoaccount FarinathanksCNPqforapartialfinancialsupport. [1] M.R.Setare,Int.J.Theor.Phys.432237(2004). [7] A.Erdelyi,W.Magnus,F.OberhettingereF.R.Triconi,Higher [2] N.D. Birrel and P.C. Davis, Quantum Fields in Curved Space, TranscendentalFunctions,McGraw-Hill,(1953). CambribgeUniv.Press,Cambridge(1982). [8] W.N. Bailey, Generalised Hypergeometric Series, Cambridge [3] E.Schro¨dinger,Physica6,899,(1939). UniversityPress,(1935); [4] L.Parker,Phys.Rev.Lett.21,562(1968); E.W.Barnes,Proc.LondonMath.Soc.6,141(1908). L.Parker,Phys.Rev.183,1057(1969); [9] Thisproblemalsowasinvestigatedin[6], buttheauthorshave L.Parker,Phys.Rev.D3,346(1971). notwrittenaclosedanalyticalexpressionforthetotalnumberof [5] C.BernardeA.Duncan,Ann.Phys.(N.Y.),107,201(1977). particlescreated. [6] Mostepanenko V M and Trunov N N 1997 The CasimirEffect anditsApplications(Oxford:Clarendon).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.